1
|
Wu Y, Jiang Y, Jiang L, Peng Y, Zhou T, Xia X, Hou F, Yuan Q, Ye L, Wei W, Zhang J, Chen Q, Feng X. Phospho-cofilin predicts efficiency of Fasudil for oral squamous cell carcinoma treatment through Yes-associated protein inhibition. Arch Oral Biol 2025; 172:106185. [PMID: 39893996 DOI: 10.1016/j.archoralbio.2025.106185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
OBJECTIVES This study evaluates Fasudil, a Rho-associated coiled-coil-containing protein kinase (ROCK) inhibitor, for its potential to inhibit oral squamous cell carcinoma (OSCC) growth and explores phospho-cofilin as a potential biomarker for prediction treatment efficiency of Fasudil in OSCC. DESIGN A cohort of 109 OSCC patients provided tissue samples for phospho-cofilin expression analysis and survival analysis. The study examined the effect of Fasudil on OSCC cell lines HSC-3, UM1, and CAL33, assessing tumor growth inhibition through various in vitro and in vivo experiments. ROCK inhibition response and downstream mechanisms were explored by RNA sequencing, q-PCR, and immunofluorescence. RESULTS High phospho-cofilin expression in OSCC tissues correlated with poor patient outcomes and was a reliable biomarker for ROCK activity. Fasudil inhibited growth in OSCC cell lines, particularly those with high phospho-cofilin expression. ROCK inhibition led to downregulation of Yes-associated protein (YAP) activity, resulting in suppressed tumor proliferation and increased apoptosis both in vitro and in vivo. CONCLUSIONS Inhibition of ROCK/phospho-cofilin/YAP by Fasudil could suppress OSCC proliferation, while phospho-cofilin served as a potential biomarker of OSCC.
Collapse
Affiliation(s)
- Ying Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yuchen Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Lanxin Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Tong Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xiaoqiang Xia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Feifei Hou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Qiuyun Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Lu Ye
- School of Basic Medicine, Chengdu University, Chengdu, Sichuan 610106, PR China
| | - Weideng Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jiuge Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China; Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310000, PR China.
| | - Xiaodong Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
2
|
Marciniec K, Nowakowska J, Chrobak E, Bębenek E, Latocha M. Synthesis, Docking, and Machine Learning Studies of Some Novel Quinolinesulfonamides-Triazole Hybrids with Anticancer Activity. Molecules 2024; 29:3158. [PMID: 38999109 PMCID: PMC11243625 DOI: 10.3390/molecules29133158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
In the presented work, a series of 22 hybrids of 8-quinolinesulfonamide and 1,4-disubstituted triazole with antiproliferative activity were designed and synthesised. The title compounds were designed using molecular modelling techniques. For this purpose, machine-learning, molecular docking, and molecular dynamics methods were used. Calculations of the pharmacokinetic parameters (connected with absorption, distribution, metabolism, excretion, and toxicity) of the hybrids were also performed. The new compounds were synthesised via a copper-catalysed azide-alkyne cycloaddition reaction (CuAAC). 8-N-Methyl-N-{[1-(7-chloroquinolin-4-yl)-1H-1,2,3-triazol-4-yl]methyl}quinolinesulfonamide was identified in in silico studies as a potential strong inhibitor of Rho-associated protein kinase and as a compound that has an appropriate pharmacokinetic profile. The results obtained from in vitro experiments confirm the cytotoxicity of derivative 9b in four selected cancer cell lines and the lack of cytotoxicity of this derivative towards normal cells. The results obtained from silico and in vitro experiments indicate that the introduction of another quinolinyl fragment into the inhibitor molecule may have a significant impact on increasing the level of cytotoxicity toward cancer cells and indicate a further direction for future research in order to find new substances suitable for clinical applications in cancer treatment.
Collapse
Affiliation(s)
- Krzysztof Marciniec
- Department of Organic Chemistry, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (J.N.); (E.C.); (E.B.)
| | - Justyna Nowakowska
- Department of Organic Chemistry, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (J.N.); (E.C.); (E.B.)
| | - Elwira Chrobak
- Department of Organic Chemistry, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (J.N.); (E.C.); (E.B.)
| | - Ewa Bębenek
- Department of Organic Chemistry, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (J.N.); (E.C.); (E.B.)
