1
|
Keum J, Lee HS, Park CS, Kim J, Jang W, Shin KI, Kang H, Lee SH, Jo JH, Jang SI, Chung MJ, Park JY, Park SW, Cho JH, Bang S. Survival predictors in patients with pancreatic cancer on liposomal irinotecan plus fluorouracil/leucovorin: a multicenter observational study. Ther Adv Med Oncol 2024; 16:17588359241279688. [PMID: 39328901 PMCID: PMC11425736 DOI: 10.1177/17588359241279688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/15/2024] [Indexed: 09/28/2024] Open
Abstract
Background Approximately half of the patients with advanced pancreatic ductal adenocarcinoma (PDAC) receive subsequent lines of chemotherapy. Recently, the liposomal irinotecan (nal-IRI) plus 5-fluorouracil/leucovorin (5-FU/LV) regimen is recommended as subsequent lines of chemotherapy. However, little is known about the predictive factors for the nal-IRI + 5-FU/LV regimen, especially in patients with previous irinotecan (IRI) exposure. Objectives We investigated the predictive factors associated with nal-IRI + 5-FU/LV treatment in patients with PDAC. Design Multicenter, retrospective cohort study. Methods This study included patients with advanced PDAC who received the nal-IRI + 5-FU/LV regimen for palliative purposes. Results Overall, 268 patients were treated with nal-IRI + 5-FU/LV. The median overall survival (OS) was 7.9 months (95% confidence interval (CI): 7.0-8.8), while the median progression-free survival (PFS) was 2.6 months (95% CI: 1.9-3.2). An albumin level of<4.0 g/dL, neutrophil-to-lymphocyte ratio (NLR) of ⩾3.5, liver or peritoneal metastasis, and a history of >3 lines of palliative chemotherapy were associated with worse OS. An NLR of ⩾3.5 and liver metastasis were significant predictive factors for worse PFS. Previous exposure to IRI was not a significant predictor. Patients without prior IRI (no-IRI) treatment showed relatively longer OS and PFS compared to IRI responders and nonresponders, but these differences were not significant when compared specifically to the responders (OS: 8.8 vs 8.1 months, p = 0.388; PFS: 3.6 vs 2.6 months, p = 0.126). Conclusion An NLR of ⩾3.5 and liver metastasis were associated with worse PFS. Prior IRI exposure was not a significant predictive factor for OS and PFS, especially in IRI responders.
Collapse
Affiliation(s)
- Jiyoung Keum
- Division of Gastroenterology, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hee Seung Lee
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Chan Su Park
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
- Division of Gastroenterology, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, South Korea
| | - Jeehoon Kim
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Wonjoon Jang
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyung In Shin
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Huapyong Kang
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, South Korea
| | - Sang Hoon Lee
- Department of Internal Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, South Korea
| | - Jung Hyun Jo
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Ill Jang
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seo
| | - Moon Jae Chung
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeong Youp Park
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Woo Park
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Hee Cho
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 712 Eonju-ro, Gangnam-gu, Seoul 135-720, South Korea
| | - Seungmin Bang
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea
| |
Collapse
|
2
|
Bano S, Alburquerque JQ, Roberts HJ, Pang S, Huang HC, Hasan T. Minocycline and photodynamic priming significantly improve chemotherapy efficacy in heterotypic spheroids of pancreatic ductal adenocarcinoma. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112910. [PMID: 38663337 PMCID: PMC11088523 DOI: 10.1016/j.jphotobiol.2024.112910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024]
Abstract
The prognosis for patients with advanced-stage pancreatic ductal adenocarcinoma (PDAC) remains dismal. It is generally accepted that combination cancer therapies offer the most promise, such as Folforinox, despite their associated high toxicity. This study addresses the issue of chemoresistance by introducing a complementary dual priming approach to attenuate the DNA repair mechanism and to improve the efficacy of a type 1 topoisomerase (Top1) inhibitor. The result is a regimen that integrates drug-repurposing and nanotechnology using 3 clinically relevant FDA-approved agents (1) Top1 inhibitor (irinotecan) at subcytotoxic doses (2) benzoporphyrin derivative (BPD) as a photoactive molecule for photodynamic priming (PDP) to improve the delivery of irinotecan within the cancer cell and (3) minocycline priming (MNP) to modulate DNA repair enzyme Tdp1 (tyrosyl-DNA phosphodiesterase) activity. We demonstrate in heterotypic 3D cancer models that incorporate cancer cells and pancreatic cancer-associated fibroblasts that simultaneous targeting of Tdp1 and Top1 were significantly more effective by employing MNP and photoactivatable multi-inhibitor liposomes encapsulating BPD and irinotecan compared to monotherapies or a cocktail of dual or triple-agents. These data are encouraging and warrant further work in appropriate animal models to evolve improved therapeutic regimens.
