1
|
Lee HS, Lee IH, Kang K, Jung M, Yang SG, Kwon TW, Lee DY. Network Pharmacological Dissection of the Mechanisms of Eucommiae Cortex-Achyranthis Radix Combination for Intervertebral Disc Herniation Treatment. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211055024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Eucommiae cortex (EC) and Achyranthis radix (AR) are herbal medicines widely used in combination for the treatment of intervertebral disc herniation (IDH). The mechanisms of action of the herbal combination have not been understood from integrative and comprehensive points of view. By adopting network pharmacological methodology, we aimed to investigate the pharmacological properties of the EC-AR combination as a therapeutic agent for IDH at a systematic molecular level. Using the pharmacokinetic information for the chemical ingredients of the EC-AR combination obtained from the comprehensive herbal drug-associated databases, we determined its 31 bioactive ingredients and 68 IDH-related therapeutic targets. By analyzing their enrichment for biological functions, we observed that the targets of the EC-AR combination were associated with the regulation of angiogenesis; cytokine and chemokine activity; oxidative and inflammatory stress responses; extracellular matrix organization; immune response; and cellular processes such as proliferation, apoptosis, autophagy, differentiation, migration, and activation. Pathway enrichment investigation revealed that the EC-AR combination may target IDH-pathology-associated signaling pathways, such as those of cellular senescence and chemokine, neurotrophin, TNF, MAPK, toll-like receptor, and VEGF signaling, to exhibit its therapeutic effects. Collectively, these data provide mechanistic insights into the pharmacological activity of herbal medicines for the treatment of musculoskeletal diseases such as IDH.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - In-Hee Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Minho Jung
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Seung Gu Yang
- Kyunghee Naro Hospital, 67, Dolma-ro, Bundang-gu, Seongnam 13586, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| |
Collapse
|
2
|
Chan AK, Ballatori A, Nyayapati P, Mummaneni NV, Coughlin D, Liebenberg E, Külling FA, Zhang N, Waldorff EI, Ryaby JT, Lotz JC. Pulsed Electromagnetic Fields Accelerate Sensorimotor Recovery Following Experimental Disc Herniation. Spine (Phila Pa 1976) 2021; 46:E222-E233. [PMID: 33475275 DOI: 10.1097/brs.0000000000003762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An experimental animal study. OBJECTIVE The aim of this study was to investigate the effect of pulsed electromagnetic fields (PEMF) on recovery of sensorimotor function in a rodent model of disc herniation (DH). SUMMARY OF BACKGROUND DATA Radiculopathy associated with DH is mediated by proinflammatory cytokines. Although we have demonstrated the anti-inflammatory effects of PEMF on various tissues, we have not investigated the potential therapeutic effect of PEMF on radiculopathy resulting from DH. METHODS Nineteen rats were divided into three groups: positive control (PC; left L4 nerve ligation) (n = 6), DH alone (DH; exposure of left L4 dorsal root ganglion [DRG] to harvested nucleus pulposus and DRG displacement) (n = 6), and DH + PEMF (n = 7). Rodents from the DH + PEMF group were exposed to PEMF immediately postoperatively and for 3 hours/day until the end of the study. Sensory function was assessed via paw withdrawal thresholds to non-noxious stimuli preoperatively and 1 and 3 days postoperatively, and every 7 days thereafter until 7 weeks after surgery. Motor function was assessed via DigiGait treadmill analysis preoperatively and weekly starting 7 days following surgery until 7 weeks following surgery. RESULTS All groups demonstrated marked increases in the left hindlimb response threshold postoperatively. However, 1 week following surgery, there was a significant effect of condition on left hindlimb withdrawal thresholds (one-way analysis of variance: F = 3.82, df = 2, P = 0.044) where a more rapid recovery to baseline threshold was evident for DH + PEMF compared to PC and DH alone. All groups demonstrated gait disturbance postoperatively. However, DH + PEMF rodents were able to regain baseline gait speeds before DH and PC rodents. When comparing gait parameters, DH + PEMF showed consistently less impairment postoperatively suggesting that PEMF treatment was associated with less severe gait disturbance. CONCLUSION These data demonstrate that PEMF accelerates sensorimotor recovery in a rodent model of DH, suggesting that PEMF may be reasonable to evaluate for the clinical management of patients with herniation-associated radiculopathy.Level of Evidence: N/A.