| | - Małgorzata Latocha
- Department of Molecular Biology, Jagiellońska 4, 41-200 Sosnowiec, Poland;
| |
Collapse
|
3
|
Al-Ansari N, Samuel SM, Büsselberg D. Unveiling the Protective Role of Melatonin in Osteosarcoma: Current Knowledge and Limitations. Biomolecules 2024; 14:145. [PMID: 38397382 PMCID: PMC10886489 DOI: 10.3390/biom14020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
Melatonin, an endogenous neurohormone produced by the pineal gland, has received increased interest due to its potential anti-cancer properties. Apart from its well-known role in the sleep-wake cycle, extensive scientific evidence has shown its role in various physiological and pathological processes, such as inflammation. Additionally, melatonin has demonstrated promising potential as an anti-cancer agent as its function includes inhibition of tumorigenesis, induction of apoptosis, and regulation of anti-tumor immune response. Although a precise pathophysiological mechanism is yet to be established, several pathways related to the regulation of cell cycle progression, DNA repair mechanisms, and antioxidant activity have been implicated in the anti-neoplastic potential of melatonin. In the current manuscript, we focus on the potential anti-cancer properties of melatonin and its use in treating and managing pediatric osteosarcoma. This aggressive bone tumor primarily affects children and adolescents and is treated mainly by surgical and radio-oncological interventions, which has improved survival rates among affected individuals. Significant disadvantages to these interventions include disease recurrence, therapy-related toxicity, and severe/debilitating side effects that the patients have to endure, significantly affecting their quality of life. Melatonin has therapeutic effects when used for treating osteosarcoma, attributed to its ability to halt cancer cell proliferation and trigger apoptotic cell death, thereby enhancing chemotherapeutic efficacy. Furthermore, the antioxidative function of melatonin alleviates harmful side effects of chemotherapy-induced oxidative damage, aiding in decreasing therapeutic toxicities. The review concisely explains the many mechanisms by which melatonin targets osteosarcoma, as evidenced by significant results from several in vitro and animal models. Nevertheless, if further explored, human trials remain a challenge that could shed light and support its utility as an adjunctive therapeutic modality for treating osteosarcoma.
Collapse
Affiliation(s)
- Nojoud Al-Ansari
- Department of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar;
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| |
Collapse
|
4
|
Xu X, Yao L. Recent advances in the development of Rho kinase inhibitors (2015-2021). Med Res Rev 2024; 44:406-421. [PMID: 37265266 DOI: 10.1002/med.21980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/27/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Rho-associated coiled-coil kinases (ROCKs) are key downstream effectors of small GTPases. ROCK plays a central role in diverse cellular events with accumulating evidence supporting the concept that ROCK is important in tumor development and progression. Numerous ROCK inhibitors have been investigated for their therapeutic potential in the treatment of cancers. In this article, we review recent research progress on ROCK inhibitors, especially those with potential for the treatment of cancers, reported in the literature from 2015 to 2021. Most ROCK inhibitors show potent in vitro and in vivo antitumor activities and have potential in the treatment of cancers.
Collapse
Affiliation(s)
- Xiangrong Xu
- Yantai University Hospital, Yantai University, Yantai, China
| | - Lei Yao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
5
|
You Y, Zhu K, Wang J, Liang Q, Li W, Wang L, Guo B, Zhou J, Feng X, Shi J. ROCK inhibitor: Focus on recent updates. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
6
|
Hyponatremia and Cancer: From Bedside to Benchside. Cancers (Basel) 2023; 15:cancers15041197. [PMID: 36831539 PMCID: PMC9953859 DOI: 10.3390/cancers15041197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Hyponatremia is the most common electrolyte disorder encountered in hospitalized patients. This applies also to cancer patients. Multiple causes can lead to hyponatremia, but most frequently this electrolyte disorder is due to the syndrome of inappropriate antidiuresis. In cancer patients, this syndrome is mostly secondary to ectopic secretion of arginine vasopressin by tumoral cells. In addition, several chemotherapeutic drugs induce the release of arginine vasopressin by the hypothalamus. There is evidence that hyponatremia is associated to a more negative outcome in several pathologies, including cancer. Many studies have demonstrated that in different cancer types, both progression-free survival and overall survival are negatively affected by hyponatremia, whereas the correction of serum [Na+] has a positive effect on patient outcome. In vitro studies have shown that cells grown in low [Na+] have a greater proliferation rate and motility, due to a dysregulation in intracellular signalling pathways. Noteworthy, vasopressin receptors antagonists, which were approved more than a decade ago for the treatment of euvolemic and hypervolemic hyponatremia, have shown unexpected antiproliferative effects. Because of this property, vaptans were also approved for the treatment of polycystic kidney disease. In vitro evidence indicated that this family of drugs effectively counteracts proliferation and invasivity of cancer cells, thus possibly opening a new scenario among the pharmacological strategies to treat cancer.