Collapse
Affiliation(s)
- Shazia Bano
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - Jose Quilez Alburquerque
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - Harrison James Roberts
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - Sumiao Pang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, MA, USA; Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, MA, USA.
| |
Collapse
|
3
|
Kirpotin DB, Hayes ME, Noble CO, Huang ZR, Wani K, Moore D, Kesper K, Brien DO, Drummond DC. Drug Stability and Minimized Acid-/Drug-Catalyzed Phospholipid Degradation in Liposomal Irinotecan. J Pharm Sci 2023; 112:416-434. [PMID: 36462709 DOI: 10.1016/j.xphs.2022.11.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
Therapeutics at or close to the nanoscale, such as liposomal irinotecan, offer significant promise for the treatment of solid tumors. Their potential advantage over the unencapsulated or free form of the drug is due in part to their altered biodistribution. For slow and sustained release, significant optimization of formulation is needed to achieve the required level of stability and allow long-term storage of the drug product. Gradient-based liposomal formulation of camptothecins such as irinotecan poses unique challenges owing to the camptothecin- and acid-catalyzed hydrolysis of phospholipid esters in the inner monolayer of the liposomal membrane. We demonstrated that a narrow set of conditions related to the external pH, temperature, intraliposomal concentration, identity of the drug-trapping agent, physical form of the drug inside the liposomes, and final drug load have a marked impact on the stability of the liposome phospholipid membrane. The physical form of the drug inside the liposome was shown to be an insoluble gel with an irinotecan-to-sulfate ratio approximating 1:1, reducing the potential for irinotecan-catalyzed phospholipid hydrolysis in the internal phospholipid monolayer. As a result of this work, a stable and active liposome formulation has been developed that maintains phospholipid chemical stability following long-term storage at 2-8°C.
Collapse
Affiliation(s)
| | | | | | | | - Kshitija Wani
- Merrimack Pharmaceuticals, Cambridge, MA, USA; Ipsen Pharmaceuticals, Cambridge, MA, USA
| | - Doug Moore
- Merrimack Pharmaceuticals, Cambridge, MA, USA
| | | | | | | |
Collapse
|
4
|
Choi M, Harper MM, Pandalai PK, Abdel-Misih SRZ, Patel RA, Ellis CS, Reusch E, Reynolds J, Vacchi-Suzzi C, Park JM, Georgakis GV, Kim J. A Multicenter Phase 1 Trial Evaluating Nanoliposomal Irinotecan for Heated Intraperitoneal Chemotherapy Combined with Cytoreductive Surgery for Patients with Peritoneal Surface Disease. Ann Surg Oncol 2023; 30:804-813. [PMID: 36344711 DOI: 10.1245/s10434-022-12723-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Nanoliposomal irinotecan (nal-IRI) is a promising novel hyperthermic intraperitoneal chemotherapy (HIPEC) agent given its enhanced efficacy against gastrointestinal tumors, safety profile, thermo-synergy, and heat stability. This report describes the first in-human phase 1 clinical trial of nal-IRI during cytoreductive surgery (CRS) and HIPEC. METHODS Patients with peritoneal surface disease (PSD) from appendiceal and colorectal neoplasms were enrolled in a 3 + 3 dose-escalation trial using nal-IRI (70-280 mg/m2) during HIPEC for 30 min at 41 ± 1 °C. The primary outcome was safety. The secondary outcomes were pharmacokinetics (PK) and disease-free survival. Adverse events (AEs) categorized as grade 2 or higher were recorded. The serious AEs (SAEs) were mortality, grade ≥ 3 AEs, and dose-limiting toxicity (DLT). Irinotecan and active metabolite SN38 were measured in plasma and peritoneal washings. RESULTS The study enrolled 18 patients, who received nal-IRI during HIPEC at 70 mg/m2 (n = 3), 140 mg/m2 (n = 6), 210 mg/m2 (n = 3), and 280 mg/m2 (n = 6). No DLT or mortality occurred. The overall morbidity for CRS/HIPEC was 39% (n = 7). Although one patient experienced neutropenia, no AE (n = 131) or SAE (n = 3) was definitively attributable to nal-IRI. At 280 mg/m2, plasma irinotecan and SN38 measurements showed maximum concentrations of 0.4 ± 0.6 µg/mL and 3.0 ± 2.4 ng/mL, a median time to maximum concentration of 24.5 and 26 h, and areas under the curve of 22.6 h*µg/mL and 168 h*ng/mL, respectively. At the 6-month follow-up visit, 83% (n = 15) of the patients remained disease-free. CONCLUSIONS In this phase 1 HIPEC trial (NCT04088786), nal-IRI was observed to be safe, and PK profiling showed low systemic absorption overall. These data support future studies testing the efficacy of nal-IRI in CRS/HIPEC.
