1
|
Sanati M, Afshari AR, Ahmadi SS, Moallem SA, Sahebkar A. Modulation of the ubiquitin-proteasome system by phytochemicals: Therapeutic implications in malignancies with an emphasis on brain tumors. Biofactors 2023; 49:782-819. [PMID: 37162294 DOI: 10.1002/biof.1958] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Regarding the multimechanistic nature of cancers, current chemo- or radiotherapies often fail to eradicate disease pathology, and frequent relapses or resistance to therapies occur. Brain malignancies, particularly glioblastomas, are difficult-to-treat cancers due to their highly malignant and multidimensional biology. Unfortunately, patients suffering from malignant tumors often experience poor prognoses and short survival periods. Thus far, significant efforts have been conducted to discover novel and more effective modalities. To that end, modulation of the ubiquitin-proteasome system (UPS) has attracted tremendous interest since it affects the homeostasis of proteins critically engaged in various cell functions, for example, cell metabolism, survival, proliferation, and differentiation. With their safe and multimodal actions, phytochemicals are among the promising therapeutic tools capable of turning the operation of various UPS elements. The present review, along with an updated outline of the role of UPS dysregulation in multiple cancers, provided a detailed discussion on the impact of phytochemicals on the UPS function in malignancies, especially brain tumors.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
- Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Adel Moallem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Jamshed F, Dashti F, Ouyang X, Mehal WZ, Banini BA. New uses for an old remedy: Digoxin as a potential treatment for steatohepatitis and other disorders. World J Gastroenterol 2023; 29:1824-1837. [PMID: 37032732 PMCID: PMC10080697 DOI: 10.3748/wjg.v29.i12.1824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/12/2023] [Accepted: 03/14/2023] [Indexed: 03/28/2023] Open
Abstract
Repurposing of the widely available and relatively cheap generic cardiac gly-coside digoxin for non-cardiac indications could have a wide-ranging impact on the global burden of several diseases. Over the past several years, there have been significant advances in the study of digoxin pharmacology and its potential non-cardiac clinical applications, including anti-inflammatory, antineoplastic, metabolic, and antimicrobial use. Digoxin holds promise in the treatment of gastrointestinal disease, including nonalcoholic steatohepatitis and alcohol-associated steatohepatitis as well as in obesity, cancer, and treatment of viral infections, among other conditions. In this review, we provide a summary of the clinical uses of digoxin to date and discuss recent research on its emerging applications.
Collapse
Affiliation(s)
- Fatima Jamshed
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06510, United States
- Griffin Hospital-Yale University, Derby, CT 06418, United States
| | - Farzaneh Dashti
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06510, United States
| | - Xinshou Ouyang
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06510, United States
| | - Wajahat Z Mehal
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06510, United States
- West Haven Veterans Medical Center, West Haven, CT 06516, United States
| | - Bubu A Banini
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06510, United States
| |
Collapse
|
3
|
Hu X, Chen T, Zhang S, Zhang Q, Li C, Wang X. Antitumour effect of odoroside A and its derivative on human leukaemia cells through the ROS/JNK pathway. Basic Clin Pharmacol Toxicol 2021; 130:56-69. [PMID: 34634178 DOI: 10.1111/bcpt.13673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/14/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
Oleandrigenin-3-O-β-D-diginoside (a derivative of odoroside A), isolated and purified by our group, has seldom been explored for its pharmacological activity. This study aimed at clarifying the mechanisms towards the leukaemia-suppressive role of odoroside A (compound #1) and its derivative, oleandrigenin-3-O-β-D-diginoside (compound #2) isolated from Nerium oleander. Viability and nuclear morphology change were assessed by CCK-8 assay and fluorescence microscope, respectively. Then, the cell apoptosis and autophagy induced by the compounds were detected by flow cytometry and Western blot. Xenograft model of nude mice was also applied to measure the leukaemia-suppressive effects of compound #2 in vivo. The result displayed that compound #1 and compound #2 inhibited the proliferation of HL60 and K562 cells and stronger effects were found in HL60 than K562 cells. Both of the compounds induced a dose-dependent apoptosis and autophagy in HL60 cells, where compound #2 was more potent than compound #1. Compound #2 also demonstrated a time-dependent apoptosis and autophagy in HL60 cells. Furthermore, ROS generation and JNK phosphorylation occurred in a dose-dependent manner in the cells treated with compound #2. Mitochondria also played critical role, proved by the decrease of Bcl-2, the release of cyto c to cytosol and the activation of caspase-3 and caspase-9. Moreover, the antitumour effects of compound #2 were validated in the nude mouse xenograft model in vivo. Odoroside A and its derivative inhibited the growth of leukaemia by inducing apoptosis and autophagy through the activation of ROS/JNK pathway. These results suggest that the compounds can serve as potential antitumour agents against leukaemia, especially acute myeloid leukaemia (AML).