Collapse
|
7
|
Shi F, Wu J, Jia Q, Li K, Li W, Shi Y, Wang Y, Wu S. Relationship between the expression of ARHGAP25 and RhoA in non-small cell lung cancer and vasculogenic mimicry. BMC Pulm Med 2022; 22:377. [PMID: 36207695 PMCID: PMC9547444 DOI: 10.1186/s12890-022-02179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Vasculogenic mimicry (VM) is a recently identified pattern of blood supply to tumor tissue. It has long been considered a functional element in the metastasis and prognosis of malignant tumors. Both Rho GTPase-activating protein 25 (ARHGAP25) and Ras homolog family member A (RhoA) are effective predictors of tumor metastasis. In this study, we examined the expression levels of ARHGAP25 and RhoA and the structure of VM in non-small cell lung cancer (NSCLC). At the same time, we used cytology-related experiments to explore the effect of ARHGAP25 on the migration ability of tumor cells. Furthermore, we analyzed the interaction between the three factors and their association with clinicopathological characteristics and the five-year survival time in patients using statistical tools. Methods A total of 130 well-preserved NSCLC and associated paracancerous tumor-free tissues were obtained. Cell colony formation, wound healing, and cytoskeleton staining assays were used to analyze the effect of ARHGAP25 on the proliferation and migration ability of NSCLC cells. Immunohistochemical staining was used to determine the positivity rates of ARHGAP25, RhoA, and VM. Statistical software was used to examine the relationships between the three factors and clinical case characteristics, overall survival, and disease-free survival. Results Cell colony formation, wound healing, and cytoskeleton staining assays confirmed that ARHGAP25 expression affects the proliferation and migratory abilities of NSCLC cells. ARHGAP25 positivity rates in NSCLC and paracancerous tumor-free tissues were 48.5% and 63.1%, respectively, whereas RhoA positivity rates were 62.3% and 18.5%, respectively. ARHGAP25 had a negative relationship with RhoA and VM, whereas RhoA and VM had a positive relationship (P < 0.05). ARHGAP25, RhoA, and VM affected the prognosis of patients with NSCLC (P < 0.05) according to Kaplan–Meier of survival time and Cox regression analyses. Furthermore, lowering ARHGAP25 expression increased NSCLC cell proliferation and migration. Conclusions ARHGAP25 and RhoA expression is associated with VM and may be of potential value in predicting tumor metastasis, prognosis, and targeted therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-02179-5.
Collapse
Affiliation(s)
- Fan Shi
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, 233000, Anhui, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Jiatao Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, 233000, Anhui, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Qianhao Jia
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, 233000, Anhui, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Kairui Li
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, 233000, Anhui, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Wenjuan Li
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, 233000, Anhui, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Yuqi Shi
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, 233000, Anhui, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Yufei Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, 233000, Anhui, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Shiwu Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, 233000, Anhui, People's Republic of China. .,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui, China.
| |
Collapse
|
8
|
Marroncini G, Anceschi C, Naldi L, Fibbi B, Baldanzi F, Maggi M, Peri A. The V 2 receptor antagonist tolvaptan counteracts proliferation and invasivity in human cancer cells. J Endocrinol Invest 2022; 45:1693-1708. [PMID: 35604542 PMCID: PMC9360171 DOI: 10.1007/s40618-022-01807-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Hyponatremia, the most frequent electrolyte alteration in clinical practice, has been associated with a worse prognosis in cancer patients. On the other hand, a better outcome has been related to serum sodium normalization. In vitro studies have shown that low extracellular sodium promotes cancer cells proliferation and invasiveness. Tolvaptan, a selective vasopressin receptor type 2 (V2) antagonist, has been effectively used in the last decade for the treatment of hyponatremia secondary to the Syndrome of Inappropriate Antidiuresis. A few in vitro data suggested a direct role of tolvaptan in counteracting cancer progression, so far. The aim of this study was to evaluate the effect and the mechanism of action of tolvaptan in cell lines from different tumours [i.e. colon cancer (HCT-8), hepatocarcinoma (HepG2), neuroblastoma (SK-N-AS)]. METHODS AND RESULTS First, we showed that these cell lines express the V2 receptor. Tolvaptan significantly reduced cell proliferation with an IC50 in the micromolar range. Accordingly, reduced levels of cAMP, of the catalytic α subunit of PKA, and a reduced pAKT/AKT ratio were observed. Tolvaptan effectively inhibited cell cycle progression, whereas it induced apoptotis. Furthermore, it reduced cell invasiveness. In particular, anchorage-independent growth and the activity of collagenases type IV were blunted in the three cell lines. Accordingly, tolvaptan counteracted the RhoA/ROCK1-2 pathway, which has a pivotal role in regulating cell movement. CONCLUSIONS Overall, these findings indicate that tolvaptan effectively inhibits tumour progression in vitro. Further studies should clarify whether the V2 receptor might be considered a possible target in anti-cancer strategies in the future.
