1
|
Yan T, Cheng J, He Q, Wang Y, Zhang C, Huang D, Liu J, Wang Z. Polymeric Dural Biomaterials in Spinal Surgery: A Review. Gels 2024; 10:579. [PMID: 39330181 PMCID: PMC11431199 DOI: 10.3390/gels10090579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
Laminectomy is a commonly performed surgical procedure by orthopedic and neurosurgeons, aimed at alleviating nerve compression and reducing pain. However, in some cases, excessive proliferation of fibrous scar tissue in the epidural space post-surgery can lead to persistent and intractable lower back pain, a condition known as Failed Back Surgery Syndrome (FBSS). The persistent fibrous tissue causes both physical and emotional distress for patients and also makes follow-up surgeries more challenging due to reduced visibility and greater technical difficulty. It has been established that the application of biomaterials to prevent epidural fibrosis post-lumbar surgery is more beneficial than revision surgeries to relieve dural fibrosis. Hydrogel-based biomaterials, with their excellent biocompatibility, degradability, and injectability and tunable mechanical properties, have been increasingly introduced by clinicians and researchers. This paper, building on the foundation of epidural fibrosis, primarily discusses the strategies for the preparation of natural and polymeric biomaterials to prevent epidural fibrosis, their physicochemical properties, and their ability to mitigate the excessive proliferation of fibroblasts. It also emphasizes the challenges that need to be addressed to translate laboratory research into clinical practice and the latest advancements in this field.
Collapse
Affiliation(s)
- Taoxu Yan
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (T.Y.); (J.C.); (Y.W.); (C.Z.)
| | - Junyao Cheng
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (T.Y.); (J.C.); (Y.W.); (C.Z.)
| | - Qing He
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Q.H.); (D.H.)
| | - Yifan Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (T.Y.); (J.C.); (Y.W.); (C.Z.)
| | - Chuyue Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (T.Y.); (J.C.); (Y.W.); (C.Z.)
| | - Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Q.H.); (D.H.)
| | - Jianheng Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (T.Y.); (J.C.); (Y.W.); (C.Z.)
| | - Zheng Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (T.Y.); (J.C.); (Y.W.); (C.Z.)
| |
Collapse
|
2
|
Dibazar ZE, Zarei M, Mohammadikhah M, Oudah SK, Elyasi M, Kokabi H, Shahgolzari M, Asl LD, Azizy M. Crosslinking strategies for biomimetic hydrogels in bone tissue engineering. Biophys Rev 2023; 15:2027-2040. [PMID: 38192345 PMCID: PMC10771399 DOI: 10.1007/s12551-023-01141-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/03/2023] [Indexed: 01/10/2024] Open
Abstract
Bone tissue engineering has become a popular area of study for making biomimetic hydrogels to treat bone diseases. In this work, we looked at biocompatible hydrogels that can be injected into bone defects that require the smallest possible surgery. Mineral ions can be attached to polymer chains to make useful hydrogels that help bones heal faster. These ions are very important for the balance of the body. In the chemically-triggered sector, advanced hydrogels cross-linked by different molecular agents have many advantages, such as being selective, able to form gels, and having mechanical properties that can be modified. In addition, different photo-initiators can be used to make photo cross linkable hydrogels react quickly and moderately under certain light bands. Enzyme-triggered hydrogels are another type of hydrogel that can be used to repair bone tissue because they are biocompatible and gel quickly. We also look at some of the important factors mentioned above that could change how well bone tissue engineering works as a therapy. Finally, this review summarizes the problems that still need to be solved to make clinically relevant hydrogels.
Collapse
Affiliation(s)
- Zahra Ebrahimvand Dibazar
- Department of Oral and Maxillo Facial Medicine, Faculty of Dentistry, Tabriz Azad University of Medical Sciences, Tabriz, 5165687386 Iran
| | - Mahdi Zarei
- Student Research Committee, Tabriz university of medical sciences, Tabriz, Iran
| | - Meysam Mohammadikhah
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Shamam Kareem Oudah
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Milad Elyasi
- Otolaryngology department, Shahid Beheshti University of medical sciences, Tehran, Iran
| | - Hadi Kokabi
- Department of Periodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, 65175-4171 Iran
| | - Mehdi Shahgolzari
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan, 65175-4171 Iran
| | - Leila Delnabi Asl
- Department of Internal Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Azizy
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
3
|
Hu X, Zhang Z, Wu H, Yang S, Zhao W, Che L, Wang Y, Cao J, Li K, Qian Z. Progress in the application of 3D-printed sodium alginate-based hydrogel scaffolds in bone tissue repair. BIOMATERIALS ADVANCES 2023; 152:213501. [PMID: 37321007 DOI: 10.1016/j.bioadv.2023.213501] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/21/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
In recent years, hydrogels have been widely used in the biomedical field as materials with excellent bionic structures and biological properties. Among them, the excellent comprehensive properties of natural polymer hydrogels represented by sodium alginate have attracted the great attention of researchers. At the same time, by physically blending sodium alginate with other materials, the problems of poor cell adhesion and mechanical properties of sodium alginate hydrogels were directly improved without chemical modification of sodium alginate. The composite blending of multiple materials can also improve the functionality of sodium alginate hydrogels, and the prepared composite hydrogel also has a larger application field. In addition, based on the adjustable viscosity of sodium alginate-based hydrogels, sodium alginate-based hydrogels can be loaded with cells to prepare biological ink, and the scaffold can be printed out by 3D printing technology for the repair of bone defects. This paper first summarizes the improvement of the properties of sodium alginate and other materials after physical blending. Then, it summarizes the application progress of sodium alginate-based hydrogel scaffolds for bone tissue repair based on 3D printing technology in recent years. Moreover, we provide relevant opinions and comments to provide a theoretical basis for follow-up research.
