1
|
Sanjai C, Hakkimane SS, Guru BR, Gaonkar SL. A comprehensive review on anticancer evaluation techniques. Bioorg Chem 2024; 142:106973. [PMID: 37984104 DOI: 10.1016/j.bioorg.2023.106973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
The development of effective anticancer strategies and the improvement of our understanding of cancer need analytical tools. Utilizing a variety of analytical approaches while investigating anti-cancer medicines gives us a thorough understanding of the traits and mechanisms concerned to cancer cells, which enables us to develop potent treatments to combat them. The importance of anticancer research may be attributed to various analytical techniques that contributes to the identification of therapeutic targets and the assessment of medication efficacy, which are crucial things in expanding our understanding of cancer biology. The study looks at methods that are often used in cancer research, including cell viability assays, clonogenic assay, flow cytometry, 2D electrophoresis, microarray, immunofluorescence, western blot caspase activation assay, bioinformatics, etc. The fundamentals, applications, and how each technique analytical advances our understanding of cancer are briefly reviewed.
Collapse
Affiliation(s)
- Chetana Sanjai
- Department of Biotechnology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sushruta S Hakkimane
- Department of Biotechnology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Bharath Raja Guru
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Santosh L Gaonkar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
2
|
Abstract
α-Enolase (ENO1), also known as 2-phospho-D-glycerate hydrolase, is a glycolytic enzyme that catalyzes the conversion of 2-phosphoglyceric acid to phosphoenolpyruvic acid during glycolysis. It is a multifunctional oncoprotein that is present both in cell surface and cytoplasm, contributing to hit seven out of ten “hallmarks of cancer.” ENO1's glycolytic function deregulates cellular energetic, sustains tumor proliferation, and inhibits cancer cell apoptosis. Moreover, ENO1 evades growth suppressors and helps tumors to avoid immune destruction. Besides, ENO1 “moonlights” on the cell surface and acts as a plasminogen receptor, promoting cancer invasion and metastasis by inducing angiogenesis. Overexpression of ENO1 on a myriad of cancer types together with its localization on the tumor surface makes it a great prognostic and diagnostic cancer biomarker as well as an accessible oncotherapeutic target. This review summarizes the up-to-date knowledge about the relationship between ENO1 and cancer, examines ENO1's potential as a cancer biomarker, and discusses ENO1's role in novel onco-immunotherapeutic strategies.
Collapse
|
3
|
Zeng Y, Wang S, Feng M, Shao Z, Yuan J, Shen Z, Jie W. [Quantitative proteomics and differential signal enrichment in nasopharyngeal carcinoma cells with or without SETD2 gene knockout]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1191-1199. [PMID: 31801714 DOI: 10.12122/j.issn.1673-4254.2019.10.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To analyze the effects of alterations in the expressions of methyltransferase SETD2 on protein expression profiles in human nasopharyngeal carcinoma (NPC) cells and enrich the differential signaling pathways. METHODS The total protein was extracted from SETD2-knockout cell line CNE1SETD2-KO and the wild-type cell line CNE1WT, and the differentially expressed proteins were screened by tandem mass tag (TMT) labeled protein quantification technique and tandem mass spectrometry. GO analysis was used to annotate and enrich the differentially expressed proteins, and the KEGG database was used to enrich and analyze the pathways of the differential proteins. RESULTS With a fold change (FC)≥1.2 and P < 0.05 as the screening standard, 2049 differentially expressed proteins were identified in CNE1SETD2-KO cells, among which 904 were up-regulated and 1145 were down-regulated. GO functional annotation results indicated that SETD2 knockout caused characteristic changes in multiple biological processes (cell processes and regulation, cell movement, metabolic processes, and biosynthesis of cellular components), molecular functions (catalytic activity and molecular binding, transcription factor activity), and cellular components (cell membrane, organelle, macromolecular complex). KEGG analysis showed that the differentially expressed proteins were involved in an array of signaling pathways closely related to tumors, including MAPK, PI3K-Akt, Ras, Rap1, mTOR, Hippo, HIF-1, Wnt, AMPK, FoxO, ErbB, P53 and JAK-STAT. CONCLUSIONS SETD2 knockout significantly changes the protein expression characteristics of NPC cells and affects a number of signal pathways closely related to tumors. The results provide evidence for investigation of the pathogenesis and therapeutic target screening of NPC.