Collapse
Affiliation(s)
- Xiaopeng Hu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - Tie Chen
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Shuquan Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Qian Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Chenyang Li
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Xiaodong Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Deng L, Zhai X, Liang P, Cui H. Overcoming TRAIL Resistance for Glioblastoma Treatment. Biomolecules 2021; 11:biom11040572. [PMID: 33919846 PMCID: PMC8070820 DOI: 10.3390/biom11040572] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) shows a promising therapeutic potential in cancer treatment as it exclusively causes apoptosis in a broad spectrum of cancer cells through triggering the extrinsic apoptosis pathway via binding to cognate death receptors, with negligible toxicity in normal cells. However, most cancers, including glioblastoma multiforme (GBM), display TRAIL resistance, hindering its application in clinical practice. Recent studies have unraveled novel mechanisms in regulating TRAIL-induced apoptosis in GBM and sought effective combinatorial modalities to sensitize GBM to TRAIL treatment, establishing pre-clinical foundations and the reasonable expectation that the TRAIL/TRAIL death receptor axis could be harnessed to treat GBM. In this review, we will revisit the status quo of the mechanisms of TRAIL resistance and emerging strategies for sensitizing GBM to TRAIL-induced apoptosis and also discuss opportunities of TRAIL-based combinatorial therapies in future clinical use for GBM treatment.
Collapse
Affiliation(s)
- Longfei Deng
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China;
| | - Xuan Zhai
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China;
| | - Ping Liang
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China;
- Correspondence: (P.L.); (H.C.)
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China;
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China;
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Correspondence: (P.L.); (H.C.)
| |
Collapse
|
5
|
Lei Y, Gan H, Huang Y, Chen Y, Chen L, Shan A, Zhao H, Wu M, Li X, Ma Q, Wang J, Zhang E, Zhang J, Li Y, Xue F, Deng L. Digitoxin inhibits proliferation of multidrug-resistant HepG2 cells through G 2/M cell cycle arrest and apoptosis. Oncol Lett 2020; 20:71. [PMID: 32863904 PMCID: PMC7436926 DOI: 10.3892/ol.2020.11932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains a challenge in the medical field due to its high malignancy and mortality rates particularly for HCC, which has developed multidrug resistance. Therefore, the identification of efficient chemotherapeutic drugs for multidrug resistant HCC has become an urgent issue. Natural products have always been of significance in drug discovery. In the present study, a cell-based method was used to screen a natural compound library, which consisted of 78 compounds, and the doxorubicin-resistant cancer cell line, HepG2/ADM, as screening tools. The findings of the present study led to the shortlisting of one of the compounds, digitoxin, which displayed an inhibitory effect on HepG2/ADM cells, with 50% inhibitory concentration values of 132.65±3.83, 52.29±6.26, and 9.13±3.67 nM for 24, 48, and 72 h, respectively. Immunofluorescence, western blotting and cell cycle analyses revealed that digitoxin induced G2/M cell cycle arrest via the serine/threonine-protein kinase ATR (ATR)-serine/threonine-protein kinase Chk2 (CHK2)-M-phase inducer phosphatase 3 (CDC25C) signaling pathway in HepG2/ADM cells, which may have resulted from a DNA double-stranded break. Digitoxin also induced mitochondrial apoptosis, which was characterized by changes in the interaction between Bcl-2 and Bax, the release of cytochrome c, as well as the activation of the caspase-3 and −9. To the best of our knowledge, the present study is the first report that digitoxin displays an anti-HCC effect on HepG2/ADM cells through G2/M cell cycle arrest, which was mediated by the ATR-CHK2-CDC25C signaling pathway and mitochondrial apoptosis. Therefore, digitoxin could be a promising chemotherapeutic agent for the treatment of patients with HCC.