Collapse
Affiliation(s)
- Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu University, School of Mechanical Engineering of Chengdu University, Chengdu 610081, China; State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Zhen Zhang
- Clinical Medical College and Affiliated Hospital of Chengdu University, School of Mechanical Engineering of Chengdu University, Chengdu 610081, China
| | - Haoming Wu
- Clinical Medical College and Affiliated Hospital of Chengdu University, School of Mechanical Engineering of Chengdu University, Chengdu 610081, China
| | - Shuhao Yang
- Clinical Medical College and Affiliated Hospital of Chengdu University, School of Mechanical Engineering of Chengdu University, Chengdu 610081, China
| | - Weiming Zhao
- Clinical Medical College and Affiliated Hospital of Chengdu University, School of Mechanical Engineering of Chengdu University, Chengdu 610081, China
| | - Lanyu Che
- Clinical Medical College and Affiliated Hospital of Chengdu University, School of Mechanical Engineering of Chengdu University, Chengdu 610081, China
| | - Yao Wang
- Clinical Medical College and Affiliated Hospital of Chengdu University, School of Mechanical Engineering of Chengdu University, Chengdu 610081, China
| | - Jianfei Cao
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu 610031, China
| | - Kainan Li
- Clinical Medical College and Affiliated Hospital of Chengdu University, School of Mechanical Engineering of Chengdu University, Chengdu 610081, China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Liu X, Sun S, Wang N, Kang R, Xie L, Liu X. Therapeutic application of hydrogels for bone-related diseases. Front Bioeng Biotechnol 2022; 10:998988. [PMID: 36172014 PMCID: PMC9510597 DOI: 10.3389/fbioe.2022.998988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 01/15/2023] Open
Abstract
Bone-related diseases caused by trauma, infection, and aging affect people’s health and quality of life. The prevalence of bone-related diseases has been increasing yearly in recent years. Mild bone diseases can still be treated with conservative drugs and can be cured confidently. However, serious bone injuries caused by large-scale trauma, fractures, bone tumors, and other diseases are challenging to heal on their own. Open surgery must be used for intervention. The treatment method also faces the problems of a long cycle, high cost, and serious side effects. Studies have found that hydrogels have attracted much attention due to their good biocompatibility and biodegradability and show great potential in treating bone-related diseases. This paper mainly introduces the properties and preparation methods of hydrogels, reviews the application of hydrogels in bone-related diseases (including bone defects, bone fracture, cartilage injuries, and osteosarcoma) in recent years. We also put forward suggestions according to the current development status, pointing out a new direction for developing high-performance hydrogels more suitable for bone-related diseases.
Collapse
Affiliation(s)
- Xiyu Liu
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Shuoshuo Sun
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Nan Wang
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Ran Kang
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
- *Correspondence: Ran Kang, ; Lin Xie, ; Xin Liu,
| | - Lin Xie
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
- *Correspondence: Ran Kang, ; Lin Xie, ; Xin Liu,
| | - Xin Liu
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
- *Correspondence: Ran Kang, ; Lin Xie, ; Xin Liu,
| |
Collapse
|
5
|
Xue X, Hu Y, Wang S, Chen X, Jiang Y, Su J. Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering. Bioact Mater 2022; 12:327-339. [PMID: 35128180 PMCID: PMC8784310 DOI: 10.1016/j.bioactmat.2021.10.029] [Citation(s) in RCA: 145] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Bone tissue engineering has emerged as a significant research area that provides promising novel tools for the preparation of biomimetic hydrogels applied in bone-related diseases (e.g., bone defects, cartilage damage, osteoarthritis, etc.). Herein, thermal sensitive polymers (e.g., PNIPAAm, Soluplus, etc.) were introduced into main chains to fabricate biomimetic hydrogels with injectability and compatibility for those bone defect need minimally invasive surgery. Mineral ions (e.g., calcium, copper, zinc, and magnesium), as an indispensable role in maintaining the balance of the organism, were linked with polymer chains to form functional hydrogels for accelerating bone regeneration. In the chemically triggered hydrogel section, advanced hydrogels crosslinked by different molecular agents (e.g., genipin, dopamine, caffeic acid, and tannic acid) possess many advantages, including extensive selectivity, rapid gel-forming capacity and tunable mechanical property. Additionally, photo crosslinking hydrogel with rapid response and mild condition can be triggered by different photoinitiators (e.g., I2959, LAP, eosin Y, riboflavin, etc.) under specific wavelength of light. Moreover, enzyme triggered hydrogels were also utilized in the tissue regeneration due to its rapid gel-forming capacity and excellent biocompatibility. Particularly, some key factors that can determine the therapy effect for bone tissue engineering were also mentioned. Finally, brief summaries and remaining issues on how to properly design clinical-oriented hydrogels were provided in this review.