Collapse
Affiliation(s)
- Yumei Zeng
- Department of Pathology, Zhongshan People's Hospital, Zhongshan 528400, China
| | - Sisi Wang
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang 524023, China
| | - Muyin Feng
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang 524023, China
| | - Zhongming Shao
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang 524023, China
| | - Jianling Yuan
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang 524023, China
| | - Zhihua Shen
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang 524023, China
| | - Wei Jie
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
4
|
Abstract
Introduction: Nasopharyngeal carcinoma (NPC) is a distinct head and neck squamous cell carcinoma in its etiological association of Epstein-Barr virus (EBV) infection, hidden anatomical location, remarkable racial and geographical distribution, and high incidence of locoregional recurrence or metastasis. Thanks to the advancements in proteomics in recent decades, more understanding of the disease etiology, carcinogenesis, and progression has been gained, potentially deciphering the molecular characteristics of the malignancy. Areas covered: In this review, we provide an overview of the proteomic aberrations that are likely involved or drive NPC development and progression, focusing on the contributions of major EBV-encoded factors, intercommunication with environment, protein features of high metastasis and therapy resistance, and protein-protein interactions that allow NPC cells to evade immune recognition and elimination. Finally, multistep carcinogenesis and subtypes of NPC from a proteomic perspective are inquired. Expert commentary: Proteomic studies have covered various aspects involved in NPC pathogenesis, yet much remains to be uncovered. Coherent study designs, optimal conditions for obtaining high-quality data, and compelling interpretation are critical in ensuring the emergence of good science out of NPC proteomics. NPC proteogenomics and proteoform analysis are two promising fields to promote the application of the proteomic findings from bench to bedside.
Collapse
Affiliation(s)
- Zhefeng Xiao
- a NHC Key Laboratory of Cancer Proteomics , Xiangya Hospital, Central South University , Changsha , P. R. China
| | - Zhuchu Chen
- a NHC Key Laboratory of Cancer Proteomics , Xiangya Hospital, Central South University , Changsha , P. R. China
| |
Collapse
|
5
|
Tian L, Zhao Z, Xie L, Zhu J. MiR-361-5p suppresses chemoresistance of gastric cancer cells by targeting FOXM1 via the PI3K/Akt/mTOR pathway. Oncotarget 2017; 9:4886-4896. [PMID: 29435149 PMCID: PMC5797020 DOI: 10.18632/oncotarget.23513] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/05/2017] [Indexed: 12/25/2022] Open
Abstract
Gastric cancer is a prevalent cancer and chemotherapy is a main treatment for patients. Docetaxel is commonly used as a chemotherapeutic drug for gastric cancer patients. With the increasing emergence of docetaxel resistance, exploring the mechanism of chemoresistance may improve prognosis of patients. In this study, we found that overexpressed miR-361-5p suppressed chemoresistance to docetaxel of gastric cancer cells (SGC-7901, MKN-28) by decreasing IC50 values of docetaxel while increasing cell apoptosis rate, especially in docetaxel resistant SGC-7901 cells. Further researches revealed that overexpressed miR-361-5p inhibited chemoresistance through inhibiting autophagy with a characteristic of declined number of LC3+ puncta, decreased expression of Beclin-1 and the ratio of LC3 II/I and increased expression of p62. Bioinformatics study and Luciferase reporter assay indicated that FOXM1 was a target of miR-361-5p and FOXM1 was negatively regulated by miR-361-5p in gastric cancer. Simultaneously, overexpression of FOXM1 counteracted the inhibitory effects of miR-361-5p on chemoresistance of gastric cancer cells through activating autophagy, further certifying the targeting relationship between the two. Moreover, overexpressed miR-361-5p activated the PI3K/Akt/mTOR pathway. The adding of PI3K inhibitor LY294002 played an opposite role to miR-361-5p mimic by inducing autophagy and chemoresistance to docetaxel of gastric cancer cells compared with docetaxel + miR-361-5p mimic group, indicating that miR-361-5p suppressed autophagy-induced chemoresistance via the PI3K/Akt/mTOR pathway in gastric cancer cells. In conclusion, we found that miR-361-5p suppressed autophagy-induced chemoresistance of gastric cancer cells through targeting FOXM1 via the PI3K/Akt/mTOR pathway, providing a foundation for the mechanism research and treatment of gastric cancer.
