1
|
Predicting Dihydropyrimidine Dehydrogenase Deficiency and Related 5-Fluorouracil Toxicity: Opportunities and Challenges of DPYD Exon Sequencing and the Role of Phenotyping Assays. Int J Mol Sci 2022; 23:ijms232213923. [PMID: 36430399 PMCID: PMC9694733 DOI: 10.3390/ijms232213923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Deficiency of dihydropyrimidine dehydrogenase (DPD), encoded by the DPYD gene, is associated with severe toxicity induced by the anti-cancer drug 5-Fluorouracil (5-FU). DPYD genotyping of four recommended polymorphisms is widely used to predict toxicity, yet their prediction power is limited. Increasing availability of next generation sequencing (NGS) will allow us to screen rare variants, predicting a larger fraction of DPD deficiencies. Genotype−phenotype correlations were investigated by performing DPYD exon sequencing in 94 patients assessed for DPD deficiency by the 5-FU degradation rate (5-FUDR) assay. Association of common variants with 5-FUDR was analyzed with the SNPStats software. Functional interpretation of rare variants was performed by in-silico analysis (using the HSF system and PredictSNP) and literature review. A total of 23 rare variants and 8 common variants were detected. Among common variants, a significant association was found between homozygosity for the rs72728438 (c.1974+75A>G) and decreased 5-FUDR. Haplotype analysis did not detect significant associations with 5-FUDR. Overall, in our sample cohort, NGS exon sequencing allowed us to explain 42.5% of the total DPD deficiencies. NGS sharply improves prediction of DPD deficiencies, yet a broader collection of genotype−phenotype association data is needed to enable the clinical use of sequencing data.
Collapse
|
2
|
Knikman JE, Gelderblom H, Beijnen JH, Cats A, Guchelaar H, Henricks LM. Individualized Dosing of Fluoropyrimidine-Based Chemotherapy to Prevent Severe Fluoropyrimidine-Related Toxicity: What Are the Options? Clin Pharmacol Ther 2021; 109:591-604. [PMID: 33020924 PMCID: PMC7983939 DOI: 10.1002/cpt.2069] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/18/2020] [Indexed: 12/19/2022]
Abstract
Fluoropyrimidines are widely used in the treatment of several types of solid tumors. Although most often well tolerated, severe toxicity is encountered in ~ 20-30% of the patients. Individualized dosing for these patients can reduce the incidence of severe fluoropyrimidine-related toxicity. However, no consensus has been achieved on which dosing strategy is preferred. The most established strategy for individualized dosing of fluoropyrimidines is upfront genotyping of the DPYD gene. Prospective research has shown that DPYD-guided dose-individualization significantly reduces the incidence of severe toxicity and can be easily applied in routine daily practice. Furthermore, the measurement of the dihydropyrimidine dehydrogenase (DPD) enzyme activity has shown to accurately detect patients with a DPD deficiency. Yet, because this assay is time-consuming and expensive, it is not widely implemented in routine clinical care. Other methods include the measurement of pretreatment endogenous serum uracil concentrations, the uracil/dihydrouracil-ratio, and the 5-fluorouracil (5-FU) degradation rate. These methods have shown mixed results. Next to these methods to detect DPD deficiency, pharmacokinetically guided follow-up of 5-FU could potentially be used as an addition to dosing strategies to further improve the safety of fluoropyrimidines. Furthermore, baseline characteristics, such as sex, age, body composition, and renal function have shown to have a relationship with the development of severe toxicity. Therefore, these baseline characteristics should be considered as a dose-individualization strategy. We present an overview of the current dose-individualization strategies and provide perspectives for a future multiparametric approach.
