1
|
Murashkina AV, Bogdanov AV, Voloshina AD, Lyubina AP, Samorodov AV, Mitrofanov AY, Beletskaya IP, Smolyarchuk EA, Zavadich KA, Valiullina ZA, Nazmieva KA, Korunas VI, Krylova ID. Base-Catalyzed Reaction of Isatins and (3-Hydroxyprop-1-yn-1-yl)phosphonates as a Tool for the Synthesis of Spiro-1,3-dioxolane Oxindoles with Anticancer and Anti-Platelet Properties. Molecules 2024; 29:4764. [PMID: 39407692 PMCID: PMC11477635 DOI: 10.3390/molecules29194764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
An approach to the synthesis of phosphoryl substituted spiro-1,3-dioxolane oxindoles was developed from the base-catalyzed reaction of various isatins with (3-hydroxyprop-1-yn-1-yl)phosphonates. It was found that various aryl-substituted and N-functionalized isatins with the formation of appropriate products with high yields and stereoselectivity when using t-BuOLi are able to react. Cytotoxic activity evaluation suggests that the most significant results in relation to the HuTu 80 cell line were shown by N-benzylated spirodioxolanes. 5-Cloro-N-unsubstituted spirooxindoles exhibit antiaggregational activity exceeding the values of acetylsalicylic acid.
Collapse
Affiliation(s)
- Arina V. Murashkina
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.M.); (I.P.B.)
| | - Andrei V. Bogdanov
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, 420008 Kazan, Russia
| | - Alexandra D. Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia; (A.D.V.); (A.P.L.)
| | - Anna P. Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia; (A.D.V.); (A.P.L.)
| | - Alexandr V. Samorodov
- Department of Pharmacology, Bashkir State Medical University, 450008 Ufa, Russia; (A.V.S.); (Z.A.V.); (K.A.N.); (V.I.K.); (I.D.K.)
| | - Alexander Y. Mitrofanov
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.M.); (I.P.B.)
| | - Irina P. Beletskaya
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.M.); (I.P.B.)
| | - Elena A. Smolyarchuk
- The A.P. Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University (Sechenov University), 119571 Moscow, Russia; (E.A.S.); (K.A.Z.)
| | - Kseniya A. Zavadich
- The A.P. Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University (Sechenov University), 119571 Moscow, Russia; (E.A.S.); (K.A.Z.)
| | - Zulfiya A. Valiullina
- Department of Pharmacology, Bashkir State Medical University, 450008 Ufa, Russia; (A.V.S.); (Z.A.V.); (K.A.N.); (V.I.K.); (I.D.K.)
| | - Kseniya A. Nazmieva
- Department of Pharmacology, Bashkir State Medical University, 450008 Ufa, Russia; (A.V.S.); (Z.A.V.); (K.A.N.); (V.I.K.); (I.D.K.)
| | - Vladislav I. Korunas
- Department of Pharmacology, Bashkir State Medical University, 450008 Ufa, Russia; (A.V.S.); (Z.A.V.); (K.A.N.); (V.I.K.); (I.D.K.)
| | - Irina D. Krylova
- Department of Pharmacology, Bashkir State Medical University, 450008 Ufa, Russia; (A.V.S.); (Z.A.V.); (K.A.N.); (V.I.K.); (I.D.K.)