Collapse
Affiliation(s)
- Xu Xue
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Sicheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics Trauma, Shanghai Zhongye Hospital, Shanghai, 201900, China
| | - Xiao Chen
- Department of Orthopaedics Trauma, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Yingying Jiang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopaedics Trauma, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
- Shanghai Clinical Research Center for Aging and Medicine, Shanghai, 200040, China
| |
Collapse
|
6
|
Design and Fabrication of Nanofibrous Dura Mater with Antifibrosis and Neuroprotection Effects on SH-SY5Y Cells. Polymers (Basel) 2022; 14:polym14091882. [PMID: 35567051 PMCID: PMC9099771 DOI: 10.3390/polym14091882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
The development and treatment of some diseases, such as large-area cerebral infarction, cerebral hemorrhage, brain tumor, and craniocerebral trauma, which may involve the injury of the dura mater, elicit the need to repair this membrane by dural grafts. However, common dural grafts tend to result in dural adhesions and scar tissue and have no further neuroprotective effects. In order to reduce or avoid the complications of dural repair, we used PLGA, tetramethylpyrazine, and chitosan as raw materials to prepare a nanofibrous dura mater (NDM) with excellent biocompatibility and adequate mechanical characteristics, which can play a neuroprotective role and have an antifibrotic effect. We fabricated PLGA NDM by electrospinning, and then chitosan was grafted on the nanofibrous dura mater by the EDC-NHS cross-linking method to obtain PLGA/CS NDM. Then, we also prepared PLGA/TMP/CS NDM by coaxial electrospinning. Our study shows that the PLGA/TMP/CS NDM can inhibit the excessive proliferation of fibroblasts, as well as provide a sustained protective effect on the SH-SY5Y cells treated with oxygen–glucose deprivation/reperfusion (OGD/R). In conclusion, our study may provide a new alternative to dural grafts in undesirable cases of dural injuries.
Collapse
|
7
|
Ligamentum-preserved/Temporary Preserved Minimally Invasive Transforaminal Lumbar Interbody Fusion for Lumbar Spondylolisthesis: Technical Note and 2-year Follow-up. Spine (Phila Pa 1976) 2022; 47:E328-E336. [PMID: 34075012 DOI: 10.1097/brs.0000000000004136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Prospective study. OBJECTIVE The aim of this study was to prospectively assess the clinical outcomes of modified minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) for the treatment of singlesegment lumbar spondylolisthesis. SUMMARY OF BACKGROUND DATA MIS-TLIF is a safe and effective procedure in the treatment of lumbar degenerative disease. To avoid durotomy and nerve root injury, we modified the surgical order of MIS-TLIF such that the interbody fusion procedure was performed before the decompression procedure. METHODS One hundred thirty-nine patients with single-segment lumbar spondylolisthesis were separated into two groups. Sixty-seven patients underwent modified MIS-TLIF (group A). In group B, 72 patients underwent routine MIS-TLIF. The Japanese Orthopedic Association (JOA) score and the visual analogue scale (VAS) scores for lower back pain (LBP) and leg pain were assessed during the postoperative follow-up, and the lumbar interbody fusion rate was evaluated by CT scanning. RESULTS The mean operative time, incision length, average blood loss, and incision pain level were not significantly different (P > 0.05) between the two groups. No nerve root or dural injuries were observed in group A. In group B, there were two cases of dural injury and three cases of nerve root injury. One patient experienced temporary numbness and weakness on dorsiflexion of the foot, which recovered in 3 months. No differences were identified between the two groups when postoperative JOA scores, back pain, leg pain VAS scores, or the lumbar interbody fusion rate. CONCLUSION Both methods are effective in the treatment of lumbar degenerative disease. Modified MIS-TLIF is a safe and effective procedure that can significantly reduce the occurrence of injury to the dura and nerve root during decompression and the interbody fusion procedure.Level of Evidence: 3.