Collapse
Affiliation(s)
- Minsig Choi
- Department of Hematology and Oncology, Stony Brook University, Stony Brook, NY, USA
| | - Megan M Harper
- Division of Surgical Oncology, University of Kentucky, Lexington, KY, USA
| | - Prakash K Pandalai
- Division of Surgical Oncology, University of Kentucky, Lexington, KY, USA
| | | | - Reema A Patel
- Division of Hematology and Oncology, University of Kentucky, Lexington, KY, USA
| | | | - Ellen Reusch
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Jeri Reynolds
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | | | - Jinha M Park
- Department of Radiology, University of Iowa, Iowa City, IA, USA
| | | | - Joseph Kim
- Division of Surgical Oncology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
5
|
Abstract
Investigator-initiated trials (IITs) are designed by principal investigators who identify important, unaddressed clinical gaps and opportunities to answer these questions through clinical trials. Surgical oncologists are poised to lead IITs due to their multidisciplinary clinical practice and substantial research background. The process of developing, organizing, and implementing IITs is multifaceted and involves important steps including (but not limited to) navigating regulatory requirements, obtaining funding, and meeting enrollment targets. Here, the authors explore the steps, methodology, and barriers of IIT development by surgical oncologists and highlight the importance of IITs in oncology.
Collapse
|
6
|
Nanomedicine for targeting the lung cancer cells by interpreting the signaling pathways. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Awasthi N, Schwarz MA, Zhang C, Klinz SG, Meyer-Losic F, Beaufils B, Thiagalingam A, Schwarz RE. Augmenting Experimental Gastric Cancer Activity of Irinotecan through Liposomal Formulation and Antiangiogenic Combination Therapy. Mol Cancer Ther 2022; 21:1149-1159. [PMID: 35500018 PMCID: PMC9377761 DOI: 10.1158/1535-7163.mct-21-0860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/22/2022] [Accepted: 04/28/2022] [Indexed: 01/07/2023]
Abstract
Gastric adenocarcinoma (GAC) is the third most common cause of cancer-related deaths worldwide. Combination chemotherapy remains the standard treatment for advanced GAC. Liposomal irinotecan (nal-IRI) has improved pharmacokinetics (PK) and drug biodistribution compared with irinotecan (IRI, CPT-11). Angiogenesis plays a crucial role in the progression and metastasis of GAC. We evaluated the antitumor efficacy of nal-IRI in combination with novel antiangiogenic agents in GAC mouse models. Animal survival studies were performed in peritoneal dissemination xenografts. Tumor growth and PK studies were performed in subcutaneous xenografts. Compared with controls, extension in animal survival by nal-IRI and IRI was >156% and >94%, respectively. The addition of nintedanib or DC101 extended nal-IRI response by 13% and 15%, and IRI response by 37% and 31% (MKN-45 xenografts); nal-IRI response by 11% and 3%, and IRI response by 16% and 40% (KATO-III xenografts). Retardation of tumor growth was greater with nal-IRI (92%) than IRI (71%). Nintedanib and DC101 addition tend to augment nal-IRI or IRI response in this model. The addition of antiangiogenic agents enhanced tumor cell proliferation inhibition effects of nal-IRI or IRI. The tumor vasculature was decreased by nintedanib (65%) and DC101 (58%), while nal-IRI and IRI alone showed no effect. PK characterization in GAC xenografts demonstrated that compared with IRI, nal-IRI treatment groups had higher retention, circulation time, and tumor levels of CPT-11 and its active metabolite SN-38. These findings indicate that nal-IRI, alone and in combination with antiangiogenic agents, has the potential for improving clinical GAC therapy.