Collapse
Affiliation(s)
- Yuhe Lei
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518034, P.R. China
| | - Hua Gan
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yuqing Huang
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yueyue Chen
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Lei Chen
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518034, P.R. China
| | - Aiyun Shan
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518034, P.R. China
| | - Huan Zhao
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Mansi Wu
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xiaojuan Li
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Qingyu Ma
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jing Wang
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Enxin Zhang
- Department of Oncology, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518034, P.R. China
| | - Jiayan Zhang
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, Hunan 418000, P.R. China
| | - Yuanxiang Li
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, Hunan 418000, P.R. China
| | - Feifei Xue
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Lijuan Deng
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
6
|
Chen YY, Wen SY, Deng CM, Yin XF, Sun ZH, Jiang MM, He QY. Proteomic Analysis Reveals that Odoroside A Triggers G2/M Arrest and Apoptosis in Colorectal Carcinoma Through ROS-p53 Pathway. Proteomics 2019; 19:e1900092. [PMID: 31294914 DOI: 10.1002/pmic.201900092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/01/2019] [Indexed: 12/16/2022]
Abstract
Odoroside A (OA) is an active ingredient extracted from the leaves of Nerium oleander Linn. (Apocynaceae). This study aims to examine the anticancer bioactivity of OA against CRC cells and to investigate the action mechanisms involved. As a result, OA can significantly inhibit cellular ability and induce apoptosis of CRC cells in a concentration-dependent manner without any obvious cytotoxicity in normal colorectal epithelial cells. Then, quantitative proteomics combined with bioinformatics is adopted to investigate the alterations of proteins and signaling pathways in response to OA treatment. As suggested by the proteomic analysis, flow cytometry and Western blotting analyses validate that exposure of CRC cells to OA causes cell cycle arrest and apoptosis, accompanied with the activation of the ROS/p53 signaling pathway. This observation demonstrates that OA, as a natural product, can induce oxidative stress to suppress tumor cell growth, implicating a novel therapeutic agent against CRC without obvious side effects.
Collapse
Affiliation(s)
- Yan-Yan Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, P. R. China
| | - Shi-Yuan Wen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, P. R. China
| | - Chun-Miao Deng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, P. R. China
| | - Xing-Feng Yin
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, P. R. China
| | - Zheng-Hua Sun
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, P. R. China
| | - Miao-Miao Jiang
- Institute of Traditional Chinese Medicine Research, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, P. R. China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
7
|
Elmaci İ, Alturfan EE, Cengiz S, Ozpinar A, Altinoz MA. Neuroprotective and tumoricidal activities of cardiac glycosides. Could oleandrin be a new weapon against stroke and glioblastoma? Int J Neurosci 2018; 128:865-877. [DOI: 10.1080/00207454.2018.1435540] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- İlhan Elmaci
- Department of Neurosurgery, Memorial Hospital, Istanbul, Turkey
| | | | - Salih Cengiz
- Department of Biochemistry, Institute of Forensic Medicine, Istanbul, Turkey
| | - Aysel Ozpinar
- Department of Medical Biochemistry, Acibadem University, Istanbul, Turkey
| | - Meric A. Altinoz
- Neuroacademy Group, Istanbul, Turkey
- Department of Psychiatry, Maastricht University, Holland
| |
Collapse
|
8
|
Na YJ, Lee DH, Kim JL, Kim BR, Park SH, Jo MJ, Jeong S, Kim HJ, Lee SY, Jeong YA, Oh SC. Cyclopamine sensitizes TRAIL-resistant gastric cancer cells to TRAIL-induced apoptosis via endoplasmic reticulum stress-mediated increase of death receptor 5 and survivin degradation. Int J Biochem Cell Biol 2017. [PMID: 28624529 DOI: 10.1016/j.biocel.2017.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is one of the most effective cancer treatments owing to its ability to selectively kill cancer cells, without affecting normal cells. However, it has been reported that several gastric cancer cells show resistance to TRAIL because of a scarcity of death receptor 5 (DR5) expressed on the cell surface. In this study, we show that cyclopamine sensitizes gastric cancer cells to TRAIL-induced apoptosis by elevating the expression of DR5. Interestingly, survivin hampers the existence of DR5 protein under normal conditions and cyclopamine decreases the expression of survivin, thus acting as a TRAIL sensitizer. Mechanistically, cyclopamine induces endoplasmic reticulum (ER) stress via reactive oxygen species (ROS) and CHOP, the last protein of the ER stress pathway and it regulates the proteasome degradation of survivin. Taken together, our results indicate that cyclopamine can be used for combination therapy in TRAIL-resistant gastric cancer cells.
