1
|
Zhou Y, He N, Liu Q, Li R, Yang L, Kang W, Zhang X, Xu X, Yao G, Wang P, Wang CY, Yang J, Liu Z. Structural Optimization of Marine Natural Product Pretrichodermamide B for the Treatment of Colon Cancer by Targeting the JAK/STAT3 Signaling Pathway. J Med Chem 2024; 67:10783-10794. [PMID: 38888591 DOI: 10.1021/acs.jmedchem.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Marine natural product (MNP) pretrichodermamide B (Pre B, 9) was identified as a novel STAT3 inhibitor in our previous work, while its metabolic instability hindered its further development. To address this drawback, ligand structure-based drug design was adopted leading to a series of Pre B derivatives. Among them, MNP trichodermamide B (tri B, 24) obtained by skeletal rearrangement exhibited more potent antiproliferative activity with an IC50 value of 0.12 μM against HCT116. Notably, 24 stood out with improved metabolic stability (T1/2 = 31 min) and more favorable oral bioavailability (F = 37.5%). Further studies indicated that 24 blocked JAK/STAT3 signaling in dose- and time-dependent manner. In vivo, 24 suppressed tumor growth (TGI = 65%) at a dose of 20 mg/kg in a HCT116-derived xenograft mouse model. Overall, 24 might be a promising lead compound for colon cancer and is worthy of further investigation.
Collapse
Affiliation(s)
- Yue Zhou
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Na He
- Key Laboratory of Marine Drugs of Ministry of Education & Qingdao Marine Biomedical Research Institute, Ocean University of China, Qingdao 266003, China
| | - Qian Liu
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Rui Li
- Key Laboratory of Marine Drugs of Ministry of Education & Qingdao Marine Biomedical Research Institute, Ocean University of China, Qingdao 266003, China
| | - Lujia Yang
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Wei Kang
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xinxin Zhang
- Key Laboratory of Marine Drugs of Ministry of Education & Qingdao Marine Biomedical Research Institute, Ocean University of China, Qingdao 266003, China
| | - Xiaoyu Xu
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Guangshan Yao
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Pingyuan Wang
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jinbo Yang
- Key Laboratory of Marine Drugs of Ministry of Education & Qingdao Marine Biomedical Research Institute, Ocean University of China, Qingdao 266003, China
| | - Zhiqing Liu
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
3
|
Murokawa S, Furukawa K, Kawano Y, Nihei T, Suzuki Y, Yasui E, Nagumo S. Reductive SN2’ Reaction of Epoxydienoate with Borane and its Application to the Synthesis and Structural Revision of an Antitumor Active Torrubiellutin Analogue. Chem Asian J 2022; 17:e202200650. [DOI: 10.1002/asia.202200650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/23/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Shunsuke Murokawa
- Kogakuin University: Kogakuin Daigaku Department of Chemistry and Life Science JAPAN
| | - Koki Furukawa
- Kogakuin University: Kogakuin Daigaku Department of Chemistry and Life Science JAPAN
| | - Yoshinori Kawano
- Kogakuin University: Kogakuin Daigaku Department of Chemistry and Life Science JAPAN
| | - Tsukasa Nihei
- Kogakuin University: Kogakuin Daigaku Department of Chemistry and Life Science JAPAN
| | - Yuji Suzuki
- Hokkaido University of Science Department of Pharmacy: Hokkaido Kagaku Daigaku Yakugakubu Yakugakuka Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences JAPAN
| | - Eiko Yasui
- Kogakuin University: Kogakuin Daigaku Department of Chemistry and Life Science JAPAN
| | - Shinji Nagumo
- Kogakuin university department of applied chemistry Nakano 2665-1 192-0015 Hachioji JAPAN
| |
Collapse
|
4
|
Yang J, Wang L, Guan X, Qin JJ. Inhibiting STAT3 signaling pathway by natural products for cancer prevention and therapy: In vitro and in vivo activity and mechanisms of action. Pharmacol Res 2022; 182:106357. [PMID: 35868477 DOI: 10.1016/j.phrs.2022.106357] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 10/17/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays a critical role in signal transmission from the plasma membrane to the nucleus, regulating the expression of genes involved in essential cell functions and controlling the processes of cell cycle progression and apoptosis. Thus, STAT3 has been elucidated as a promising target for developing anticancer drugs. Many natural products have been reported to inhibit the STAT3 signaling pathway during the past two decades and have exhibited significant anticancer activities in vitro and in vivo. However, there is no FDA-approved STAT3 inhibitor yet. The major mechanisms of these natural product inhibitors of the STAT3 signaling pathway include targeting the upstream regulators of STAT3, directly binding to the STAT3 SH2 domain and inhibiting its activation, inhibiting STAT3 phosphorylation and/or dimerization, and others. In the present review, we have systematically discussed the development of these natural product inhibitors of STAT3 signaling pathway as well as their in vitro and in vivo anticancer activity and mechanisms of action. Outlooks and perspectives on the associated challenges are provided as well.
Collapse
Affiliation(s)
- Jing Yang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Lingling Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; School of Life Sciences, Tianjin University, Tianjin, China
| | - Xiaoqing Guan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| | - Jiang-Jiang Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
5
|
Ramesh R, Shingare RD, Kumar V, Anand A, B S, Veeraraghavan S, Viswanadha S, Ummanni R, Gokhale R, Srinivasa Reddy D. Repurposing of a drug scaffold: Identification of novel sila analogues of rimonabant as potent antitubercular agents. Eur J Med Chem 2016; 122:723-730. [DOI: 10.1016/j.ejmech.2016.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 12/27/2022]
|