Collapse
Affiliation(s)
- Jonathan E. Knikman
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Hans Gelderblom
- Department of Clinical OncologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jos H. Beijnen
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Annemieke Cats
- Department of Gastroenterology and HepatologyDivision of Medical OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Henk‐Jan Guchelaar
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Linda M. Henricks
- Department of Clinical Chemistry and Laboratory MedicineLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
3
|
Roberto M, Rossi A, Panebianco M, Pomes LM, Arrivi G, Ierinò D, Simmaco M, Marchetti P, Mazzuca F. Drug-Drug Interactions and Pharmacogenomic Evaluation in Colorectal Cancer Patients: The New Drug-PIN ® System Comprehensive Approach. Pharmaceuticals (Basel) 2021; 14:ph14010067. [PMID: 33467633 PMCID: PMC7830292 DOI: 10.3390/ph14010067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
Drug–drug interactions (DDIs) can affect both treatment efficacy and toxicity. We used Drug-PIN® (Personalized Interactions Network) software in colorectal cancer (CRC) patients to evaluate drug–drug–gene interactions (DDGIs), defined as the combination of DDIs and individual genetic polymorphisms. Inclusion criteria were: (i) stage II-IV CRC; (ii) ECOG PS (Performance status sec. Eastern coperative oncology group) ≤2; (iii) ≥5 concomitant drugs; and (iv) adequate renal, hepatic, and bone marrow function. The Drug-PIN® system analyzes interactions between active and/or pro-drug forms by integrating biochemical, demographic, and genomic data from 110 SNPs. We selected DDI, DrugPin1, and DrugPin2 scores, resulting from concomitant medication interactions, concomitant medications, and SNP profiles, and DrugPin1 added to chemotherapy drugs, respectively. Thirty-four patients, taking a median of seven concomitant medications, were included. The median DrugPin1 and DrugPin2 scores were 42.6 and 77.7, respectively. In 13 patients, the DrugPin2 score was two-fold higher than the DrugPin1 score, with 7 (54%) of these patients experiencing severe toxicity that required hospitalization. On chi-squared testing for any toxicity, a doubled DrugPin2 score (p = 0.001) was significantly related to G3–G4 toxicity. Drug-PIN® software may prevent severe adverse events, decrease hospitalizations, and improve survival in cancer patients.
Collapse
Affiliation(s)
- Michela Roberto
- Oncology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University “La Sapienza”, 00187 Rome, Italy; (M.R.); (A.R.); (G.A.); (D.I.); (P.M.); (F.M.)
- Department of Medical-Surgical Sciences and Translation Medicine, Sapienza University, Sant’Andrea University Hospital, 00187 Rome, Italy
| | - Alessandro Rossi
- Oncology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University “La Sapienza”, 00187 Rome, Italy; (M.R.); (A.R.); (G.A.); (D.I.); (P.M.); (F.M.)
| | - Martina Panebianco
- Oncology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University “La Sapienza”, 00187 Rome, Italy; (M.R.); (A.R.); (G.A.); (D.I.); (P.M.); (F.M.)
- Correspondence:
| | - Leda Marina Pomes
- Department of Neuroscience, Mental Health, 00187 Rome, Italy; (L.M.P.); (M.S.)
- and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, Sant’Andrea University Hospital, 00187 Rome, Italy
| | - Giulia Arrivi
- Oncology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University “La Sapienza”, 00187 Rome, Italy; (M.R.); (A.R.); (G.A.); (D.I.); (P.M.); (F.M.)
| | - Debora Ierinò
- Oncology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University “La Sapienza”, 00187 Rome, Italy; (M.R.); (A.R.); (G.A.); (D.I.); (P.M.); (F.M.)
- Department of Medical-Surgical Sciences and Translation Medicine, Sapienza University, Sant’Andrea University Hospital, 00187 Rome, Italy
| | - Maurizio Simmaco
- Department of Neuroscience, Mental Health, 00187 Rome, Italy; (L.M.P.); (M.S.)
- and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, Sant’Andrea University Hospital, 00187 Rome, Italy
- Department of Advanced Molecular Diagnostics, Sant’Andrea Hospital, University “La Sapienza”, 00187 Rome, Italy
| | - Paolo Marchetti
- Oncology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University “La Sapienza”, 00187 Rome, Italy; (M.R.); (A.R.); (G.A.); (D.I.); (P.M.); (F.M.)
| | - Federica Mazzuca
- Oncology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University “La Sapienza”, 00187 Rome, Italy; (M.R.); (A.R.); (G.A.); (D.I.); (P.M.); (F.M.)