Collapse
|
8
|
The effectiveness of spatially cross-linked polymer in the postoperative epidural fibrosis prevention: an experimental study. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.3.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Introduction. Epidural fibrosis is an urgent problem in modern spinal surgery and orthopedics. The formation of connective tissue in the epidural space after performing surgical interventions on the spinal column inevitably leads to adhesion of the latter to the dura mater and compression of neural structures, followed by the formation of clinical and neurological symptoms. The search for literary sources in domestic and foreign scientific databases has demonstrated the presence of several works studying the effectiveness of barrier methods for preventing the development of epidural fibrosis. It should be noted that the results of these studies are ambiguous and largely contradictory.The purpose was to study the effectiveness of using a spatially cross-linked polymer in the postoperative lumbar epidural fibrosis prevention in an experiment.Materials and methods. The study included 26 male Wistar rats (average body weight 338.5±9.07 g), which were divided into two groups: Group I (control, n = 12): animals underwent laminectomy at the level of vertebral bodies LVII – SI without application of spatially crosslinked polymer; Group II (experimental, n = 14): animals underwent laminectomy at the level of vertebral bodies LVII – SI followed by application of a spatially cross-linked polymer to the dura mater. The morphological and instrumental parameters were studied.Results. Significant differences were noted in the severity of epidural fibrosis (χ2 = 14.846, p = 0.003), the number of newly formed vessels (F = 14.371, p<0.001), the number of fibroblasts (F = 11.158, p<0.001), as well as in the severity of vertebral stenosis channe l according to multislice computed tomography (χ2 = 17.207, p=0.002) between the control and experimental groups of animals.Conclusion. Application of a spatially cross-linked polymer to the dura mater is an effective way to prevent the development of postoperative epidural fibrosis.
Collapse
|
9
|
Effect of Cerebrospinal Fluid on Fibroblasts Concerning Epidural Fibrosis: An In Vitro Study. THE EUROBIOTECH JOURNAL 2021. [DOI: 10.2478/ebtj-2021-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
One of the most common treatments for lumbar disc herniation and other lumbar disorders is lumbar laminectomy. There may be some unwanted and serious complications with this procedure such as the “failed back surgery syndrome (FBSS)”. Epidural fibrosis (EF), mainly due to fibroblast proliferation, emerges as the main cause of failed back surgery syndrome. According to the current literature and practice techniques, different agents are being used to prevent EF formation. To date there is no single agreed upon treatment method of EF. In this study, dilutional effect of CSF, together with low potassium levels, on primary skin fibroblast cultures was studied as a possible material for EF prevention. CSF at different concentrations (0-100%) were tested to see its effect on Skin fibroblast proliferation. A wound healing assay was also performed to see the effect of CSF on wound healing. The cell proliferation goes up from 24h to 72hr in all CSF percentages from 0-75% but the proliferation was inhibited at 100% CSF. The “wound” is closed successfully in all CSF percentages between 0-75. The 100% CSF fails to completely close the wound. Adverse effects of low concentrations of potassium levels and dilutional effect of CSF may be a promising solution in the prevention of EF. Further in vivo and in vitro experiments are required to characterize its use.
Collapse
|
10
|
Shi J, Yu L, Ding J. PEG-based thermosensitive and biodegradable hydrogels. Acta Biomater 2021; 128:42-59. [PMID: 33857694 DOI: 10.1016/j.actbio.2021.04.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/09/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Injectable thermosensitive hydrogels are free-flowing polymer solutions at low or room temperature, making them easy to encapsulate the therapeutic payload or cells via simply mixing. Upon injection into the body, in situ forming hydrogels triggered by body temperature can act as drug-releasing reservoirs or cell-growing scaffolds. Finally, the hydrogels are eliminated from the administration sites after they accomplish their missions as depots or scaffolds. This review outlines the recent progress of poly(ethylene glycol) (PEG)-based biodegradable thermosensitive hydrogels, especially those composed of PEG-polyester copolymers, PEG-polypeptide copolymers and poly(organophosphazene)s. The material design, performance regulation, thermogelation and degradation mechanisms, and corresponding applications in the biomedical field are summarized and discussed. A perspective on the future thermosensitive hydrogels is also highlighted. STATEMENT OF SIGNIFICANCE: Thermosensitive hydrogels undergoing reversible sol-to-gel phase transitions in response to temperature variations are a class of promising biomaterials that can serve as minimally invasive injectable systems for various biomedical applications. Hydrophilic PEG is a main component in the design and fabrication of thermoresponsive hydrogels due to its excellent biocompatibility. By incorporating hydrophobic segments, such as polyesters and polypeptides, into PEG-based systems, biodegradable and thermosensitive hydrogels with adjustable properties in vitro and in vivo have been developed and have recently become a research hotspot of biomaterials. The summary and discussion on molecular design, performance regulation, thermogelation and degradation mechanisms, and biomedical applications of PEG-based thermosensitive hydrogels may offer a demonstration of blueprint for designing new thermogelling systems and expanding their application scope.