| |
Collapse
|
2
|
Pinto AF, Nunes JS, Severino Martins JE, Leal AC, Silva CCVC, da Silva AJFS, da Cruz Olímpio DS, da Silva ETN, Campos TA, Lima Leite AC. Thiazole, Isatin and Phthalimide Derivatives Tested in vivo against Cancer Models: A Literature Review of the Last Six Years. Curr Med Chem 2024; 31:2991-3032. [PMID: 37170994 DOI: 10.2174/0929867330666230426154055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Cancer is a disease characterized by the abnormal multiplication of cells and is the second leading cause of death in the world. The search for new effective and safe anticancer compounds is ongoing due to factors such as low selectivity, high toxicity, and multidrug resistance. Thus, heterocyclic compounds derived from isatin, thiazole and phthalimide that have achieved promising in vitro anticancer activity have been tested in vivo and in clinical trials. OBJECTIVE This review focused on the compilation of promising data from thiazole, isatin, and phthalimide derivatives, reported in the literature between 2015 and 2022, with in vivo anticancer activity and clinical trials. METHODS A bibliographic search was carried out in the PUBMED, MEDLINE, ELSEVIER, and CAPES PERIODIC databases, selecting relevant works for each pharmacophoric group with in vivo antitumor activity in the last 6 years. RESULTS In our study, 68 articles that fit the scope were selected and critically analyzed. These articles were organized considering the type of antitumor activity and their year of publication. Some compounds reported here demonstrated potent antitumor activity against several tumor types. CONCLUSION This review allowed us to highlight works that reported promising structures for the treatment of various cancer types and also demonstrated that the privileged structures thiazole, isatin and phthalimide are important in the design of new syntheses and molecular optimization of compounds with antitumor activity.
Collapse
Affiliation(s)
- Aline Ferreira Pinto
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Janine Siqueira Nunes
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - José Eduardo Severino Martins
- Regulatory Affairs Advisory, Empresa Brasileira de Hemoderivados e Biotecnologia (HEMOBRAS), CEP 51021-410, Recife, PE, Brazil
| | - Amanda Calazans Leal
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Carla Cauanny Vieira Costa Silva
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Anderson José Firmino Santos da Silva
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Daiane Santiago da Cruz Olímpio
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Elineide Tayse Noberto da Silva
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Thiers Araújo Campos
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Ana Cristina Lima Leite
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| |
Collapse
|
3
|
Triethylammonium 2-(3-Hydroxy-2-oxoindolin-3-yl)-5,5-dimethyl-3-oxocyclohex-1-en-1-olate. MOLBANK 2023. [DOI: 10.3390/m1589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
In recent years, the application of privileged structures has become a powerful approach in the discovery of new biologically active molecules. Ion pairing is a strategy used to enhance the permeation of ionized topical drugs. A convenient and efficient method for the synthesis of triethylammonium 2-(3-hydroxy-2-oxoindolin-3-yl)-5,5-dimethyl-3-oxocyclohex-1-en-1-olate has been developed. The presented protocol includes an aldol reaction and the formation of an ammonium salt. Triethylamine is both a reactant and a catalyst in the process. The structure of the synthesized title compound has been established by 1H, 13C-NMR and IR spectroscopy, mass spectrometry, and elemental analysis.
Collapse
|
4
|
Li J, Cai Z, Li XW, Zhuang C. Natural Product-Inspired Targeted Protein Degraders: Advances and Perspectives. J Med Chem 2022; 65:13533-13560. [PMID: 36205223 DOI: 10.1021/acs.jmedchem.2c01223] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Targeted protein degradation (TPD), a promising therapeutic strategy in drug discovery, has great potential to regulate the endogenous degradation of undruggable targets with small molecules. As vital resources that provide diverse structural templates for drug discovery, natural products (NPs) are a rising and robust arsenal for the development of therapeutic TPD. The first proof-of-concept study of proteolysis-targeting chimeras (PROTACs) was a natural polyketide ovalicin-derived degrader; since then, NPs have shown great potential to promote TPD technology. The use of NP-inspired targeted protein degraders has been confirmed to be a promising strategy to treat many human conditions, including cancer, inflammation, and nonalcoholic fatty liver disease. Nevertheless, the development of NP-inspired degraders is challenging, and the field is currently in its infancy. In this review, we summarize the bioactivities and mechanisms of NP-inspired degraders and discuss the associated challenges and future opportunities in this field.