Collapse
Affiliation(s)
- G Marroncini
- Pituitary Diseases and Sodium Alterations Unit, AOU Careggi, 50139, Florence, Italy
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, AOU Careggi, Viale Pieraccini, 6, 50139, Florence, Italy
| | - C Anceschi
- Pituitary Diseases and Sodium Alterations Unit, AOU Careggi, 50139, Florence, Italy
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, AOU Careggi, Viale Pieraccini, 6, 50139, Florence, Italy
| | - L Naldi
- Pituitary Diseases and Sodium Alterations Unit, AOU Careggi, 50139, Florence, Italy
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, AOU Careggi, Viale Pieraccini, 6, 50139, Florence, Italy
| | - B Fibbi
- Pituitary Diseases and Sodium Alterations Unit, AOU Careggi, 50139, Florence, Italy
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, AOU Careggi, Viale Pieraccini, 6, 50139, Florence, Italy
| | - F Baldanzi
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, AOU Careggi, Viale Pieraccini, 6, 50139, Florence, Italy
| | - M Maggi
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, AOU Careggi, Viale Pieraccini, 6, 50139, Florence, Italy
| | - A Peri
- Pituitary Diseases and Sodium Alterations Unit, AOU Careggi, 50139, Florence, Italy.
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, AOU Careggi, Viale Pieraccini, 6, 50139, Florence, Italy.
| |
Collapse
|
9
|
Massimini M, Romanucci M, De Maria R, Della Salda L. An Update on Molecular Pathways Regulating Vasculogenic Mimicry in Human Osteosarcoma and Their Role in Canine Oncology. Front Vet Sci 2021; 8:722432. [PMID: 34631854 PMCID: PMC8494780 DOI: 10.3389/fvets.2021.722432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/23/2021] [Indexed: 01/16/2023] Open
Abstract
Canine tumors are valuable comparative models for human counterparts, especially to explore novel biomarkers and to understand pathways and processes involved in metastasis. Vasculogenic mimicry (VM) is a unique property of malignant cancer cells which promote metastasis. Thus, it represents an opportunity to investigate both the molecular mechanisms and the therapeutic targets of a crucial phenotypic malignant switch. Although this biological process has been largely investigated in different human cancer types, including osteosarcoma, it is still largely unknown in veterinary pathology, where it has been mainly explored in canine mammary tumors. The presence of VM in human osteosarcoma is associated with poor clinical outcome, reduced patient survival, and increased risk of metastasis and it shares the main pathways involved in other type of human tumors. This review illustrates the main findings concerning the VM process in human osteosarcoma, search for the related current knowledge in canine pathology and oncology, and potential involvement of multiple pathways in VM formation, in order to provide a basis for future investigations on VM in canine tumors.
Collapse
|
10
|
Song R, Lei S, Yang S, Wu SJ. LncRNA PAXIP1-AS1 fosters the pathogenesis of pulmonary arterial hypertension via ETS1/WIPF1/RhoA axis. J Cell Mol Med 2021; 25:7321-7334. [PMID: 34245091 PMCID: PMC8335679 DOI: 10.1111/jcmm.16761] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life‐threatening disease featured with elevated pulmonary vascular resistance and progressive pulmonary vascular remodelling. It has been demonstrated that lncRNA PAXIP1‐AS1 could influence the transcriptome in PAH. However, the exact molecular mechanism of PAXIP1‐AS1 in PAH pathogenesis remains largely unknown. In this study, in vivo rat PAH model was established by monocrotaline (MCT) induction and hypoxia was used to induce in vitro PAH model using human pulmonary artery smooth muscle cells (hPASMCs). Histological examinations including H&E, Masson's trichrome staining and immunohistochemistry were subjected to evaluate the pathological changes of lung tissues. Expression patterns of PAXIP1‐AS1 and RhoA were assessed using qRT‐PCR and Western blotting, respectively. CCK‐8, BrdU assay and immunofluorescence of Ki67 were performed to measure the cell proliferation. Wound healing and transwell assays were employed to evaluate the capacity of cell migration. Dual‐luciferase reporter assay, co‐immunoprecipitation, RIP and CHIP assays were employed to verify the PAXIP1‐AS1/ETS1/WIPF1/RhoA regulatory network. It was found that the expression of PAXIP1‐AS1 and RhoA was remarkably higher in both lung tissues and serum of MCT‐induced PAH rats, as well as in hypoxia‐induced hPASMCs. PAXIP1‐AS1 knockdown remarkably suppressed hypoxia‐induced cell viability and migration of hPASMCs. PAXIP1‐AS1 positively regulated WIPF1 via recruiting transcriptional factor ETS1, of which knockdown reversed PAXIP1‐AS1‐mediated biological functions. Co‐immunoprecipitation validated the WIPF1/RhoA interaction. In vivo experiments further revealed the role of PAXIP1‐AS1 in PAH pathogenesis. In summary, lncRNA PAXIP1‐AS1 promoted cell viability and migration of hPASMCs via ETS1/WIPF1/RhoA, which might provide a potential therapeutic target for PAH treatment.