| |
Collapse
|
4
|
Bruera G, D'Andrilli A, Simmaco M, Guadagni S, Rendina EA, Ricevuto E. Relevance of Pharmacogenomics and Multidisciplinary Management in a Young-Elderly Patient With KRAS Mutant Colorectal Cancer Treated With First-Line Aflibercept-Containing Chemotherapy. Front Oncol 2020; 10:1155. [PMID: 32850329 PMCID: PMC7417602 DOI: 10.3389/fonc.2020.01155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/08/2020] [Indexed: 01/24/2023] Open
Abstract
Introduction: Intensive oncological treatment integrated with resection of metastases raised the clinical outcome of metastatic colorectal cancer (MCRC). In clinical practice, complex evaluation of clinical (age, performance status, comorbidities), and biological (tumoral genotype, pharmacogenomic) parameters addresses tailored, personalized multidisciplinary treatment strategies. Patients with MCRC unsuitable for first-line intensive medical treatments are prevalent and showed worse clinical outcome. After progression to oxaliplatin-based chemotherapy, aflibercept/FOLFIRI significantly improved clinical outcome, even if no survival benefit was reported in adjuvant fast relapsers by aflibercept addition. The case reported a young-elderly (yE) patient with KRAS mutant colorectal cancer rapidly progressing to adjuvant chemotherapy, unfit owing to comorbidities, with multiple pharmacogenomic alterations, who gained long-term survival in clinical practice by multidisciplinary treatment strategy consisting of first-line and re-introduction of aflibercept-containing chemotherapy and two-stage lung metastasectomies. Case presentation: A 71-years-old yE patient, unfit for intensive oncological treatments owing to Cumulative Illness Rating Scale (CIRS) stage secondary, affected by KRAS c.35 G>T mutant colorectal cancer, rapidly progressing with lung metastases after adjuvant XelOx chemotherapy, reached long-term survival 66 months with no evidence of disease after first-line and re-introduction of tailored, modulated aflibercept (4 mg/kg) d1,15-irinotecan (120 mg/m2) d1,15-5-fluorouracil (750 mg/m2/day) dd1–4, 15–18; and secondary radical bilateral two-stage lung metastasectomies. Safety profile was characterized by limiting toxicity syndrome at multiple sites (LTS-ms), requiring 5-fluorouracil discontinuation and aflibercept reduction (2 mg/kg), because of G2 hand-foot syndrome (HFS) for >2 weeks, and G3 hypertension. Pharmacogenomic analyses revealed multiple alterations of fluoropyrimidine and irinotecan metabolism: severe deficiency of fluorouracil degradation rate (FUDR), single nucleotide polymorphisms of UGT1A1*28 variable number of tandem repeats (VNTR) 7R/7R homozygote, ABCB1 c.C3435T, c.C1236T, MTHFR c.C667T homozygote, DPYD c.A166G, TSER 28bp VNTR 2R/3R heterozygote. Conclusions: In clinical practice, a complex management evaluating clinical parameters and RAS/BRAF genotype characterizing an individual patient with MCRC, particularly elderly and/or unfit owing to comorbidities, is required to properly address tailored, multidisciplinary medical and surgical treatment strategies, integrated with careful monitoring of superimposing toxicity syndromes, also related to pharmacogenomic alterations, to gain optimal activity, and long-term efficacy.
Collapse
Affiliation(s)
- Gemma Bruera
- Oncology Territorial Care, S. Salvatore Hospital, Oncology Network ASL1 Abruzzo, University of L'Aquila, L'Aquila, Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonio D'Andrilli
- Thoracic Surgery, S. Andrea Hospital, Faculty of Medicine and Psychology, University La Sapienza, Rome, Italy
| | | | - Stefano Guadagni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.,Universitary General Surgery, S. Salvatore Hospital, Oncology Network ASL1 Abruzzo, University of L'Aquila, L'Aquila, Italy
| | - Erino Angelo Rendina
- Thoracic Surgery, S. Andrea Hospital, Faculty of Medicine and Psychology, University La Sapienza, Rome, Italy
| | - Enrico Ricevuto
- Oncology Territorial Care, S. Salvatore Hospital, Oncology Network ASL1 Abruzzo, University of L'Aquila, L'Aquila, Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
5
|
New DPYD variants causing DPD deficiency in patients treated with fluoropyrimidine. Cancer Chemother Pharmacol 2020; 86:45-54. [PMID: 32529295 DOI: 10.1007/s00280-020-04093-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/03/2020] [Indexed: 01/13/2023]
Abstract
PURPOSE Several clinical guidelines recommend genetic screening of DPYD, including coverage of the variants c.1905 + 1G>A(DPYD*2A), c.1679T>G(DPYD*13), c.2846A>T, and c.1129-5923C>G, before initiating treatment with fluoropyrimidines. However, this screening is often inadequate at predicting the occurrence of severe fluoropyrimidine-induced toxicity in patients. METHODS Using a complementary approach combining whole DPYD exome sequencing and in silico and structural analysis, as well as phenotyping of DPD by measuring uracilemia (U), dihydrouracilemia (UH2), and the UH2/U ratio in plasma, we were able to characterize and interpret DPYD variants in 28 patients with severe fluoropyrimidine-induced toxicity after negative screening. RESULTS Twenty-five out of 28 patients (90%) had at least 1 variant in the DPYD coding sequence, and 42% of the variants (6/14) were classified as potentially deleterious by at least 2 of the following algorithms: SIFT, Poly-Phen-2, and DPYD varifier. We identified two very rare deleterious mutations, namely, c.2087G>A (p.R696H) and c.2324T>G (p.L775W). We were able to demonstrate partial DPD deficiency, as measured by the UH2/U ratio in a patient carrying the variant p.L775W for the first time. CONCLUSION Whole exon sequencing of DPYD in patients with suspicion of partial DPD deficiency can help to identify rare or new variants that lead to enzyme inactivation. Combining different techniques can yield abundant information without increasing workload and cost burden, thus making it a useful approach for implementation in patient care.