Collapse
|
11
|
Lin Q, Lim JYC, Xue K, Chee CPT, Loh XJ. Supramolecular thermogels from branched PCL-containing polyurethanes. RSC Adv 2020; 10:39109-39120. [PMID: 35518420 PMCID: PMC9057440 DOI: 10.1039/d0ra07426h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/18/2020] [Indexed: 11/21/2022] Open
Abstract
Thermogels are temperature-responsive hydrogels which are most commonly formed by supramolecular self-assembly of polymer amphiphiles comprising of both hydrophobic and hydrophilic segments. Although polyurethane thermogels have shown great promise as biomaterials, their synthesis by step-growth polymerisation of diols and diisocyanates can also result in formation of allophanate branches, which arise from the reaction between free isocyanate groups and urethane linkages along the polymer backbone. In this paper, we investigate the effects of different synthetic conditions on the degree of allophanate branching on polyurethane amphiphiles, and explore the influences of these branches on the polymers' critical micelle concentration (CMC), thermodynamics of micellization and subsequent thermogel properties. Our findings offer new insights into the relationship between polymer structure, micelle and gel properties. These results highlight the importance of taking polymer branching into account for understanding the hierarchical self-assembly of polymer amphiphiles and the resulting thermogel properties and behaviour.
Collapse
Affiliation(s)
- Qianyu Lin
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore 21 Lower Kent Ridge Rd Singapore 119077
| | - Jason Y C Lim
- Soft Materials Department Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR) Address: 2 Fusionopolis Way Innovis Singapore 138634
| | - Kun Xue
- Soft Materials Department Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR) Address: 2 Fusionopolis Way Innovis Singapore 138634
| | - Celestine P T Chee
- Soft Materials Department Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR) Address: 2 Fusionopolis Way Innovis Singapore 138634
| | - Xian Jun Loh
- Soft Materials Department Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR) Address: 2 Fusionopolis Way Innovis Singapore 138634
| |
Collapse
|
12
|
Hoang Thi TT, Sinh LH, Huynh DP, Nguyen DH, Huynh C. Self-Assemblable Polymer Smart-Blocks for Temperature-Induced Injectable Hydrogel in Biomedical Applications. Front Chem 2020; 8:19. [PMID: 32083052 PMCID: PMC7005785 DOI: 10.3389/fchem.2020.00019] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/08/2020] [Indexed: 12/29/2022] Open
Abstract
Self-assembled temperature-induced injectable hydrogels fabricated via self-assembly of polymer smart-blocks have been widely investigated as drug delivery systems and platforms for tissue regeneration. Polymer smart-blocks that can be self-assembly play an important role in fabrication of hydrogels because they can self-assemble to induce the gelation of their copolymer in aqueous solution. The self-assembly occurs in response to an external stimulus change, such as temperature, pH, glucose, ionic strength, light, magnetic field, electric field, or their combination, which results in property transformations like hydrophobicity, ionization, and conformational change. The self-assembly smart-block based copolymers exist as a solution in aqueous media at certain conditions that are suitable for mixing with bioactive molecules and/or cells. However, this solution turns into a hydrogel due to the self-assembly of the smart-blocks under exposure to an external stimulus change in vitro or injection into the living body for a controllable release of loaded bioactive molecules or serving as a biomaterial scaffold for tissue regeneration. This work reports current scenery in the development of these self-assembly smart-blocks for fabrication of temperature-induced injectable physically cross-linked hydrogels and their potential application as drug delivery systems and platforms for tissue engineering.
Collapse
Affiliation(s)
- Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Le Hoang Sinh
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Dai Phu Huynh
- Faculty of Materials Technology and Polymer Research Center, Ho Chi Minh City University of Technology, VNU HCM, Ho Chi Minh City, Vietnam
| | - Dai Hai Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Cong Huynh
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
13
|
Gao Y, Li Z, Huang J, Zhao M, Wu J. In situ formation of injectable hydrogels for chronic wound healing. J Mater Chem B 2020; 8:8768-8780. [PMID: 33026387 DOI: 10.1039/d0tb01074j] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogels have been widely used in wound healing treatment over the past decade.