Collapse
Affiliation(s)
- Andrew K Chan
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA
- Department of Orthopaedic Surgery University of California, San Francisco, San Francisco, CA
| | - Alexander Ballatori
- Department of Orthopaedic Surgery University of California, San Francisco, San Francisco, CA
| | - Priya Nyayapati
- Department of Orthopaedic Surgery University of California, San Francisco, San Francisco, CA
| | - Nikhil V Mummaneni
- Department of Orthopaedic Surgery University of California, San Francisco, San Francisco, CA
| | - Dezba Coughlin
- Department of Orthopaedic Surgery University of California, San Francisco, San Francisco, CA
| | - Ellen Liebenberg
- Department of Orthopaedic Surgery University of California, San Francisco, San Francisco, CA
| | - Fabrice A Külling
- Department of Orthopaedics and Traumatology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | | | | | | - Jeffrey C Lotz
- Department of Orthopaedic Surgery University of California, San Francisco, San Francisco, CA
| |
Collapse
|
3
|
Huang B, Liu J, Wei X, Li S, Xiang Y, Wu H, Chen J, Zhao F. Damage to the human lumbar cartilage endplate and its clinical implications. J Anat 2021; 238:338-348. [PMID: 33011984 PMCID: PMC7812127 DOI: 10.1111/joa.13321] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 02/03/2023] Open
Abstract
The cartilaginous endplate (CEP) is a thin layer of hyaline cartilage, and plays an important role in the diffusion of nutrients into the intervertebral discs. Its damage may seriously affect the disc degeneration, and result in low back pain (LBP). However, the structural features of damaged CEPs have not been well characterized, and this hinders our understanding of the etiology of disc degeneration and pain. To present the structural features of micro-damaged CEPs in patients with disc degeneration and LBP that might even be regarded as an initial factor for disc degeneration, we performed a histological study of micro-damaged CEPs harvested from human lumbar intervertebral discs and analyzed its clinical implications. Human lumbar CEPs were excised from 35 patients (mean age 60.91 years) who had disc degeneration and LBP. Control tissue was obtained from 15 patients (mean age 54.67 years) with lumbar vertebral burst fractures. LBP and disability were assessed clinically, and all patients underwent anterior vertebral body fusion surgery. CEPs together with some adjacent nucleus pulposus (NP) were sectioned at 4 µm, and stained using H&E, Safranin O/Fast Green, and Alcian Blue. Immunostaining and PCR were used to identify various markers of degeneration, innervation, and inflammation. Histology demonstrated physical micro-damage in 14/35 CEPs from the disc degeneration group. Six major types of damage could be distinguished: fissure, traumatic nodes, vascular mimicry, incorporation of NP tissue within the CEP, incorporation of bone within the CEP, and incorporation of NP and bone within the CEP. Pain and disability scores (ODI: p = 0.0190; JOA: p = 0.0205; JOABPEQ: p = 0.0034) were significantly higher in those with micro-damaged CEPs (N = 14) than in those with non-damaged CEPs (N = 21). CEP damage was significantly associated with elevated MMP3 (p = 0.043), MMP13 (p = 0.0191), ADAMTS5 (p = 0.0253), TNF-α (p = 0.0011), and Substance P (p = 0.0028), and with reduced Sox9 (p = 0.0212), aggrecan (p = 0.0127), and type II collagen (p = 0.0139). In conclusion, we presented a new classification of human lumbar micro-damaged CEPs. Furthermore, we verify disc degeneration, innervation, and discogenic pain in micro-damaged CEPs.