Collapse
Affiliation(s)
- Yoo Jin Na
- Brain Korea 21 Program for Bio medicine Science, Korea University College of Medicine, Korea University, Seoul 152-703, Republic of Korea
| | - Dae-Hee Lee
- Brain Korea 21 Program for Bio medicine Science, Korea University College of Medicine, Korea University, Seoul 152-703, Republic of Korea; Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jung Lim Kim
- Brain Korea 21 Program for Bio medicine Science, Korea University College of Medicine, Korea University, Seoul 152-703, Republic of Korea; Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Bo Ram Kim
- Brain Korea 21 Program for Bio medicine Science, Korea University College of Medicine, Korea University, Seoul 152-703, Republic of Korea
| | - Seong Hye Park
- Brain Korea 21 Program for Bio medicine Science, Korea University College of Medicine, Korea University, Seoul 152-703, Republic of Korea
| | - Min Jee Jo
- Brain Korea 21 Program for Bio medicine Science, Korea University College of Medicine, Korea University, Seoul 152-703, Republic of Korea
| | - Soyeon Jeong
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hong Jun Kim
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Suk-Young Lee
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yoon A Jeong
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sang Cheul Oh
- Brain Korea 21 Program for Bio medicine Science, Korea University College of Medicine, Korea University, Seoul 152-703, Republic of Korea; Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Kaushik V, Yakisich JS, Azad N, Kulkarni Y, Venkatadri R, Wright C, Rojanasakul Y, Iyer AKV. Anti-Tumor Effects of Cardiac Glycosides on Human Lung Cancer Cells and Lung Tumorspheres. J Cell Physiol 2017; 232:2497-2507. [DOI: 10.1002/jcp.25611] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/21/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Vivek Kaushik
- Department of Pharmaceutical Sciences; Hampton University School of Pharmacy; Hampton Virginia
| | - Juan Sebastian Yakisich
- Department of Pharmaceutical Sciences; Hampton University School of Pharmacy; Hampton Virginia
| | - Neelam Azad
- Department of Pharmaceutical Sciences; Hampton University School of Pharmacy; Hampton Virginia
| | - Yogesh Kulkarni
- Department of Pharmaceutical Sciences; Hampton University School of Pharmacy; Hampton Virginia
| | - Rajkumar Venkatadri
- Department of Pharmaceutical Sciences; Hampton University School of Pharmacy; Hampton Virginia
| | - Clayton Wright
- Department of Pharmaceutical Sciences; Hampton University School of Pharmacy; Hampton Virginia
| | - Yon Rojanasakul
- Department of Basic Pharmaceutical Sciences; School of Pharmacy; West Virginia University; Morgantown West Virginia
| | - Anand Krishnan V. Iyer
- Department of Pharmaceutical Sciences; Hampton University School of Pharmacy; Hampton Virginia
| |
Collapse
|
10
|
Diederich M, Muller F, Cerella C. Cardiac glycosides: From molecular targets to immunogenic cell death. Biochem Pharmacol 2017; 125:1-11. [DOI: 10.1016/j.bcp.2016.08.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/15/2016] [Indexed: 11/26/2022]
|
11
|
Abstract
Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) has tremendous promise in treating various forms of cancers. However, many cancer cells exhibit or develop resistance to TRAIL. Interestingly, many studies have identified several secondary agents that can overcome TRAIL resistance. To expand on these studies, we conducted an extensive drug-re-profiling screen to identify FDA-approved compounds that can be used clinically as TRAIL-sensitizing agents in a very malignant type of brain cancer, Glioblastoma Multiforme (GBM). Using selected isogenic GBM cell pairs with differential levels of TRAIL sensitivity, we revealed 26 TRAIL-sensitizing compounds, 13 of which were effective as single agents. Cardiac glycosides constituted a large group of TRAIL-sensitizing compounds, and they were also effective on GBM cells as single agents. We then explored a second class of TRAIL-sensitizing drugs, which were enhancers of TRAIL response without any effect on their own. One such drug, Mitoxantrone, a DNA-damaging agent, did not cause toxicity to non-malignant cells at the doses that synergized with TRAIL on tumor cells. We investigated the downstream changes in apoptosis pathway components upon Mitoxantrone treatment, and observed that Death Receptors (DR4 and DR5) expression was upregulated, and pro-apoptotic and anti-apoptotic gene expression patterns were altered in favor of apoptosis. Together, our results suggest that combination of Mitoxantrone and TRAIL can be a promising therapeutic approach for GBM patients.
