1
|
Canton SP, Austin CN, Steuer F, Dadi S, Sharma N, Kass NM, Fogg D, Clayton E, Cunningham O, Scott D, LaBaze D, Andrews EG, Biehl JT, Hogan MV. Feasibility and Usability of Augmented Reality Technology in the Orthopaedic Operating Room. Curr Rev Musculoskelet Med 2024; 17:117-128. [PMID: 38607522 PMCID: PMC11068703 DOI: 10.1007/s12178-024-09888-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE OF REVIEW Augmented reality (AR) has gained popularity in various sectors, including gaming, entertainment, and healthcare. The desire for improved surgical navigation within orthopaedic surgery has led to the evaluation of the feasibility and usability of AR in the operating room (OR). However, the safe and effective use of AR technology in the OR necessitates a proper understanding of its capabilities and limitations. This review aims to describe the fundamental elements of AR, highlight limitations for use within the field of orthopaedic surgery, and discuss potential areas for development. RECENT FINDINGS To date, studies have demonstrated evidence that AR technology can be used to enhance navigation and performance in orthopaedic procedures. General hardware and software limitations of the technology include the registration process, ergonomics, and battery life. Other limitations are related to the human response factors such as inattentional blindness, which may lead to the inability to see complications within the surgical field. Furthermore, the prolonged use of AR can cause eye strain and headache due to phenomena such as the vergence-convergence conflict. AR technology may prove to be a better alternative to current orthopaedic surgery navigation systems. However, the current limitations should be mitigated to further improve the feasibility and usability of AR in the OR setting. It is important for both non-clinicians and clinicians to work in conjunction to guide the development of future iterations of AR technology and its implementation into the OR workflow.
Collapse
Affiliation(s)
- Stephen P Canton
- Department of Orthopaedic Surgery, University of Pittsburgh, 3471 Fifth Ave, Pittsburgh, PA, 15213, USA.
| | | | - Fritz Steuer
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Srujan Dadi
- Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ, USA
| | - Nikhil Sharma
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nicolás M Kass
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David Fogg
- Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Elizabeth Clayton
- Department of Orthopaedic Surgery, University of Pittsburgh, 3471 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Onaje Cunningham
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Devon Scott
- Department of Orthopaedic Surgery, University of Pittsburgh, 3471 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Dukens LaBaze
- Department of Orthopaedic Surgery, University of Pittsburgh, 3471 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Edward G Andrews
- Department of Neurological Surgery University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jacob T Biehl
- School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, USA
| | - MaCalus V Hogan
- Department of Orthopaedic Surgery, University of Pittsburgh, 3471 Fifth Ave, Pittsburgh, PA, 15213, USA
| |
Collapse
|
2
|
Wong KC, Sun YE, Kumta SM. Review and Future/Potential Application of Mixed Reality Technology in Orthopaedic Oncology. Orthop Res Rev 2022; 14:169-186. [PMID: 35601186 PMCID: PMC9121991 DOI: 10.2147/orr.s360933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
In orthopaedic oncology, surgical planning and intraoperative execution errors may result in positive tumor resection margins that increase the risk of local recurrence and adversely affect patients’ survival. Computer navigation and 3D-printed resection guides have been reported to address surgical inaccuracy by replicating the surgical plans in complex cases. However, limitations include surgeons’ attention shift from the operative field to view the navigation monitor and expensive navigation facilities in computer navigation surgery. Practical concerns are lacking real-time visual feedback of preoperative images and the lead-time in manufacturing 3D-printed objects. Mixed Reality (MR) is a technology of merging real and virtual worlds to produce new environments with enhanced visualizations, where physical and digital objects coexist and allow users to interact with both in real-time. The unique MR features of enhanced medical images visualization and interaction with holograms allow surgeons real-time and on-demand medical information and remote assistance in their immediate working environment. Early application of MR technology has been reported in surgical procedures. Its role is unclear in orthopaedic oncology. This review aims to provide orthopaedic tumor surgeons with up-to-date knowledge of the emerging MR technology. The paper presents its essential features and clinical workflow, reviews the current literature and potential clinical applications, and discusses the limitations and future development in orthopaedic oncology. The emerging MR technology adds a new dimension to digital assistive tools with a more accessible and less costly alternative in orthopaedic oncology. The MR head-mounted display and hand-free control may achieve clinical point-of-care inside or outside the operating room and improve service efficiency and patient safety. However, lacking an accurate hologram-to-patient matching, an MR platform dedicated to orthopaedic oncology, and clinical results may hinder its wide adoption. Industry-academic partnerships are essential to advance the technology with its clinical role determined through future clinical studies. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/t4hl_Anh_kM
Collapse
Affiliation(s)
- Kwok Chuen Wong
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
- Correspondence: Kwok Chuen Wong, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China, Email
| | - Yan Edgar Sun
- New Territories, Hong Kong Special Administrative Region, People’s Republic of China
| | - Shekhar Madhukar Kumta
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| |
Collapse
|