Collapse
Affiliation(s)
- Bao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| | - Junhui Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| | - Xiaoan Wei
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| | - Shengwen Li
- Department of Orthopedic SurgeryHaining People's HospitalHainingChina
| | - Yufeng Xiang
- Department of Orthopedic SurgeryLinhai Second People's HospitalTaizhouChina
| | - Hao Wu
- Department of Orthopaedics and TraumatologyThe University of Hong KongPokfulamHong Kong, SARChina
| | - Jian Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| | - Fengdong Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
4
|
Zhang S, Hu B, Liu W, Wang P, Lv X, Chen S, Shao Z. The role of structure and function changes of sensory nervous system in intervertebral disc-related low back pain. Osteoarthritis Cartilage 2021; 29:17-27. [PMID: 33007412 DOI: 10.1016/j.joca.2020.09.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/18/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Low back pain (LBP) is a common musculoskeletal symptom, which can be developed in multiple clinical diseases. It is widely recognized that intervertebral disc (IVD) degeneration (IVDD) is one of the leading causes of LBP. However, the pathogenesis of IVD-related LBP is still controversial, and the treatment means are also insufficient to date. In recent decades, the role of structure and function changes of sensory nervous system in the induction and the maintenance of LBP is drawing more and more attention. With the progress of IVDD, IVD cell exhaustion and extracellular matrix degradation result in IVD structural damage, while neovascularization, innervation and inflammatory activation further deteriorate the microenvironment of IVD. New nerve ingrowth into degenerated IVD amplifies the impacts of IVD-derived nociceptive molecules on sensory endings. Moreover, IVDD is usually accompanied with disc herniation, which could injure and inflame affected nerves. Under mechanical and pro-inflammatory stimulation, the pain-transmitting pathway exhibits a sensitized function state and ultimately leads to LBP. Hence, relevant pathogenic factors, such as neurotrophins, ion channels, inflammatory factors, etc., are supposed to serve as promising therapeutic targets for LBP. The purpose of this review is to comprehensively summarize the current evidence on 1) the pathological changes of sensory nervous system during IVDD and their association with LBP, and 2) potential therapeutic strategies for LBP targeting relevant pathogenic factors.
Collapse
Affiliation(s)
- S Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - B Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - W Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - P Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - X Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - S Chen
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Z Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
5
|
Wang YH, Li Y, Wang JN, Zhao QX, Jin J, Wen S, Wang SC, Sun T. Maresin 1 Attenuates Radicular Pain Through the Inhibition of NLRP3 Inflammasome-Induced Pyroptosis via NF-κB Signaling. Front Neurosci 2020; 14:831. [PMID: 32982664 PMCID: PMC7479972 DOI: 10.3389/fnins.2020.00831] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background The exposure of the nucleus pulposus (NP) causes an immune and inflammatory response, which is intrinsically linked to the pathogenesis of radicular pain. As a newly discovered pro-resolving lipid mediator, maresin 1 (MaR1) could exert powerful inflammatory resolution, neuroprotection, and analgesic activities. In the present research, the analgesic effect of MaR1 was observed. Then, the potential mechanism by which MaR1 attenuated radicular pain was also analyzed in a rat model. Methods Intrathecal administration of MaR1 (10 or 100 ng) was successively performed in a rat with non-compressive lumbar disk herniation for three postoperative days. Mechanical and thermal thresholds were determined to assess pain-related behavior from days 1 to 7 (n = 8/group). On day 7, the tissues of spinal dorsal horns from different groups were gathered to evaluate expression levels of inflammatory cytokines (IL-1β, IL-18, and TNF-α), the NLRP3 inflammasome and pyroptosis indicators (GSDMD, ASC, NLRP3, and Caspase-1), together with NF-κB/p65 activation (n = 6/group). TUNEL and PI staining were performed to further examine the process of pyroptosis. Results After intrathecal administration in the rat model, MaR1 exhibited potent analgesic effect dose-dependently. MaR1 significantly prompted the resolution of the increased inflammatory cytokine levels, reversed the up-regulated expression of the inflammasome and pyroptosis indicators, and reduced the cell death and the positive activation of NF-κB/p65 resulting from the NP application on the L5 dorsal root ganglion. Conclusion This study indicated that the activation of NLRP3 inflammasome and pyroptosis played a significant role in the inflammatory reaction of radicular pain. Also, MaR1 could effectively down-regulate the inflammatory response and attenuate pain by inhibiting NLRP3 inflammasome-induced pyroptosis via NF-κB signaling.