Collapse
Affiliation(s)
- Yunfen Gao
- School of Biomedical Engineering
- Sun Yat-sen University
- Shenzhen
- China
| | - Zhen Li
- School of Biomedical Engineering
- Sun Yat-sen University
- Shenzhen
- China
| | - Jun Huang
- School of Biomedical Engineering
- Sun Yat-sen University
- Shenzhen
- China
- The Seventh Affiliated Hospital of Sun Yat-Sen University
| | - Meng Zhao
- Shenzhen Lansi Institute of Artificial Intelligence in Medicine
- Shenzhen
- China
| | - Jun Wu
- School of Biomedical Engineering
- Sun Yat-sen University
- Shenzhen
- China
- The Seventh Affiliated Hospital of Sun Yat-Sen University
| |
Collapse
|
14
|
Zhang W, Ning C, Xu W, Hu H, Li M, Zhao G, Ding J, Chen X. Precision-guided long-acting analgesia by Gel-immobilized bupivacaine-loaded microsphere. Theranostics 2018; 8:3331-3347. [PMID: 29930733 PMCID: PMC6010997 DOI: 10.7150/thno.25276] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/08/2018] [Indexed: 12/17/2022] Open
Abstract
Peripheral nerve blockade (PNB) is a conventional strategy for the management of acute postoperative pain. However, the short duration of the associated analgesia and the potential systemic toxicity due to the low molecular weights of local anesthetics limit their application. Methods: An in situ forming injectable Gel-microsphere (Gel-MS) system consisting of PLGA-PEG-PLGA Gel (Gel) and Gel-immobilized bupivacaine-loaded microsphere (MS/BUP) was prepared for precision-guided long-acting analgesia. A series of in vitro characterizations, such as scanning electron microscopy, rheology analysis, confocal laser scanning microscopy, drug release, and erosion and degradation, were carried out. After that, the in vivo analgesia effect of the Gel-MS system, the immobilization effect of Gel on the MS, and biocompatibility of the system were evaluated using a sciatic nerve block model. Results: The BUP release from the Gel-MS system was regulated by both the inner MS and the outer Gel matrix, demonstrating sustained BUP release in vitro for several days without an initial burst release. More importantly, incorporation of the Gel immobilized the MS and hindered the diffusion of MS from the injection site because of its in situ property, which contributed to a high local drug concentration and prevented systemic side effects. In vivo, a single injection of Gel-MS/BUP allowed rats to maintain sensory and motor blockade significantly longer than treatment with MS/BUP (P < 0.01) or BUP-loaded Gel (Gel-BUP, P < 0.01). Histopathological results demonstrated the excellent biodegradability and biocompatibility of the Gel-MS system without neurotoxicity. Conclusion: This precision-guided long-acting analgesia, which provides an in situ and sustained release of BUP, is a promising strategy for long-acting analgesia, and could represent a potential alternative for clinical pain management.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Anesthesia, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Cong Ning
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Weiguo Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Hanze Hu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Mingqiang Li
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
- Guangdong Provincial Key Laboratory of Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P. R. China
| | - Guoqing Zhao
- Department of Anesthesia, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
15
|
Kikuchi K, Setoyama K, Terashi T, Sumizono M, Tancharoen S, Otsuka S, Takada S, Nakanishi K, Ueda K, Sakakima H, Kawahara KI, Maruyama I, Hattori G, Morioka M, Tanaka E, Uchikado H. Application of a Novel Anti-Adhesive Membrane, E8002, in a Rat Laminectomy Model. Int J Mol Sci 2018; 19:ijms19051513. [PMID: 29783695 PMCID: PMC5983581 DOI: 10.3390/ijms19051513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 11/16/2022] Open
Abstract
Neuropathic pain after spinal surgery, so-called failed back surgery syndrome, is a frequently observed common complication. One cause of the pain is scar tissue formation, observed as post-surgical epidural adhesions. These adhesions may compress surrounding spinal nerves, resulting in pain, even after successful spinal surgery. E8002 is an anti-adhesive membrane. In Japan, a clinical trial of E8002 is currently ongoing in patients undergoing abdominal surgery. However, animal experiments have not been performed for E8002 in spinal surgery. We assessed the anti-adhesive effect of E8002 in a rat laminectomy model. The dura matter was covered with an E8002 membrane or left uncovered as a control. Neurological evaluations and histopathological findings were compared at six weeks postoperatively. Histopathological analyses were performed by hematoxylin–eosin and aldehyde fuchsin-Masson Goldner staining. Three assessment areas were selected at the middle and margins of the laminectomy sites, and the numbers of fibroblasts and inflammatory cells were counted. Blinded histopathological evaluation revealed that adhesions and scar formation were reduced in the E8002 group compared with the control group. The E8002 group had significantly lower numbers of fibroblasts and inflammatory cells than the control group. The present results indicate that E8002 can prevent epidural scar adhesions after laminectomy.
Collapse
Affiliation(s)
- Kiyoshi Kikuchi
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan.