Collapse
Affiliation(s)
- Rong Song
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Si Lei
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Song Yang
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shang-Jie Wu
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Treps L, Faure S, Clere N. Vasculogenic mimicry, a complex and devious process favoring tumorigenesis – Interest in making it a therapeutic target. Pharmacol Ther 2021; 223:107805. [DOI: 10.1016/j.pharmthera.2021.107805] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Zhang Z, Nong L, Chen M, Gu X, Zhao W, Liu M, Cheng W. Baicalein suppresses vasculogenic mimicry through inhibiting RhoA/ROCK expression in lung cancer A549 cell line. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1007-1015. [PMID: 32672788 DOI: 10.1093/abbs/gmaa075] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022] Open
Abstract
Vasculogenic mimicry (VM) refers to a new tubular network of the blood supply system with abundant extracellular matrix. VM is similar to capillaries but does not involve endothelial cells. As a traditional herbal medicine commonly used in China, baicalein possesses anti-inflammatory and lipoxygenase activities. However, the effects of baicalein on the process of VM formation in non-small cell lung cancer (NSCLC) and the underlying mechanisms have remained poorly understood. In this study, baicalein was found to inhibit the viability and motility of A549 cells and induced the breakage of the cytoskeletal actin filament network. In addition, baicalein significantly decreased the formation of VM and downregulated the expressions of VM-associated factors, such as VE-cadherin, EphA2, MMP14, MMP2, MMP9, PI3K and LAMC2, similar to the effects of ROCK inhibitors. Indeed, baicalein inhibited RhoA/ROCK expression in vitro and in vivo, suggesting the underlying mechanisms of reduced VM formation. Collectively, baicalein suppressed the formation of VM in NSCLC by targeting the RhoA/ROCK signaling pathway, indicating that baicalein might serve as an emerging drug for NSCLC.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China, and
| | - Li Nong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Menglei Chen
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China, and
| | - Xiaoli Gu
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China, and
| | - Weiwei Zhao
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China, and
| | - Minghui Liu
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China, and
| | - Wenwu Cheng
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China, and
| |
Collapse
|
13
|
Lei S, Peng F, Li ML, Duan WB, Peng CQ, Wu SJ. LncRNA-SMILR modulates RhoA/ROCK signaling by targeting miR-141 to regulate vascular remodeling in pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol 2020; 319:H377-H391. [PMID: 32559140 DOI: 10.1152/ajpheart.00717.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal progressive disease characterized by an increased blood pressure in the pulmonary arteries. RhoA/Rho-kinase (RhoA/ROCK) signaling activation is often associated with PAH. The purpose of this study is to investigate the role and mechanisms of long noncoding RNA (lncRNA) smooth muscle-induced lncRNA (SMILR) to activate the RhoA/ROCK pathway in PAH. SMILR, microRNA-141 (miR-141), and RhoA were identified by qRT-PCR in PAH patients' serum. 3-(4,5-Dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT), wound-healing assay, cell counting kit-8 (CCK-8) assay, and flow cytometry were performed to determine cell viability, migration, proliferation, and cell cycle in human pulmonary arterial smooth muscle cells (hPASMCs) and primary PASMCs from PAH patients. We also performed bioinformatical prediction, luciferase reporter assay, and RNA-binding protein immunoprecipitation (RIP) to assess the interaction among SMILR, miR-141, and RhoA. The RhoA/ROCK pathway and proliferation-related proteins were measured by Western blotting. Finally, we introduced the small hairpin (sh)SMILR to monocrotaline-induced PAH rat model and used the hemodynamic measurement, qRT-PCR, and immunohistochemistry to examine the therapeutic effects of shSMILR. SMILR and RhoA expression were upregulated, while miR-141 expression was downregulated in PAH patients. SMILR directly interacted with miR-141 and negatively regulated its expression. Knockdown of SMILR suppressed PASMC proliferation and migration induced by hypoxia. Furthermore, overexpression of miR-141 could inhibit the RhoA/ROCK pathway by binding to RhoA, thereby repressing cell proliferation-related signals. Knockdown of SMILR significantly inhibited the Rho/ROCK activation and vascular remodeling in monocrotaline-induced rats. Knockdown of SMILR effectively elevated miR-141 expression and in turn inhibited the RhoA/ROCK pathway to regulate vascular remodeling and reduce blood pressure in PAH.NEW & NOTEWORTHY Smooth muscle enriched long noncoding RNA (SMILR), as a long noncoding RNA (lncRNA), was increased in pulmonary arterial hypertension (PAH) patients and in vitro and in vivo models. SMILR activated RhoA/ROCK signaling by targeting miR-141 to disinhibit its downstream target RhoA. SMILR knockdown or miR-141 overexpression inhibited hypoxia-induced cell proliferation and migration via repressing RhoA/ROCK signaling in pulmonary arterial smooth muscle cells (PASMCs), which was confirmed in vivo experiments that knockdown of SMILR inhibited vascular remodeling and alleviated PAH in rats. SMILR may be a promising and novel therapeutic target for the treatment and drug development of PAH.