Collapse
Affiliation(s)
- Yi-Hao Wang
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, China
| | - Yan Li
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jun-Nan Wang
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qing-Xiang Zhao
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jin Jin
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuang Wen
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Si-Cong Wang
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Sun
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
6
|
Wang YH, Li Y, Wang JN, Zhao QX, Wen S, Wang SC, Sun T. A Novel Mechanism of Specialized Proresolving Lipid Mediators Mitigating Radicular Pain: The Negative Interaction with NLRP3 Inflammasome. Neurochem Res 2020; 45:1860-1869. [PMID: 32410045 DOI: 10.1007/s11064-020-03050-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/20/2020] [Accepted: 05/05/2020] [Indexed: 12/31/2022]
Abstract
Inhibition of immune and inflammatory reaction induced by the expose of nucleus pulposus (NP) could effectively ameliorate neuropathic pain in the lumbar disc herniation. Maresin1 (MaR1), as a macrophage-derived mediator of inflammation resolution, displayed potent anti-inflammatory action. In the present study, we attempted to elucidate the impact of MaR1 on radicular pain and the interaction with NLRP3 inflammasome. We established a rat model of non-compressive lumbar disc herniation and different administration (MaR1 or Caspase-1 inhibitor) was given to them. The paw withdrawal latency (PWL) and paw withdrawal thresholds (PWTs) were observed to assess pain behaviors. The spinal cord horns were collected and the levels of IL-1β and IL-18 were measured by ELISA. The mRNA and protein expression levels of NLRP3 inflammasome components were tested by RT-PCR, western blot and immunohistochemistry. The endogenous MaR1 levels of the spinal cord were analyzed using LC-MS/MS. The application of NP in the models lead to mechanical and thermal hypersensitivity, increased IL-1β and IL-18 levels and expressions of NLRP3 inflammasome components, which were reversed markedly by administration of MaR1. Caspase-1 inhibition also improved mechanical hypersensitivity, decreased the expressions of inflammatory cytokines and restrained the activation of inflammasome. Meanwhile, Caspase-1 inhibitor promoted the endogenous MaR1 synthesis, which was hindered in the pain models. Altogether, our study indicated that the negative interaction between MaR1 and NLRP3 inflammasome mediated the inflammatory response in spinal dorsal horn, which involved in the pathogenesis of radicular pain.
Collapse
Affiliation(s)
- Yi-Hao Wang
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, 324 Jingwu Road, Jinan, 250021, Shandong, China.,Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, 266003, Shandong, China
| | - Yan Li
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Jun-Nan Wang
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Qing-Xiang Zhao
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Shuang Wen
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Si-Cong Wang
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Tao Sun
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, 324 Jingwu Road, Jinan, 250021, Shandong, China.
| |
Collapse
|
7
|
SFKs/p38 Pathway is Involved in Radicular Pain by Promoting Spinal Expression of Pro-Inflammatory Cytokines in a Rat Model of Lumbar Disc Herniation. Spine (Phila Pa 1976) 2019; 44:E1112-E1121. [PMID: 31261268 DOI: 10.1097/brs.0000000000003076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A controlled, randomized, animal study. OBJECTIVE The aim of this study was to investigate the role of src-family kinases/p38 pathway in a rat model of lumbar disc herniation (LDH). SUMMARY OF BACKGROUND DATA LDH always generates radicular pain, and the mechanism remains unclear. We have reported that spinal src-family kinases (SFKs) may be involved in the process, but the downstream mechanism needs further investigation. METHODS LDH was induced by implantation of autologous nucleus pulposus (NP), harvest from the tail, in lumbar 4/5 spinal nerve roots of rat. Von Frey filaments and radiant heat tests were performed to determine mechanical and thermal pain threshold respectively. Basso, Beattie, and Bresnahan (BBB) scale was assessed to test the locomotor function. The protein level of p-SFKs, t-SFKs, p-p38, t-p38 in spinal cord was examined by western blotting analysis. Cellular location of p-p38 was determined by immunochemistry staining. Spinal tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6 levels were detected by enzyme-linked immunosorbent assay (ELISA). RESULTS Rats with NP implantation showed persistent ipsilateral mechanical allodynia and thermal hyperalgesia, which manifested as obvious decrease of paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). BBB scale indicated the locomotor function of hindpaws in rats with NP implantation kept intact. Western blotting and immunohistochemistry staining revealed that phosphorylated SFKs (p-SFKs) and phosphorylated p38 MAPK (p-p38) were sequentially upregulated in ipsilateral spinal dorsal horn, but not in contralateral side of rats with NP. Intrathecal delivery of SFKs inhibitor reduced spinal p-p38 expression. Both SFKs and p38 inhibitors alleviated pain behaviors in a dose-responsive manner without disturbing locomotor function and reduced spinal expression of TNF-α, IL-1β, and IL-6 in rats with NP. CONCLUSION Spinal SFKs contribute to radicular pain by activation of p38 MAPK and increasing pro-inflammatory cytokines expression in rats with NP implantation. Targeting SFKs/p38 pathway may be helpful for alleviating radicular pain. LEVEL OF EVIDENCE N/A.