- Department of Neurosurgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, 6 Yothe Road, Rajthevee, Bangkok 10400, Thailand.
| | - Kentaro Setoyama
- Division of Laboratory Animal Science, Natural Science Center for Research and Education, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
| | - Takuto Terashi
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| | - Megumi Sumizono
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| | - Salunya Tancharoen
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, 6 Yothe Road, Rajthevee, Bangkok 10400, Thailand.
| | - Shotaro Otsuka
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| | - Seiya Takada
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| | - Kazuki Nakanishi
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| | - Koki Ueda
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| | - Harutoshi Sakakima
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| | - Ko-Ichi Kawahara
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
- Laboratory of Functional Foods, Department of Biomedical Engineering Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan.
| | - Ikuro Maruyama
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
| | - Gohsuke Hattori
- Department of Neurosurgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.
| | - Motohiro Morioka
- Department of Neurosurgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.
| | - Eiichiro Tanaka
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan.
| | - Hisaaki Uchikado
- Department of Neurosurgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.
- Uchikado Neuro-Spine Clinic, 1-2-3 Naka, Hakata-ku, Fukuoka 812-0893, Japan.
| |
Collapse
|
16
|
Evaluation of topical Dexmedetomidine administration in postlaminectomy epidural fibrosis rat model. Int J Surg 2018; 53:80-85. [PMID: 29555523 DOI: 10.1016/j.ijsu.2018.03.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/29/2018] [Accepted: 03/11/2018] [Indexed: 02/06/2023]
Abstract
Epidural fibrosis is a challenging topic in spinal surgery. Numerous clinical and experimental studies have been focused on this issue to clarify problems faced in spinal procedures for the patient as well as the surgeon and find out new methodologies. Dense cytokines and growth factors which are released from inflammatory cells have been suggested to play a major role in the inception and progression of fibrosis. One of the most investigated and important actor in epidural fibrosis is assumed to be the transforming growth factor-1β (TGF-1β) formation. Studies showed that Dexmedetomidine (DEX) downregulates TGF-β pathway with its anti-inflammatory and antioxidant effects. From this point of view, for the first time in the literature we try to observe if there will be an effect of topical DEX administration over epidural fibrosis in a rat model. We hypothesized that DEX might have preventive effects on epidural fibrosis via anti-inflammatory and antioxidant effects. Twenty-four adult male Wistar albino rats were randomly assigned to three groups (Topical DEX, Spongostan, Laminectomy). A total laminectomy was performed at the L3-L5 level and then the ligamentum flavum and epidural fat tissue were cleared away from the surgical site. Histopathological assessment was performed postoperatively after 4 weeks. Our study revealed that topical DEX administration may have effects on reducing epidural fibrosis. Topical DEX administration may be helpful in preventing epidural fibrosis after laminectomy in rats through multiple anti-inflammatory and antioxidant mechanisms as well as through TGF -1β pathway.
Collapse
|
17
|
Wang H, Sun W, Fu D, Shen Y, Chen YY, Wang LL. Update on biomaterials for prevention of epidural adhesion after lumbar laminectomy. J Orthop Translat 2018; 13:41-49. [PMID: 29662790 PMCID: PMC5892378 DOI: 10.1016/j.jot.2018.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
Lumbar laminectomy often results in failed back surgery syndrome. Most scholars support the three-dimensional theory of adhesion: Fibrosis surrounding the epidural tissues is based on the injured sacrospinalis behind, fibrous rings and posterior longitudinal ligaments. Approaches including using the minimally invasive technique, drugs, biomaterial and nonbiomaterial barriers to prevent the postoperative epidural adhesion were intensively investigated. Nevertheless, the results are far from satisfactory. Our review is based on various implant biomaterials that are used in clinical applications or are under study. We show the advantages and disadvantages of each method. The summary will help us to figure out ideas towards new techniques. The translational potential of this article: This review summarises recent biomaterials-related clinical and basic research that focuses on prevention of epidural adhesion after lumbar laminectomy. We also propose a novel possible translational method where a soft scaffold acts as a physical barrier in the early stage, engineered adipose tissue acts as a biobarrier in the later stage in the application of biomaterials and adipose-derived mesenchymal stem cells are used for prevention of epidural adhesion.