Collapse
Affiliation(s)
- Niranjan Awasthi
- Department of Surgery, Indiana University School of Medicine, South Bend, Indiana
- Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana
| | - Margaret A. Schwarz
- Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana
- Department of Pediatrics, Indiana University School of Medicine, South Bend, Indiana
| | - Changhua Zhang
- Department of Gastrointestinal Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Guangming, Shenzhen, China
| | | | | | | | | | - Roderich E. Schwarz
- Department of Surgery, Indiana University School of Medicine, South Bend, Indiana
- Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
8
|
Milano G, Innocenti F, Minami H. Liposomal irinotecan (Onivyde): Exemplifying the benefits of nanotherapeutic drugs. Cancer Sci 2022; 113:2224-2231. [PMID: 35445479 PMCID: PMC9277406 DOI: 10.1111/cas.15377] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022] Open
Abstract
Irinotecan is a topoisomerase inhibitor, widely used in treatment of malignancies including pancreatic ductal adenocarcinoma (PDAC) as part of the FOLFIRINOX regimen prescribed as a first-line treatment in several countries. However, irinotecan has not been successfully introduced as a second-line treatment for pancreatic cancer and few randomized clinical studies have evaluated its added value. Efficacy of liposomal irinotecan (nal-IRI) combined with 5-fluorouracil and leucovorin (5-FU/LV) was reported in the phase III NAPOLI-1 trial in metastatic PDAC following failure of gemcitabine-based therapy. Several features of nal-IRI pharmacokinetics (PK) could result in better outcomes versus nonliposomal irinotecan. Irinotecan is a prodrug that is converted to active SN-38 by carboxylesterase enzymes and inactivated by cytochrome P450 3A4/3A5. SN-38 is inactivated by UGT1A1 enzymes. Individual variations in their expression and activity could influence enhanced localized irinotecan activity and toxicity. Liposomal irinotecan exploits the enhanced permeability and retention effect in cancer, accumulating in tumor tissues. Liposomal irinotecan also has a longer half-life and higher area under the concentration-time curve (0-∞) than nonliposomal irinotecan, as the liposomal formulation protects cargo from premature metabolism in the plasma. This results in irinotecan activation in tumor tissue, leading to enhanced cytotoxicity. Importantly, despite the longer exposure, overall toxicity for nal-IRI is no worse than nonliposomal irinotecan. Liposomal irinotecan exemplifies how liposomal encapsulation of a chemotherapeutic agent can alter its PK properties, improving clinical outcomes for patients. Liposomal irinotecan is currently under investigation in other malignancies including biliary tract cancer (amongst other gastrointestinal cancers), brain tumors, and small-cell lung cancer.