Collapse
|
8
|
Torre OM, Mroz V, Bartelstein MK, Huang AH, Iatridis JC. Annulus fibrosus cell phenotypes in homeostasis and injury: implications for regenerative strategies. Ann N Y Acad Sci 2018; 1442:61-78. [PMID: 30604562 DOI: 10.1111/nyas.13964] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/05/2018] [Accepted: 08/15/2018] [Indexed: 12/11/2022]
Abstract
Despite considerable efforts to develop cellular, molecular, and structural repair strategies and restore intervertebral disk function after injury, the basic biology underlying intervertebral disk healing remains poorly understood. Remarkably, little is known about the origins of cell populations residing within the annulus fibrosus, or their phenotypes, heterogeneity, and roles during healing. This review focuses on recent literature highlighting the intrinsic and extrinsic cell types of the annulus fibrosus in the context of the injury and healing environment. Spatial, morphological, functional, and transcriptional signatures of annulus fibrosus cells are reviewed, including inner and outer annulus fibrosus cells, which we propose to be referred to as annulocytes. The annulus also contains peripheral cells, interlamellar cells, and potential resident stem/progenitor cells, as well as macrophages, T lymphocytes, and mast cells following injury. Phases of annulus fibrosus healing include inflammation and recruitment of immune cells, cell proliferation, granulation tissue formation, and matrix remodeling. However, annulus fibrosus healing commonly involves limited remodeling, with granulation tissues remaining, and the development of chronic inflammatory states. Identifying annulus fibrosus cell phenotypes during health, injury, and degeneration will inform reparative regeneration strategies aimed at improving annulus fibrosus healing.
Collapse
Affiliation(s)
- Olivia M Torre
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Victoria Mroz
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Meredith K Bartelstein
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alice H Huang
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - James C Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
9
|
Zhang A, Wang K, Ding L, Bao X, Wang X, Qiu X, Liu J. Bay11-7082 attenuates neuropathic pain via inhibition of nuclear factor-kappa B and nucleotide-binding domain-like receptor protein 3 inflammasome activation in dorsal root ganglions in a rat model of lumbar disc herniation. J Pain Res 2017; 10:375-382. [PMID: 28243141 PMCID: PMC5315342 DOI: 10.2147/jpr.s119820] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lumbar disc herniation (LDH) is an important cause of radiculopathy, but the underlying mechanisms are incompletely understood. Many studies suggested that local inflammation, rather than mechanical compression, results in radiculopathy induced by LDH. On the molecular and cellular level, nuclear factor-kappa B (NF-κB) and nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome have been implicated in the regulation of neuroinflammation formation and progression. In this study, the autologous nucleus pulposus (NP) was implanted in the left L5 dorsal root ganglion (DRG) to mimic LDH in rats. We investigated the expression of NF-κB and the components of NLRP3 inflammasome in the DRG neurons in rats. Western blotting and immunofluorescence for the related molecules, including NLRP3, apoptosis-associated speck-like protein containing caspase-1 activator domain (ASC), caspase-1, interleukin (IL)-1β, IL-18, IκBα, p-IκBα, p65, p-p65, and calcitonin gene-related peptide (CGRP) were examined. In the NP-treated group, the activations of NLRP3, ASC, caspase-1, IL-1β, IL-18, p-IκBα, and p-p65 in DRG neurons in rats were elevated at 1 day after surgery, and the peak occurred at 7 days. Treatment with Bay11-7082, an inhibitor of the actions of IKK-β, was able to inhibit expression and activation of the molecules (NLRP3, ASC, caspase-1, IL-1β, IL-18, p-IκBα, and p-p65) and relieve the pain in rats. Our study shows that NF-κB and NLRP3 inflammasome are involved in the maintenance of NP-induced pain, and that Bay11-7082 could alleviate mechanical allodynia and thermal hyperalgesia by inhibiting NF-κB and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Ailiang Zhang
- Spine Surgery, Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Kun Wang