Collapse
Affiliation(s)
- Huailan Wang
- Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenjia Sun
- Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dongliang Fu
- Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yueliang Shen
- Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ying-Ying Chen
- Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lin-Lin Wang
- Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
18
|
Sun Y, Zhao S, Li X, Yan L, Wang J, Wang D, Chen H, Dai J, He J. Local application of rapamycin reduces epidural fibrosis after laminectomy via inhibiting fibroblast proliferation and prompting apoptosis. J Orthop Surg Res 2016; 11:58. [PMID: 27154399 PMCID: PMC4859967 DOI: 10.1186/s13018-016-0391-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/17/2016] [Indexed: 12/20/2022] Open
Abstract
Background Epidural fibrosis is a common complication after laminectomy. It is associated with intractable lower back pain and additional complications. To date, no study has evaluated whether the local application of rapamycin (RAPA) can inhibit fibroblast proliferation and reduce epidural scar adhesion after laminectomy. The results of the present study showed that the local application of RAPA reduces epidural fibrosis after laminectomy in rats. Methods In this study, 32 male Sprague-Dawley rats were randomly divided into four groups (0.2 mg/ml RAPA-treated group, 0.1 mg/ml RAPA-treated group, 0.05 mg/ml RAPA-treated group and physiological saline group). Laminectomy was performed at the level of lumbar segment 1 to 2, and different concentrations of RAPA or saline were applied to the laminectomy sites for 10 min. Four weeks after laminectomy, the rats were sacrificed, and the degrees of epidural adhesion in each group were evaluated. Macroscopic assessment, analysis of hydroxyproline content, and histological analysis were used to determine the therapeutic effect of the local application of RAPA on the inhibition of fibroblast proliferation and the reduction of epidural fibrosis after laminectomy. Next, we cultured fibroblasts from epidural scar tissues of rats that had undergone laminectomy. Fibroblasts were exposed to the indicated concentrations of RAPA, and western blotting and TUNEL assays were used to assess the effects of RAPA on inhibiting fibroblasts proliferation and promoting fibroblast apoptosis. Results The results of macroscopic assessments, analysis of hydroxyproline content, and histological analyses indicated that RAPA significantly inhibited fibroblast proliferation and reduced epidural fibrosis in the treated groups in the rat model. The western blotting results indicated that the expression levels of the pro-apoptotic proteins cleaved-PARP and Bax were up-regulated, whereas those of Bcl-2 were reduced. TUNEL assay indicated that the apoptosis rates of fibroblasts were significantly increased after exposure to the indicated concentrations of RAPA. Conclusions The local application of RAPA reduced epidural fibrosis after laminectomy by inhibiting the proliferation of fibroblasts, stimulating their apoptosis, and decreasing collagen synthesis. This protocol may be used in new clinical treatment strategies to reduce epidural fibrosis after laminectomy.
Collapse
Affiliation(s)
- Yu Sun
- Department of Orthopedics, Clinical medical college of Yangzhou University, Nantong West Road 98, Yangzhou, Jiangsu, 225001, China.,Orthopedics Institute, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu, 225001, China
| | - Shuai Zhao
- Department of Orthopedics, Clinical medical college of Yangzhou University, Nantong West Road 98, Yangzhou, Jiangsu, 225001, China.,Department of Orthopedics, Xiangya Second Hospital, Central South University, Changsha, Hunan, 410012, China.,Orthopedics Institute, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu, 225001, China
| | - Xiaolei Li
- Department of Orthopedics, Clinical medical college of Yangzhou University, Nantong West Road 98, Yangzhou, Jiangsu, 225001, China.,Department of Orthopedics, Xiangya Second Hospital, Central South University, Changsha, Hunan, 410012, China.,Orthopedics Institute, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu, 225001, China
| | - Lianqi Yan
- Department of Orthopedics, Clinical medical college of Yangzhou University, Nantong West Road 98, Yangzhou, Jiangsu, 225001, China. .,Department of Orthopedics, Xiangya Second Hospital, Central South University, Changsha, Hunan, 410012, China. .,Orthopedics Institute, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu, 225001, China.
| | - Jingcheng Wang
- Department of Orthopedics, Clinical medical college of Yangzhou University, Nantong West Road 98, Yangzhou, Jiangsu, 225001, China. .,Department of Orthopedics, Xiangya Second Hospital, Central South University, Changsha, Hunan, 410012, China. .,Orthopedics Institute, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu, 225001, China.
| | - Daxin Wang
- Department of Orthopedics, Clinical medical college of Yangzhou University, Nantong West Road 98, Yangzhou, Jiangsu, 225001, China.,Orthopedics Institute, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu, 225001, China
| | - Hui Chen
- Department of Orthopedics, Clinical medical college of Yangzhou University, Nantong West Road 98, Yangzhou, Jiangsu, 225001, China.,Orthopedics Institute, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu, 225001, China
| | - Jihang Dai
- Department of Orthopedics, Clinical medical college of Yangzhou University, Nantong West Road 98, Yangzhou, Jiangsu, 225001, China.,Orthopedics Institute, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu, 225001, China
| | - Jun He
- Department of Orthopedics, Clinical medical college of Yangzhou University, Nantong West Road 98, Yangzhou, Jiangsu, 225001, China.,Orthopedics Institute, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu, 225001, China
| |
Collapse
|
19
|
Liow SS, Dou Q, Kai D, Karim AA, Zhang K, Xu F, Loh XJ. Thermogels: In Situ Gelling Biomaterial. ACS Biomater Sci Eng 2016; 2:295-316. [DOI: 10.1021/acsbiomaterials.5b00515] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sing Shy Liow
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634
| | - Qingqing Dou
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634
| | - Anis Abdul Karim
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634
| | - Kangyi Zhang
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634
| | | | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634
- Department
of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
- Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore 168751, Singapore
| |
Collapse
|