Collapse
Affiliation(s)
- Jiao Li
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhenyu Cai
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Chunlin Zhuang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
5
|
Xing X, Li F, Hu Y, Zhang L, Hui Q, Qin H, Jiang Q, Jiang W, Fang C, Zhang L. Discovery of Novel Tetrahydro-β-carboline Containing Aminopeptidase N Inhibitors as Cancer Chemosensitizers. Front Oncol 2022; 12:894842. [PMID: 35677165 PMCID: PMC9168271 DOI: 10.3389/fonc.2022.894842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/25/2022] [Indexed: 12/30/2022] Open
Abstract
Aminopeptidase N (APN, CD13) is closely associated with the development and progression of cancer. Previous studies suggested APN as a biomarker for cancer stem cells. APN inhibitors have been intensively evaluated as chemosensitizers for cancer treatments. In the present study, tetrahydro-β-carboline scaffold was introduced to the structure of APN inhibitors. The synthesized compounds showed potent enzyme inhibitory activities compared with Bestatin, an approved APN inhibitor, in cell-based enzymatic assay. In combination with chemotherapeutic drugs, representative APN inhibitor molecules D12, D14 and D16 significantly improved the antiproliferative potency of anticancer drugs in the in vitro tests. Further mechanistic studies revealed that the anticancer effects of these drug combinations are correlated with decreased APN expression, increased ROS level, and induction of cell apoptosis. The spheroid-formation assay and colony-formation assay results showed effectiveness of Paclitaxel-APN inhibitor combination against breast cancer stem cell growth. The combined drug treatment led to reduced mRNA expression of OCT-4, SOX-2 and Nanog in the cancer stem cells tested, suggesting the reduced stemness of the cells. In the in vivo study, the selected APN inhibitors, especially D12, exhibited improved anticancer activity in combination with Paclitaxel compared with Bestatin. Collectively, potent APN inhibitors were discovered, which could be used as lead compounds for tumor chemo-sensitization and cancer stem cell-based therapies.
Collapse
Affiliation(s)
- Xiaoyan Xing
- Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Fahui Li
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Yajie Hu
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Lin Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Qian Hui
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Hongyu Qin
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Wenyan Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Chunyan Fang
- Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Lei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
6
|
Bogdanov A, Voloshina AD, Sapunova AS, Kulik NV, Bukharov SV, Dobrynin AB, Voronina JK, Terekhova NV, Samorodov AV, Pavlov VN, Mironov VF. Isatin-3-acylhydrazones with enhanced lipophilicity: synthesis, antimicrobial activity evaluation and the influence on hemostasis system. Chem Biodivers 2021; 19:e202100496. [PMID: 34958705 DOI: 10.1002/cbdv.202100496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/27/2021] [Indexed: 11/06/2022]
Abstract
Water-soluble trialkylammonium isatin-3-hydrazone derivatives bearing hydroxybenzyl substituent were easily synthesized with high yields. XRD studies confirmed the presence of these compounds as trans-( Z )-isomers in a crystal. It was shown that an increase in the lipophilicity of the cationic center leads to an increase in activity against Gram-positive bacteria Staphylococcus aureus and Bacillus cereus, including methicillin-resistant (MRSA) strains. The MIC values of the leading compounds turned out to be 2-100 times higher than the MIC of norfloxacin against the MRSA strains in the absence of hemo- and cytotoxicity. Antiaggregation and anticoagulation properties were in vitro better than for acetylsalicylic acid and sodium heparin drugs. It has been shown by UV spectroscopy and fluorescence microscopy that the mechanism of antimicrobial action of new acylhydrazones is associated with their ability to destroy the bacterial cell membrane.