- Spine Surgery, Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Lianghua Ding
- Spine Surgery, Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Xinnan Bao
- Spine Surgery, Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Xuan Wang
- Spine Surgery, Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Xubin Qiu
- Spine Surgery, Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Jinbo Liu
- Spine Surgery, Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| |
Collapse
|
10
|
Wang C, Yu X, Yan Y, Yang W, Zhang S, Xiang Y, Zhang J, Wang W. Tumor necrosis factor-α: a key contributor to intervertebral disc degeneration. Acta Biochim Biophys Sin (Shanghai) 2017; 49:1-13. [PMID: 27864283 DOI: 10.1093/abbs/gmw112] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/13/2016] [Indexed: 12/11/2022] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is the most common cause leading to low back pain (LBP), which is a highly prevalent, costly, and crippling condition worldwide. Current treatments for IDD are limited to treat the symptoms and do not target the pathophysiology. Tumor necrosis factor-α (TNF-α) is one of the most potent pro-inflammatory cytokines and signals through its receptors TNFR1 and TNFR2. TNF-α is highly expressed in degenerative IVD tissues, and it is deeply involved in multiple pathological processes of disc degeneration, including matrix destruction, inflammatory responses, apoptosis, autophagy, and cell proliferation. Importantly, anti-TNF-α therapy has shown promise for mitigating disc degeneration and relieving LBP. In this review, following a brief description of TNF-α signal transduction, we mainly focus on the expression pattern and roles of TNF-α in IDD, and summarize the emerging progress regarding its inhibition as a promising biological therapeutic approach to disc degeneration and associated LBP. A better understanding will help to develop novel TNF-α-centered therapeutic interventions for degenerative disc disease.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Xiaohua Yu
- Medical Research Center, University of South China, Hengyang 421001, China
| | - Yiguo Yan
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Wei Yang
- Department of Hand and Micro-surgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Shujun Zhang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Yongxiao Xiang
- Department of Hand and Micro-surgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Jian Zhang
- Department of Hand and Micro-surgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Wenjun Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| |
Collapse
|
11
|
Li Y, Li K, Mao L, Han X, Zhang K, Zhao C, Zhao J. Cordycepin inhibits LPS-induced inflammatory and matrix degradation in the intervertebral disc. PeerJ 2016; 4:e1992. [PMID: 27190710 PMCID: PMC4867702 DOI: 10.7717/peerj.1992] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 04/09/2016] [Indexed: 01/07/2023] Open
Abstract
Cordycepin is a component of the extract obtained from Cordyceps militaris and has many biological activities, including anti-cancer, anti-metastatic and anti-inflammatory effects. Intervertebral disc degeneration (IDD) is a degenerative disease that is closely related to the inflammation of nucleus pulposus (NP) cells. The effect of cordycepin on NP cells in relation to inflammation and degeneration has not yet been studied. In our study, we used a rat NP cell culture and an intervertebral disc (IVD) organ culture model to examine the inhibitory effects of cordycepin on lipopolysaccharide (LPS)-induced gene expression and the production of matrix degradation enzymes (MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5) and oxidative stress-associated factors (nitric oxide and PGE2). We found a protective effect of cordycepin on NP cells and IVDs against LPS-induced matrix degradation and macrophage infiltration. In addition, western blot and luciferase assay results demonstrated that pretreatment with cordycepin significantly suppressed the LPS-induced activation of the NF-κB pathway. Taken together, the results of our research suggest that cordycepin could exert anti-inflammatory and anti-degenerative effects on NP cells and IVDs by inhibiting the activation of the NF-κB pathway. Therefore, cordycepin may be a potential treatment for IDD in the future.