Collapse
|
6
|
Botticelli A, Scagnoli S, Roberto M, Lionetto L, Cerbelli B, Simmaco M, Marchetti P. 5-Fluorouracil degradation rate as a predictive biomarker of toxicity in breast cancer patients treated with capecitabine. J Oncol Pharm Pract 2020; 26:1836-1842. [DOI: 10.1177/1078155220904999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Capecitabine is an oral prodrug of 5-fluorouracil with a relevant role in the treatment of breast cancer. Severe and unexpected toxicities related to capecitabine are not rare, and the identification of biomarkers is challenging. We evaluate the relationship between dihydropyrimidine dehydrogenase, thymidylate synthase enhancer region and methylenetetrahydrofolate reductase polymorphisms, 5-fluorouracil degradation rate and the onset of G3–4 toxicities in breast cancer patients. Genetic polymorphisms and the 5-fluorouracil degradation rate of breast cancer patients treated with capecitabine were retrospectively studied. Genetic markers and the 5-fluorouracil degradation rate were correlated with the reported toxicities. Thirty-seven patients with a median age of 58 years old treated with capecitabine for stages II–IV breast cancer were included in this study. Overall, 34 (91.9%) patients suffered from at least an episode of any grade toxicity while nine patients had G3–4 toxicity. Homozygous methylenetetrahydrofolate reductase 677TT was found to be significantly related to haematological toxicity (OR = 6.5 [95% IC 1.1–37.5], P = 0.04). Three patients had a degradation rate less than 0.86 ng/mL/106 cells/min and three patients greater than 2.1 ng/mL/106 cells/min. At a univariate logistic regression analysis, an altered value of 5-fluorouracil degradation rate (values < 0.86 or >2.10 ng/mL/106 cells/min) increased the risk of G3–4 adverse events (OR = 10.40 [95% IC: 1.48–7.99], P = 0.02). A multivariate logistic regression analysis, adjusted for age, comorbidity and CAPE-regimen, confirmed the role of 5-fluorouracil degradation rate as a predictor of G3–4 toxicity occurrence (OR = 10.9 [95% IC 1.2–96.2], P = 0.03). The pre-treatment evaluation of 5-fluorouracil degradation rate allows to identify breast cancer patients at high risk for severe 5-FU toxicity.
Collapse
Affiliation(s)
| | | | | | | | | | - Maurizio Simmaco
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Roma, Italy
| | - Paolo Marchetti
- Department of Medical Oncology, St Andrea University Hospital, Rome, Italy
| |
Collapse
|
7
|
|
8
|
Zawiah M, Yousef AM, Kadi T, Yousef M, Majdalawi K, Al-Yacoub S, Al-Hiary R, Tantawi D, Mukred R, Ajaj AR. Early disease relapse in a patient with colorectal cancer who harbors genetic variants of DPYD, TYMS, MTHFR and DHFR after treatment with 5-fluorouracil-based chemotherapy. Drug Metab Pers Ther 2018; 33:201-205. [PMID: 30207288 DOI: 10.1515/dmpt-2018-0012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022]
Abstract
Background Early relapse in colorectal cancer (CRC) after curative resection is mainly attributed to the key determinants such as tumor histology, stage, lymphovascular invasion, and the response to chemotherapy. Case presentation Interindividual variability in the efficacy of adjuvant chemotherapy between patients receiving the same treatment may be ascribed to the patients' genetic profile. In this report, we highlight a clinical case of a patient with stage II CRC who relapsed within a short period after starting adjuvant chemotherapy and was later found to have multiple genetic polymorphisms in the DPYD, TYMS, MTHFR, and DHFR genes. Conclusions Based on the clinical data of the patient and the key role of these genes in 5-fluorouracil pathway, we hypothesize that these variants may contribute to the drug response and early relapse in CRC.
Collapse
Affiliation(s)
- Mohammed Zawiah
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Al-Motassem Yousef
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Taha Kadi
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Mohammed Yousef
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Khalil Majdalawi
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Shorouq Al-Yacoub
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Rasha Al-Hiary
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Dua'a Tantawi
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Ramzi Mukred
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | | |
Collapse
|
9
|
|