Collapse
|
12
|
2'-Hydroxy-4-methylsulfonylchalcone enhances TRAIL-induced apoptosis in prostate cancer cells. Anticancer Drugs 2016; 26:74-84. [PMID: 25192452 DOI: 10.1097/cad.0000000000000163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Prostate cancer is the most common malignant cancer in men and the second leading cause of cancer deaths. Previously, we have shown that 2'-hydroxy-4-methylsulfonylchalcone (RG003) induced apoptosis in prostate cancer cell lines PC-3 and DU145. Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent, some cancer cells are resistant to TRAIL treatment. PC-3 and LNCaP prostatic cancer cell lines have been reported to be resistant to TRAIL-induced apoptosis. Here, we show for the first time that RG003 overcomes TRAIL resistance in prostate cancer cells. RG003 can enhance TRAIL-induced apoptosis through DR5 upregulation and downregulation of Bcl-2, PI3K/Akt, NF-κB, and cyclooxygenase-2 (COX-2) survival pathways. When used in combined treatment, RG003 and TRAIL amplified TRAIL-induced activation of apoptosis effectors and particularly activation of caspase-8 and the executioner caspase-3, leading to increased poly-ADP-ribose polymerase cleavage and DNA fragmentation in prostate cancer cells. Furthermore, we showed that RG003 reduced COX-2 expression in cells. Previously, we showed that COX-2 was involved in resistance to an apoptosis mechanism; then, its inhibition by RG003 could render cells more sensitive to TRAIL treatment. We showed that nuclear factor-κB activation was inhibited after RG003 treatment. This inhibition was correlated with reduction in COX-2 expression and induction of apoptosis. Overall, we conclude, for the first time, that RG003 can enhance TRAIL-induced apoptosis in human prostate cancer cells. The significance of our in-vitro study with RG003 and TRAIL combined is very encouraging, suggesting the relevance of testing this combined treatment in xenograft animal models.
Collapse
|
13
|
Digitoxin enhances the growth inhibitory effects of thapsigargin and simvastatin on ER negative human breast cancer cells. Fitoterapia 2016; 109:146-54. [DOI: 10.1016/j.fitote.2015.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/07/2015] [Accepted: 12/10/2015] [Indexed: 12/20/2022]
|
14
|
Abstract
Cardiac glycosides induce apoptotic effects on glioma cells, but whether cardiac glycosides protect against risk for glioma is unknown. We therefore explored the relation between glycoside use and glioma risk using a large and validated database. We performed a case-control analysis using the Clinical Practice Research Datalink involving 2005 glioma cases diagnosed between 1995 and 2012 that were individually matched to 20,050 controls on age, gender, general practice, and number of years of active history in the database. Conditional logistic regression analysis was used to evaluate the association between cardiac glycosides and the risk of glioma adjusting for body mass index and smoking. We also examined use of common heart failure and arrhythmia medications to differentiate between a specific glycoside effect and a generic effect of treatment for congestive heart failure or arrhythmia. Cardiac glycoside use was inversely related to glioma incidence. After adjustment for congestive heart failure, arrhythmia, diabetes, and common medications used to treat those conditions, the OR of glioma was 0.47 (95% CI 0.27-0.81, Bonferroni-corrected p value = 0.024) for use versus non-use of cardiac glycosides, based on 17 exposed cases. In contrast, no associations were noted for other medications used to treat congestive heart failure or arrhythmias. The OR of glioma in people with congestive heart failure was 0.65 (95% CI 0.40-1.04), and for arrhythmia it was 1.01 (95% CI 0.78-1.31). These data indicate that cardiac glycoside use is independently associated with reduced glioma risk.