Collapse
Affiliation(s)
- Andrei Bogdanov
- A.E.Arbuzov Institute of organic and physical chemistry of the Russian academy of sciences, laboratory of phosphorus-containing analogues of natural compounds, Arbuzov str., 8, Not Available, 420088, Kazan, RUSSIAN FEDERATION
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center of Russian Academy of Sciences: Institut organicheskoj i fizicheskoj khimii imeni A E Arbuzova KazNC RAN, Laboratory of microbiology, Arbuzov str., 8, Kazan, RUSSIAN FEDERATION
| | - Anastasia S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center of Russian Academy of Sciences: Institut organicheskoj i fizicheskoj khimii imeni A E Arbuzova KazNC RAN, Laboratory of microbiology, Arbuzov str., 8, Kazan, RUSSIAN FEDERATION
| | - Natalia V Kulik
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center of Russian Academy of Sciences: Institut organicheskoj i fizicheskoj khimii imeni A E Arbuzova KazNC RAN, Laboratory of microbiology, Arbuzov str., 8, Kazan, RUSSIAN FEDERATION
| | - Sergey V Bukharov
- Kazan National Research Technological University: Kazanskij nacional'nyj issledovatel'skij tehnologiceskij universitet, TOONS, Marx str., 32, Kazan, RUSSIAN FEDERATION
| | - Alexey B Dobrynin
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center of Russian Academy of Sciences: Institut organicheskoj i fizicheskoj khimii imeni A E Arbuzova KazNC RAN, Laboratory of diffraction analysis, Arbuzov str., 8, Kazan, RUSSIAN FEDERATION
| | - Julia K Voronina
- Kurnakov Institute of General and Inorganic Chemistry RAS: Institut obsej i neorganiceskoj himii imeni N S Kurnakova RAN, Inorganic X-Ray, Leninskiy prosp., 31, Moscow, RUSSIAN FEDERATION
| | - Natalia V Terekhova
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center of Russian Academy of Sciences: Institut organicheskoj i fizicheskoj khimii imeni A E Arbuzova KazNC RAN, PCANC Laboratory, Arbuzov str., 8, Kazan, RUSSIAN FEDERATION
| | - Alexander V Samorodov
- Bashkir State Medical University: Baskirskij gosudarstvennyj medicinskij universitet, Clinical laboratory, Lenin str, 3, Ufa, RUSSIAN FEDERATION
| | - Valentin N Pavlov
- Bashkir State Medical University: Baskirskij gosudarstvennyj medicinskij universitet, Clinical laboratory, Lenin str, 3, Ufa, RUSSIAN FEDERATION
| | - Vladimir F Mironov
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center of Russian Academy of Sciences: Institut organicheskoj i fizicheskoj khimii imeni A E Arbuzova KazNC RAN, PCANC laboratory, Arbuzov str., 8, Kazan, RUSSIAN FEDERATION
| |
Collapse
|
7
|
Abstract
The mercapturic acid pathway is a major route for the biotransformation of xenobiotic and endobiotic electrophilic compounds and their metabolites. Mercapturic acids (N-acetyl-l-cysteine S-conjugates) are formed by the sequential action of the glutathione transferases, γ-glutamyltransferases, dipeptidases, and cysteine S-conjugate N-acetyltransferase to yield glutathione S-conjugates, l-cysteinylglycine S-conjugates, l-cysteine S-conjugates, and mercapturic acids; these metabolites constitute a "mercapturomic" profile. Aminoacylases catalyze the hydrolysis of mercapturic acids to form cysteine S-conjugates. Several renal transport systems facilitate the urinary elimination of mercapturic acids; urinary mercapturic acids may serve as biomarkers for exposure to chemicals. Although mercapturic acid formation and elimination is a detoxication reaction, l-cysteine S-conjugates may undergo bioactivation by cysteine S-conjugate β-lyase. Moreover, some l-cysteine S-conjugates, particularly l-cysteinyl-leukotrienes, exert significant pathophysiological effects. Finally, some enzymes of the mercapturic acid pathway are described as the so-called "moonlighting proteins," catalytic proteins that exert multiple biochemical or biophysical functions apart from catalysis.