Collapse
Affiliation(s)
- Si Lei
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University; Research Unit of Respiratory Disease, Central South University; Hunan Centre for Evidence-based Medicine, Changsha, Hunan, China
| | - Fei Peng
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University; Research Unit of Respiratory Disease, Central South University; Hunan Centre for Evidence-based Medicine, Changsha, Hunan, China
| | - Mei-Lei Li
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University; Research Unit of Respiratory Disease, Central South University; Hunan Centre for Evidence-based Medicine, Changsha, Hunan, China
| | - Wen-Bing Duan
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University; Research Unit of Respiratory Disease, Central South University; Hunan Centre for Evidence-based Medicine, Changsha, Hunan, China
| | - Cai-Qin Peng
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University; Research Unit of Respiratory Disease, Central South University; Hunan Centre for Evidence-based Medicine, Changsha, Hunan, China
| | - Shang-Jie Wu
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University; Research Unit of Respiratory Disease, Central South University; Hunan Centre for Evidence-based Medicine, Changsha, Hunan, China
| |
Collapse
|
14
|
Corre I, Verrecchia F, Crenn V, Redini F, Trichet V. The Osteosarcoma Microenvironment: A Complex But Targetable Ecosystem. Cells 2020; 9:cells9040976. [PMID: 32326444 PMCID: PMC7226971 DOI: 10.3390/cells9040976] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 01/08/2023] Open
Abstract
Osteosarcomas are the most frequent primary bone sarcomas, affecting mainly children, adolescents, and young adults, and with a second peak of incidence in elderly individuals. The current therapeutic management, a combined regimen of poly-chemotherapy and surgery, still remains largely insufficient, as patient survival has not improved in recent decades. Osteosarcomas are very heterogeneous tumors, both at the intra- and inter-tumor level, with no identified driver mutation. Consequently, efforts to improve treatments using targeted therapies have faced this lack of specific osteosarcoma targets. Nevertheless, these tumors are inextricably linked to their local microenvironment, composed of bone, stromal, vascular and immune cells and the osteosarcoma microenvironment is now considered to be essential and supportive for growth and dissemination. This review describes the different actors of the osteosarcoma microenvironment and gives an overview of the past, current, and future strategies of therapy targeting this complex ecosystem, with a focus on the role of extracellular vesicles and on the emergence of multi-kinase inhibitors.
Collapse
Affiliation(s)
- Isabelle Corre
- INSERM, Nantes University, UMR1238 Phy-Os “Bone Sarcomas and Remodeling of Calcified Tissues”, F-44035 Nantes, France
- CNRS GDR3697 MicroNit, F-37044 Tours, France
- Correspondence: (I.C.); (V.T.)
| | - Franck Verrecchia
- INSERM, Nantes University, UMR1238 Phy-Os “Bone Sarcomas and Remodeling of Calcified Tissues”, F-44035 Nantes, France
| | - Vincent Crenn
- INSERM, Nantes University, UMR1238 Phy-Os “Bone Sarcomas and Remodeling of Calcified Tissues”, F-44035 Nantes, France
- Department of Orthopedic, Nantes Hospital, CHU Hotel-Dieu, F-44035 Nantes, France
| | - Francoise Redini
- INSERM, Nantes University, UMR1238 Phy-Os “Bone Sarcomas and Remodeling of Calcified Tissues”, F-44035 Nantes, France
| | - Valérie Trichet
- INSERM, Nantes University, UMR1238 Phy-Os “Bone Sarcomas and Remodeling of Calcified Tissues”, F-44035 Nantes, France
- CNRS GDR3697 MicroNit, F-37044 Tours, France
- Correspondence: (I.C.); (V.T.)
| |
Collapse
|
15
|
Chen L, Cui Y, Li B, Weng J, Wang W, Zhang S, Huang X, Guo X, Huang Q. Advanced glycation end products induce immature angiogenesis in in vivo and ex vivo mouse models. Am J Physiol Heart Circ Physiol 2020; 318:H519-H533. [PMID: 31922896 DOI: 10.1152/ajpheart.00473.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proliferative diabetic retinopathy (PDR) is a progressive disease predominantly involving pathological angiogenesis and is characterized by the development of immature, fragile, and easily hemorrhagic new vessels. Advanced glycation end products (AGEs) and the receptor for AGEs (RAGE) play important roles in the progression of diabetic retinopathy. Our previous studies demonstrated that AGEs promoted HUVEC angiogenesis by inducing moesin phosphorylation via RhoA/Rho-associated protein kinase (ROCK) pathway. The aim of this study was to further confirm AGE-induced angiogenesis in vivo and the involvement of RAGE, ROCK, and moesin phosphorylation in this process. We performed the study in an AGE-treated mouse model with various angiogenesis assays in multiple in vivo and ex vivo models. The results demonstrated that AGEs promoted significant neovascularization in whole mount retina and mouse aortic ring of adult and postnatal mice and in Matrigel plug as well, which were consistently accompanied by increased moesin phosphorylation. The increase of AGE-evoked neovascularization and moesin phosphorylation were both attenuated by RAGE knockout or ROCK inhibitor Y27632 administration in mice. We also revealed the pathological characteristics of AGE-promoted angiogenesis by demonstrating the decrease of pericyte coverage and the disarranged endothelial alignment in microvessels. In conclusion, this study provides in vivo evidences that AGEs induce immature angiogenesis by binding to RAGE, activating the RhoA/ROCK signal pathway and inducing moesin phosphorylation.NEW & NOTEWORTHY Advanced glycation end product (AGE)-induced formation of neovessels and phosphorylation of moesin in retina and aortic ring required AGE receptors. AGEs increased neovessels and the phosphorylation of moesin in retina and aortic ring via RhoA/ROCK pathway. AGE-induced immature angiogenesis in AGE-treated mouse retina and aortic ring. The AGE-RAGE axis and moesin could be candidate targets for overcoming relative diseases.