Collapse
|
15
|
Comprehensive identification of genes driven by ERV9-LTRs reveals TNFRSF10B as a re-activatable mediator of testicular cancer cell death. Cell Death Differ 2015; 23:64-75. [PMID: 26024393 DOI: 10.1038/cdd.2015.68] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 04/04/2015] [Accepted: 04/16/2015] [Indexed: 12/21/2022] Open
Abstract
The long terminal repeat (LTR) of human endogenous retrovirus type 9 (ERV9) acts as a germline-specific promoter that induces the expression of a proapoptotic isoform of the tumor suppressor homologue p63, GTAp63, in male germline cells. Testicular cancer cells silence this promoter, but inhibitors of histone deacetylases (HDACs) restore GTAp63 expression and give rise to apoptosis. We show here that numerous additional transcripts throughout the genome are driven by related ERV9-LTRs. 3' Rapid amplification of cDNA ends (3'RACE) was combined with next-generation sequencing to establish a large set of such mRNAs. HDAC inhibitors induce these ERV9-LTR-driven genes but not the LTRs from other ERVs. In particular, a transcript encoding the death receptor DR5 originates from an ERV9-LTR inserted upstream of the protein coding regions of the TNFRSF10B gene, and it shows an expression pattern similar to GTAp63. When treating testicular cancer cells with HDAC inhibitors as well as the death ligand TNF-related apoptosis-inducing ligand (TRAIL), rapid cell death was observed, which depended on TNFRSF10B expression. HDAC inhibitors also cooperate with cisplatin (cDDP) to promote apoptosis in testicular cancer cells. ERV9-LTRs not only drive a large set of human transcripts, but a subset of them acts in a proapoptotic manner. We propose that this avoids the survival of damaged germ cells. HDAC inhibition represents a strategy of restoring the expression of a class of ERV9-LTR-mediated genes in testicular cancer cells, thereby re-enabling tumor suppression.
Collapse
|
16
|
Lin SY, Chang HH, Lai YH, Lin CH, Chen MH, Chang GC, Tsai MF, Chen JJW. Digoxin Suppresses Tumor Malignancy through Inhibiting Multiple Src-Related Signaling Pathways in Non-Small Cell Lung Cancer. PLoS One 2015; 10:e0123305. [PMID: 25955608 PMCID: PMC4425490 DOI: 10.1371/journal.pone.0123305] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/03/2015] [Indexed: 11/19/2022] Open
Abstract
Non-small cell lung cancer is the predominant type of lung cancer, resulting in high mortality worldwide. Digoxin, a cardiac glycoside, has recently been suggested to be a novel chemotherapeutic agent. Src is an oncogene that plays an important role in cancer progression and is therefore a potential target for cancer therapy. Here, we investigated whether digoxin could suppress lung cancer progression through the inhibition of Src activity. The effects of digoxin on lung cancer cell functions were investigated using colony formation, migration and invasion assays. Western blotting and qPCR assays were used to analyze the mRNA and protein expression levels of Src and its downstream proteins, and a cell viability assay was used to measure cellular cytotoxicity effects. The results of the cell function assays revealed that digoxin inhibited the proliferation, invasion, migration, and colony formation of A549 lung cancer cells. Similar effects of digoxin were also observed in other lung cancer cell lines. Furthermore, we found that digoxin significantly suppressed Src activity and its protein expression in a dose- and time-dependent manner as well as reduced EGFR and STAT3 activity. Our data suggest that digoxin is a potential anticancer agent that may suppress lung cancer progression through inhibiting Src and the activity of related proteins.