Collapse
Affiliation(s)
- Lei Tian
- Department Gastroenterol, Jinzhou Medical University, Affilliated Hospital 1, Jinzhou 121000, Liaoning Province, Peoples Republic of China
| | - Zhifeng Zhao
- Department Gastroenterol, Zhongguo Medical University, Affilliated Hospital 4, Shengyang 110000, Liaoning Province, Peoples Republic of China
| | - Ling Xie
- Department Anatomy, Jinzhou Medical University, Jinzhou 121000, Liaoning Province, Peoples Republic of China
| | - JinPeng Zhu
- Department Gastroenterol, Jinzhou Medical University, Affilliated Hospital 1, Jinzhou 121000, Liaoning Province, Peoples Republic of China
| |
Collapse
|
6
|
Wang Y, Chen K, Cai Y, Cai Y, Yuan X, Wang L, Wu Z, Wu Y. Annexin A2 could enhance multidrug resistance by regulating NF-κB signaling pathway in pediatric neuroblastoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:111. [PMID: 28814318 PMCID: PMC5559827 DOI: 10.1186/s13046-017-0581-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/10/2017] [Indexed: 12/14/2022]
Abstract
Background Chemotherapy is one of major therapeutic regimens for neuroblastoma (NB) in children. However, recurrence and metastasis associated with poor prognosis caused by acquired multidrug resistance remains a challenge. There is a great need to achieve new insight into the molecular mechanism of drug resistance in NB. The aim of this study is to identify novel drug sensitivity-related biomarkers as well as new therapeutic targets to overcome chemoresistance. Methods We proteome-wide quantitatively compared protein expression of two NB cell lines with different drug sensitivities, isolated from the same patient prior to and following chemotherapy. Annexin A2 (ANXA2) emerged as a key factor contributing to drug resistance in NB. Then, we assessed the correlation of ANXA2 expression and clinical characteristics using a tissue microarray. Further, the roles of ANXA2 in chemoresistance for NB and the underlying mechanisms were studied by using short hairpin RNA (shRNA) in vitro and vivo. Results First in total, over 6000 proteins were identified, and there were about 460 significantly regulated proteins which were up- or down-regulated by greater than two folds. We screened out ANXA2 which was upregulated by more than 12-fold in the chemoresistant NB cell line, and it might be involved in the drug resistance of NB. Then, using a tissue chip containing 42 clinical NB samples, we found that strong expression of ANXA2 was closely associated with advanced stage, greater number of chemotherapy cycles, tumor metastasis and poor prognosis. Following knockdown of ANXA2 in NB cell line SK-N-BE(2) using shRNA, we demonstrate enhanced drug sensitivity for doxorubicin (2.77-fold) and etoposide (7.87-fold) compared with control. Pro-apoptotic genes such as AIF and cleaved-PARP were upregulated. Inhibiting ANXA2 expression attenuated transcriptional activity of NF-κB via down-regulated nuclear translocation of subunit p50. Finally, simulated chemotherapy in a xenograft NB nude mouse model suggests that ANXA2 knockdown could improve clinical results in vivo. Conclusion Our profiling data provided a rich source for further study of the molecular mechanisms of acquired drug resistance in NB. Further study may determine the role of ANXA2 as a prognostic biomarker and a potential therapeutic target for patients with multidrug-resistant NB. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0581-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi Wang
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, No. 1665, Kongjiang Road, Yangpu District, Shanghai, China
| | - Kai Chen
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, China
| | - Yihong Cai
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, China
| | - Yuanxia Cai
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, China
| | - Xiaojun Yuan
- Pediatric Hematology & Oncology Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, China
| | - Lifeng Wang
- Pathology Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, China
| | - Zhixiang Wu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, China. .,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, No. 1665, Kongjiang Road, Yangpu District, Shanghai, China.
| | - Yeming Wu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, China. .,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, No. 1665, Kongjiang Road, Yangpu District, Shanghai, China.
| |
Collapse
|