Collapse
Affiliation(s)
- Lixian Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yun Cui
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bingyu Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jie Weng
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weiju Wang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuangshuang Zhang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xuliang Huang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaohua Guo
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qiaobing Huang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Targeting ROCK/LIMK/cofilin signaling pathway in cancer. Arch Pharm Res 2019; 42:481-491. [DOI: 10.1007/s12272-019-01153-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
|
17
|
Li YS, Liu Q, Tian J, He HB, Luo W. Angiogenesis Process in Osteosarcoma: An Updated Perspective of Pathophysiology and Therapeutics. Am J Med Sci 2019; 357:280-288. [DOI: 10.1016/j.amjms.2018.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/23/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022]
|
18
|
Xia Y, Cai XY, Fan JQ, Zhang LL, Ren JH, Li ZY, Zhang RG, Zhu F, Wu G. The role of sema4D in vasculogenic mimicry formation in non-small cell lung cancer and the underlying mechanisms. Int J Cancer 2018; 144:2227-2238. [PMID: 30374974 DOI: 10.1002/ijc.31958] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/06/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022]
Abstract
Vasculogenic mimicry (VM) is a special vascular pattern in malignant tumors, which is composed of highly aggressive tumor cells. This tumor cell-mediated blood supply pattern is closely associated with a poor prognosis in cancer patients. The interaction of axon guidance factor Sema4D and its high affinity receptor plexinB1 could activate small GTPase RhoA and its downstream ROCKs; this process has an active role in the migration of endothelial cells and tumor angiogenesis. Here, we have begun to uncover the role of this pathway in VM formation in non-small cell lung cancer (NSCLC). First, we confirmed this special form of vasculature in NSCLC tissues and found the existence of VM channels in tumor tissues was correlated with Sema4D expression. Further, we found that inhibition of Sema4D in the human NSCLC cells H1299 and HCC827 reduces VM formation both in vitro and in vivo. Moreover, we demonstrated that downregulating the expression of plexinB1 by siRNA expressing vectors and inhibiting the RhoA/ROCK signaling pathway using fasudil can reduce VM formation of H1299 and HCC827 cells. Finally, we found that suppression of Sema4D leads to less stress fibers and depleted the motility of H1299 and HCC827 cells. Collectively, our study implicates Sema4D plays an important role in the process of VM formation in NSCLC through activating the RhoA/ROCK pathway and regulating tumor cell plasticity and migration. Modulation of the Sema4D/plexinB1 and downstream RhoA/ROCK pathway may prevent the tumor blood supply through the VM pattern, which may eventually halt growth and metastasis of NSCLC.
Collapse
Affiliation(s)
- Yun Xia
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian-Yi Cai
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Quan Fan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Ling Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Hua Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen-Yu Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui-Guang Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Ge H, Luo H. Overview of advances in vasculogenic mimicry - a potential target for tumor therapy. Cancer Manag Res 2018; 10:2429-2437. [PMID: 30122992 PMCID: PMC6080880 DOI: 10.2147/cmar.s164675] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Vasculogenic mimicry (VM) describes the process utilized by highly aggressive cancer cells to generate vascular-like structures without the presence of endothelial cells. VM has been vividly described in various tumors and participates in cancer progression dissemination and metastasis. Diverse molecular mechanisms and signaling pathways are involved in VM formation. Furthermore, the patterning characteristics of VM, detected with molecular imaging, are being investigated for use as a tool to aid clinical practice. This review explores the most recent studies investigating the role of VM in tumor induction. Indeed, the recognition of these advances will increasingly affect the development of novel therapeutic target strategies for VM in human cancer.