Collapse
Affiliation(s)
- Sheng-Yi Lin
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Hsiu-Hui Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Hua Lai
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ching-Hsiung Lin
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Min-Hsuan Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Gee-Chen Chang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Meng-Feng Tsai
- Department of Molecular Biotechnology, Dayeh University, Changhua, Taiwan
- * E-mail: (MFT); (JJWC)
| | - Jeremy J. W. Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- * E-mail: (MFT); (JJWC)
| |
Collapse
|
17
|
Malik N, Efthymiou AG, Mather K, Chester N, Wang X, Nath A, Rao MS, Steiner JP. Compounds with species and cell type specific toxicity identified in a 2000 compound drug screen of neural stem cells and rat mixed cortical neurons. Neurotoxicology 2014; 45:192-200. [PMID: 25454721 DOI: 10.1016/j.neuro.2014.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/08/2014] [Accepted: 10/08/2014] [Indexed: 11/30/2022]
Abstract
Human primary neural tissue is a vital component for the quick and simple determination of chemical compound neurotoxicity in vitro. In particular, such tissue would be ideal for high-throughput screens that can be used to identify novel neurotoxic or neurotherapeutic compounds. We have previously established a high-throughput screening platform using human induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) and neurons. In this study, we conducted a 2000 compound screen with human NSCs and rat cortical cells to identify compounds that are selectively toxic to each group. Approximately 100 of the tested compounds showed specific toxicity to human NSCs. A secondary screen of a small subset of compounds from the primary screen on human iPSCs, NSC-derived neurons, and fetal astrocytes validated the results from >80% of these compounds with some showing cell specific toxicity. Amongst those compounds were several cardiac glycosides, all of which were selectively toxic to the human cells. As the screen was able to reliably identify neurotoxicants, many with species and cell-type specificity, this study demonstrates the feasibility of this NSC-driven platform for higher-throughput neurotoxicity screens.
Collapse
Affiliation(s)
- Nasir Malik
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, United States.
| | - Anastasia G Efthymiou
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, United States
| | - Karly Mather
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States
| | - Nathaniel Chester
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States
| | - Xiantao Wang
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, United States
| | - Avindra Nath
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States
| | - Mahendra S Rao
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, United States; National Institute of Health Center for Regenerative Medicine, National Institutes of Health, United States
| | - Joseph P Steiner
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States
| |
Collapse
|
18
|
Osorio AA, López MR, Jiménez IA, Moujir LM, Rodríguez ML, Bazzocchi IL. Elaeodendron orientale as a source of cytotoxic cardenolides. PHYTOCHEMISTRY 2014; 105:60-67. [PMID: 25014657 DOI: 10.1016/j.phytochem.2014.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/12/2014] [Accepted: 06/16/2014] [Indexed: 06/03/2023]
Abstract
In the present study, we report six cardiac glycosides (1-6) along with four known ones (7-10) isolated from the leaves and fruits of Elaeodendron orientale. Their stereostructures were elucidated on the basis of spectroscopic analysis, including 1D and 2D NMR, and the absolute configuration of 1 was determined by X-ray diffraction analysis. The compounds were evaluated for growth inhibitory activity against a panel of human cancer cell lines, HeLa, A-549, MCF-7 and HL-60, and normal Vero cells. Four compounds from this series (5 and 7-9, IC50 values ranging from 0.01 to 0.07μM) exhibited cytotoxicity against three of the cancer cell lines assayed that was similar to or higher than the well-known therapies digoxin and digitoxigenin. Taking into account the narrow safety range of cardiac glycosides used in clinic, this series shows a selectivity index higher than 3 for three of the cancer cell lines assayed, increasing their interest for further study.
Collapse
Affiliation(s)
- Alex A Osorio
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica and Instituto Canario de Investigación del Cáncer, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Manuel R López
- Departamento de Microbiología y Biología Celular, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Tenerife, Spain
| | - Ignacio A Jiménez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica and Instituto Canario de Investigación del Cáncer, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Laila M Moujir
- Departamento de Microbiología y Biología Celular, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Tenerife, Spain
| | - Matías L Rodríguez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica and Instituto Canario de Investigación del Cáncer, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Isabel L Bazzocchi
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica and Instituto Canario de Investigación del Cáncer, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain.
| |
Collapse
|