Collapse
Affiliation(s)
- Patrick E Hanna
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
8
|
Thakur A, Singh A, Kaur N, Ojha R, Nepali K. Steering the antitumor drug discovery campaign towards structurally diverse indolines. Bioorg Chem 2020; 94:103436. [DOI: 10.1016/j.bioorg.2019.103436] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022]
|
9
|
Bogdanov AV, Zaripova IF, Mustafina LK, Voloshina AD, Sapunova AS, Kulik NV, Mironov VF. Synthesis and Study of Antimicrobial Activity of Water-Soluble Ammonium Acylhydrazones Based on New 1,ω-Alkylenebis(isatins). RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s107036321907003x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Bogdanov AV, Zaripova IF, Voloshina AD, Sapunova AS, Kulik NV, Bukharov SV, Voronina JK, Vandyukov AE, Mironov VF. Synthesis and Biological Evaluation of New Isatin‐Based QACs with High Antimicrobial Potency. ChemistrySelect 2019. [DOI: 10.1002/slct.201901708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Andrei V. Bogdanov
- A.E.Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center of RAS, 8 Arbuzov str. Kazan 420088 Russian Federation
| | - Ilyuza F. Zaripova
- A.E.Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center of RAS, 8 Arbuzov str. Kazan 420088 Russian Federation
| | - Alexandra D. Voloshina
- A.E.Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center of RAS, 8 Arbuzov str. Kazan 420088 Russian Federation
| | - Anastasia S. Sapunova
- A.E.Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center of RAS, 8 Arbuzov str. Kazan 420088 Russian Federation
| | - Natalia V. Kulik
- A.E.Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center of RAS, 8 Arbuzov str. Kazan 420088 Russian Federation
| | - Sergey V. Bukharov
- Kazan National Research Technological University Kazan 420015 Russian Federation
| | - Julia K. Voronina
- N. S. Kurnakov Institute of General and Inorganic Chemistry, RAS, 31 Leninsky Av. Moscow 119991 Russian Federation
| | - Alexander E. Vandyukov
- A.E.Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center of RAS, 8 Arbuzov str. Kazan 420088 Russian Federation
| | - Vladimir F. Mironov
- A.E.Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center of RAS, 8 Arbuzov str. Kazan 420088 Russian Federation
| |
Collapse
|
11
|
Amin SA, Adhikari N, Jha T. Design of Aminopeptidase N Inhibitors as Anti-cancer Agents. J Med Chem 2018; 61:6468-6490. [DOI: 10.1021/acs.jmedchem.7b00782] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Sk. Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata 700032, West Bengal, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata 700032, West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata 700032, West Bengal, India
| |
Collapse
|
12
|
Bogdanov AV, Zaripova IF, Voloshina AD, Strobykina AS, Kulik NV, Bukharov SV, Mironov VF. Isatin Derivatives Containing Sterically Hindered Phenolic Fragment and Water-Soluble Acyl Hydrazones on Their Basis: Synthesis and Antimicrobial Activity. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363218010097] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Melis C, Meleddu R, Angeli A, Distinto S, Bianco G, Capasso C, Cottiglia F, Angius R, Supuran CT, Maccioni E. Isatin: a privileged scaffold for the design of carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2016; 32:68-73. [PMID: 27775452 PMCID: PMC6010117 DOI: 10.1080/14756366.2016.1235042] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The isatin scaffold is the constitutive fragment of several natural and synthetic bioactive molecules. Albeit several benzene sulphonamide-based carbonic anhydrase inhibitors (CAIs) have been reported, only recently isatin benzene sulphonamides have been studied and proposed as CAIs. In this study we have designed, synthesised, and evaluated the biological activity of a series of differently substituted isatin-based benzene sulphonamides which have been designed for the inhibition of carbonic anhydrase isoforms. The activity of all the synthesised compounds was evaluated towards human carbonic anhydrase I, II, IX, and XII isozymes. Our results indicate that the nature and position of substituents on the isatin ring can modulate both activity and isozyme selectivity.
Collapse
Affiliation(s)
- Claudia Melis
- a Department of Life and Environmental Sciences , University of Cagliari , Cagliari , Italy
| | - Rita Meleddu
- a Department of Life and Environmental Sciences , University of Cagliari , Cagliari , Italy
| | - Andrea Angeli
- b Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche , Università degli Studi di Firenze , Sesto Fiorentino , Florence , Italy
| | - Simona Distinto
- a Department of Life and Environmental Sciences , University of Cagliari , Cagliari , Italy
| | - Giulia Bianco
- a Department of Life and Environmental Sciences , University of Cagliari , Cagliari , Italy
| | | | - Filippo Cottiglia
- a Department of Life and Environmental Sciences , University of Cagliari , Cagliari , Italy
| | - Rossella Angius
- d Laboratorio NMR e Tecnologie Bioanalitiche, Sardegna Ricerche , Pula , CA , Italy
| | - Claudiu T Supuran
- b Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche , Università degli Studi di Firenze , Sesto Fiorentino , Florence , Italy
| | - Elias Maccioni
- a Department of Life and Environmental Sciences , University of Cagliari , Cagliari , Italy
| |
Collapse
|