Collapse
Affiliation(s)
- Gérard Milano
- UPR 7497Scientific Valorisation UnitCentre Antoine Lacassagne and Côte d’Azur UniversityNiceFrance
| | | | - Hironobu Minami
- Medical Oncology and HematologyKobe University Graduate School of Medicine and HospitalKobeJapan
| |
Collapse
|
9
|
van der Merwe L, Svitina H, Willers C, Wrzesinski K, Gouws C. A novel NCI-H69V small cell lung cancer functional mini-tumor model for future treatment screening applications. Biotechnol Prog 2022; 38:e3253. [PMID: 35362670 PMCID: PMC10909478 DOI: 10.1002/btpr.3253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/24/2022] [Accepted: 03/29/2022] [Indexed: 12/09/2022]
Abstract
Small cell lung cancer (SCLC) is aggressive and despite multiple clinical trials, its standard of care is unchanged for the past three decades. In vitro cancer models are crucial in chemotherapy development, and three-dimensional (3D) models aim to bridge the gap between two-dimensional (2D) flat cultures and in vivo testing. Functional 3D spheroids can better represent the in vivo situation and tumor characteristics than 2D models. An NCI-H69V SCLC mini-tumor model was developed in a clinostat-based rotating bioreactor system. Spheroid growth and viability were characterized for 30 days, and the ideal experimental window with mature and metabolically stable spheroids was determined. Application of the model for anticancer treatment screening was validated with the standard chemotherapeutic drug irinotecan, for an exposure period of 72 h. The following parameters were measured: soluble protein content, planar surface area measurements, intracellular adenosine triphosphate and extracellular adenylate kinase levels, and glucose consumption. Histological morphology of the spheroids was observed. The established model proved viable and stable, while treatment with irinotecan caused a decrease in cell growth, viability, and glucose consumption demonstrating reactivity of the model to chemotherapy. Therefore, this NCI-H69V SCLC functional spheroid model could be used for future anticancer compound screening.
Collapse
Affiliation(s)
- Liezaan van der Merwe
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™)North‐West UniversityPotchefstroomSouth Africa
| | - Hanna Svitina
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™)North‐West UniversityPotchefstroomSouth Africa
- Laboratory of Biosynthesis of Nucleic Acids, Department of Functional GenomicsInstitute of Molecular Biology and Genetics of NASUKyivUkraine
| | - Clarissa Willers
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™)North‐West UniversityPotchefstroomSouth Africa
| | - Krzysztof Wrzesinski
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™)North‐West UniversityPotchefstroomSouth Africa
- CelVivo ApSBlommenslystDenmark
| | - Chrisna Gouws
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™)North‐West UniversityPotchefstroomSouth Africa
| |
Collapse
|
10
|
Jiang W, He F, Ding G, Wu J. Topoisomerase 1 inhibition modulates pyroptosis to improve recovery after spinal cord injury. FASEB J 2022; 36:e22294. [PMID: 35579890 DOI: 10.1096/fj.202100713rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 02/28/2022] [Accepted: 03/20/2022] [Indexed: 11/11/2022]
Abstract
Excessive neuroinflammation and neuronal loss contribute to mechanisms of spinal cord injury (SCI). Accumulating evidence has suggested that topoisomerase 1 (Top1) inhibition can suppress exacerbated immune responses and protect against lethal inflammation. Pyroptosis is a recently identified pro-inflammatory programmed mode of cell death. However, the effects and underlying mechanisms of Top1 inhibition in SCI remains unclear. Locomotor functional recovery in mice was evaluated through Basso Mouse Scale (BMS). Neuronal loss was evaluated by immunochemistry staining of NeuN. Pyroptosis was determined by immunofluorescence staining, western blot, flow cytometry, cell viability, and cytotoxicity assays. In the present study, we estimated the effects of chemical inhibition of Top1 in an SCI model. Administration of Top1 inhibitor camptothecin (CPT) to mice significantly improved locomotor functional recovery after SCI. Moreover, CPT reduced Top1 level, inhibited nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome activation and pyroptosis, attenuated proinflammatory cytokines levels, diminished the number of neutrophil and neuronal loss in mice. Furthermore, CPT in oxygen-glucose deprivation neurons down-regulated Top1 level, attenuated NLRP3 inflammasome activation, and suppressed pyroptosis and inflammatory response. Together, our findings indicate that inhibition of Top1 with CPT can inhibit pyroptosis, control neuroinflammation, and improve functional recovery after SCI.