Collapse
Affiliation(s)
- Yan Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Kang Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lu Mao
- Spine Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiuguo Han
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Kai Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Changqing Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Lakritz JR, Thibault DM, Robinson JA, Campbell JH, Miller AD, Williams KC, Burdo TH. α4-Integrin Antibody Treatment Blocks Monocyte/Macrophage Traffic to, Vascular Cell Adhesion Molecule-1 Expression in, and Pathology of the Dorsal Root Ganglia in an SIV Macaque Model of HIV-Peripheral Neuropathy. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1754-1761. [PMID: 27157989 DOI: 10.1016/j.ajpath.2016.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/06/2016] [Accepted: 03/07/2016] [Indexed: 10/21/2022]
Abstract
Traffic of activated monocytes into the dorsal root ganglia (DRG) is critical for pathology in HIV peripheral neuropathy. We have shown that accumulation of recently recruited (bromodeoxyuridine(+) MAC387(+)) monocytes is associated with severe DRG pathology and loss of intraepidermal nerve fibers in SIV-infected macaques. Herein, we blocked leukocyte traffic by treating animals with natalizumab, which binds to α4-integrins. SIV-infected CD8-depleted macaques treated with natalizumab either early (the day of infection) or late (28 days after infection) were compared with untreated SIV-infected animals sacrificed at similar times. Histopathology showed diminished DRG pathology with natalizumab treatment, including decreased inflammation, neuronophagia, and Nageotte nodules. Natalizumab treatment resulted in a decrease in the number of bromodeoxyuridine(+) (early), MAC387(+) (late), CD68(+) (early and late), and SIVp28(+) (late) macrophages in DRG tissues. The number of CD3(+) T lymphocytes in DRGs was not affected by natalizumab treatment. Vascular cell adhesion molecule 1, an adhesion molecule that mediates leukocyte traffic, was diminished in DRGs of all natalizumab-treated animals. These data show that blocking monocyte, but not T lymphocyte, traffic to the DRG results in decreased inflammation and pathology, supporting a role for monocyte traffic and activation in HIV peripheral neuropathy.
Collapse
Affiliation(s)
| | - Derek M Thibault
- Department of Biology, Boston College, Chestnut Hill, Massachusetts
| | - Jake A Robinson
- Department of Biology, Boston College, Chestnut Hill, Massachusetts
| | | | - Andrew D Miller
- Section of Anatomic Pathology, Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York
| | | | - Tricia H Burdo
- Department of Biology, Boston College, Chestnut Hill, Massachusetts.
| |
Collapse
|
13
|
Resolvin D1 Inhibits Mechanical Hypersensitivity in Sciatica by Modulating the Expression of Nuclear Factor-κB, Phospho-extracellular Signal–regulated Kinase, and Pro- and Antiinflammatory Cytokines in the Spinal Cord and Dorsal Root Ganglion. Anesthesiology 2016; 124:934-44. [PMID: 26808633 DOI: 10.1097/aln.0000000000001010] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Background
Accumulating evidence indicates that spinal inflammatory and immune responses play an important role in the process of radicular pain caused by intervertebral disk herniation. Resolvin D1 (RvD1) has been shown to have potent antiinflammatory and antinociceptive effects. The current study was undertaken to investigate the analgesic effect of RvD1 and its underlying mechanism in rat models of noncompressive lumbar disk herniation.
Methods
Rat models of noncompressive lumber disk herniation were established, and mechanical thresholds were evaluated using the von Frey test during an observation period of 21 days (n = 8/group). Intrathecal injection of vehicle or RvD1 (10 or 100 ng) was performed for three successive postoperative days. On day 7, the ipsilateral spinal dorsal horns and L5 dorsal root ganglions (DRGs) were removed to assess the expressions of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-10, and transforming growth factor-β1 (TGF-β1) and the activation of nuclear factor-κB (NF-κB)/p65 and phospho-extracellular signal–regulated kinase (p-ERK) signaling (n = 30/group).
Results
The application of nucleus pulposus to L5 DRG induced prolonged mechanical allodynia, inhibited the production of IL-10 and TGF-β1, and up-regulated the expression of TNF-α, IL-1β, NF-κB/p65, and p-ERK in the spinal dorsal horns and DRGs. Intrathecal injection of RvD1 showed a potent analgesic effect, inhibited the up-regulation of TNF-α and IL-1β, increased the release of IL-10 and TGF-β1, and attenuated the expression of NF-κB/p65 and p-ERK in a dose-dependent manner.
Conclusions
The current study showed that RvD1 might alleviate neuropathic pain via regulating inflammatory mediators and NF-κB/p65 and p-ERK pathways. Its antiinflammatory and proresolution properties may offer novel therapeutic approaches for the management of neuropathic pain.
Collapse
|