Collapse
Affiliation(s)
- Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, People's Republic of China,
| | - Hui Luo
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, People's Republic of China, .,Division of Graduate, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
20
|
安 海, 林 俊, 孙 海, 许 梨, 苏 嘉, 何 春, 曾 嘉, 梁 佩, 贺 松. [ Biejiajian Pills inhibits hepatoma carcinoma cell vasculogenic mimicry by suppressing RhoA/ROCK signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:997-1001. [PMID: 30187871 PMCID: PMC6744031 DOI: 10.3969/j.issn.1673-4254.2018.08.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To observe effects of Biejiajian Pills on hepatocarcinoma (HCC) cell vasculogenic mimicry (VM) and explore the molecular mechanism by which Biejiajian Pills inhibits HCC metastasis and invasion. METHODS Forty male SD rats were randomly divided into 4 groups for gastric lavage of normal saline or high, moderate or low doses of Biejiajian Pills (twice daily) for 4 consecutive days. The sera were collected from the rats for treatment of cultured human HCC HepG2 cells. VM formation in the cells was detected using an image acquisition and analysis system 24 h after incubation of the cells with the sera and with the RhoA/ROCK inhibitor Y-27632(P). The expression levels of RhoA and ROCK1 in the cells were detected using Western blotting, and the contents of VE-cadherin and PI3K in the culture supernatant were determined using ELISA. RESULTS Treatment with the sera from Biejiajian Pills-treated rats significantly inhibited formation of VM in HepG2 cells, and the diameters of VM formed were significantly greater than those in the positive control group (P < 0.01). Y-27632 completely inhibited the formation of VM in HepG2 cells (P < 0.01). Treatments with Biejiajian Pills and Y-27632 both inhibited the expression of RhoA and ROCK1 (P < 0.05) and significantly lowered the contents of VE-cadherin and PI3K in the culture supernatant (P < 0.05). CONCLUSIONS Biejiajian Pills can inhibit the formation of VM in HCC cells in vitro possibly by inhibiting the RhoA/ROCK pathways and the expressions of VE-cadherin and PI3K.
Collapse
Affiliation(s)
- 海燕 安
- />南方医科大学中医药学院,广东 广州 510515College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - 俊豪 林
- />南方医科大学中医药学院,广东 广州 510515College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - 海涛 孙
- />南方医科大学中医药学院,广东 广州 510515College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - 梨梨 许
- />南方医科大学中医药学院,广东 广州 510515College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - 嘉琪 苏
- />南方医科大学中医药学院,广东 广州 510515College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - 春雨 何
- />南方医科大学中医药学院,广东 广州 510515College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - 嘉敏 曾
- />南方医科大学中医药学院,广东 广州 510515College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - 佩湘 梁
- />南方医科大学中医药学院,广东 广州 510515College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - 松其 贺
- />南方医科大学中医药学院,广东 广州 510515College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
21
|
Horváth D, Sipos A, Major E, Kónya Z, Bátori R, Dedinszki D, Szöll Si A, Tamás I, Iván J, Kiss A, Erd di F, Lontay B. Myosin phosphatase accelerates cutaneous wound healing by regulating migration and differentiation of epidermal keratinocytes via Akt signaling pathway in human and murine skin. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3268-3280. [PMID: 30010048 DOI: 10.1016/j.bbadis.2018.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/24/2018] [Accepted: 07/10/2018] [Indexed: 01/01/2023]
Abstract
Wound healing is a complex sequence of cellular and molecular processes such as inflammation, cell migration, proliferation and differentiation. ROCK is a widely investigated Ser/Thr kinase with important roles in rearranging the actomyosin cytoskeleton. ROCK inhibitors have already been approved to improve corneal endothelial wound healing. The purpose of this study was to investigate the functions of myosin phosphatase (MP or PPP1CB), a type-1 phospho-Ser/Thr-specific protein phosphatase (PP1), one of the counter enzymes of ROCK, in skin homeostasis and wound healing. To confirm our hypotheses, we applied tautomycin (TM), a selective PP1 inhibitor, on murine skin that caused the arrest of wound closure. TM suppressed scratch closure of HaCaT human keratinocytes without having influence on the survival of the cells. Silencing of, the regulatory subunit of MP (MYPT1 or PPP1R12A), had a negative impact on the migration of keratinocytes and it influenced the cell-cell adhesion properties by decreasing the impedance of HaCaT cells. We assume that MP differentially activates migration and differentiation of keratinocytes and plays a key role in the downregulation of transglutaminase-1 in lower layers of skin where no differentiation is required. MAPK Proteome Profiler analysis on human ex vivo biopsies with MYPT1-silencing indicated that MP contributes to the mediation of wound healing by regulating the Akt signaling pathway. Our findings suggest that MP plays a role in the maintenance of normal homeostasis of skin and the process of wound healing.
Collapse
Affiliation(s)
- Dániel Horváth
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Evelin Major
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Kónya
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Róbert Bátori
- Vascular Biology Center, Augusta University, Augusta, United States
| | - Dóra Dedinszki
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Attila Szöll Si
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Tamás
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Iván
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Erd di
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beáta Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|