Collapse
Affiliation(s)
- Wu Jiang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan He
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoming Ding
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junsong Wu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Kashima J, Okuma Y. Advances in biology and novel treatments of SCLC: The four-color problem in uncharted territory. Semin Cancer Biol 2022; 86:386-395. [DOI: 10.1016/j.semcancer.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 10/31/2022]
|
12
|
Topoisomerase I inhibitors: Challenges, progress and the road ahead. Eur J Med Chem 2022; 236:114304. [DOI: 10.1016/j.ejmech.2022.114304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
|
13
|
Allo G, Can A, Wahba R, Vogel N, Goeser T, Kütting F, Waldschmidt D. Nanoliposomal irinotecan in combination with leucovorin and 5‑fluorouracil in advanced biliary tract cancers. Mol Clin Oncol 2021; 16:52. [PMID: 35070301 PMCID: PMC8764657 DOI: 10.3892/mco.2021.2485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/24/2021] [Indexed: 11/09/2022] Open
Abstract
Biliary tract cancers (BTC) are rare but aggressive. Due to limited anti-tumor effects of current second- and later-line treatment regimens, novel treatment options are required. Nanoliposomal irinotecan in combination with leucovorin and 5-fluorouracil (FOLFnal-IRI) achieved promising results as a second-line treatment in patients with pancreatic cancer, warranting further investigation in BTC. In the present study, a retrospective analysis of patients receiving FOLFnal-IRI after initial platinum-based chemotherapy for advanced BTC between January 2016 and August 2020 at the University Hospital Cologne (Cologne, Germany) was performed. A total of 11 patients were identified who met the inclusion criteria. A total of 4 patients (36.4%) were female and the median age was 54 years. The proportion of patients suffering from gallbladder carcinoma, intrahepatic and extrahepatic cholangiocarcinoma was 18.2, 63.6 and 9.1%, respectively. Furthermore, 7 patients (63.6%) received FOLFnal-IRI as their second-, 3 (27.3%) as third- and one (9.1%) as their fourth-line therapy. The disease control rate was 54.5% and 3 grade III toxicities were recorded. Progression-free survival and overall survival (OS) after initiation of FOLFnal-IRI was 5.1 and 12.4 months, respectively. OS after initial diagnosis was 24.7 months. FOLFnal-IRI demonstrated promising antitumor potential with an acceptable safety profile as a subsequent therapy regimen in advanced biliary tract malignancies. Further randomized controlled trials of its value as a treatment option for BTC appear justified.
Collapse
Affiliation(s)
- Gabriel Allo
- Department for Gastroenterology and Hepatology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, D-50937 Cologne, Germany
| | - Ahu Can
- Department for Gastroenterology and Hepatology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, D-50937 Cologne, Germany
| | - Roger Wahba
- Department of General, Visceral and Cancer and Transplant Surgery, University Hospital of Cologne, University of Cologne, D-50937 Cologne, Germany
| | - Nils Vogel
- Department for Gastroenterology and Hepatology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, D-50937 Cologne, Germany
| | - Tobias Goeser
- Department for Gastroenterology and Hepatology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, D-50937 Cologne, Germany
| | - Fabian Kütting
- Department for Gastroenterology and Hepatology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, D-50937 Cologne, Germany
| | - Dirk Waldschmidt
- Department for Gastroenterology and Hepatology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, D-50937 Cologne, Germany
| |
Collapse
|
14
|
Huarte J, Espuelas S, Martínez-Oharriz C, Irache JM. Nanoparticles from Gantrez-based conjugates for the oral delivery of camptothecin. Int J Pharm X 2021; 3:100104. [PMID: 34825166 PMCID: PMC8604667 DOI: 10.1016/j.ijpx.2021.100104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 11/20/2022] Open
Abstract
Camptothecin (CPT) exhibits a number of challenges for its oral administration, including a low aqueous solubility, a lactone ring susceptible to hydrolysis, and an affinity to the intestinal P-gp. The aim of this work was to evaluate nanoparticles from Gantrez-based conjugates as carriers for the oral delivery of CPT. For this purpose two different conjugates (G-mPEG and G-HPCD), obtained by the covalent binding of either HP-β-CD or methoxy-PEG (m-PEG) to the polymer backbone of Gantrez™ AN, were synthetized and characterized. Both excipients (m-PEG and HPCD) were selected due to their reported abilities to stabilize the lactone ring of CPT and disturb the effect of intestinal P-gp. The resulting nanoparticles (G-mPEG-NP and G-HPCD-NP) presented a similar size (about 200 nm) and zeta potential (close to −35 mV); although, G-mPEG-NP presented a higher CPT payload than G-HPCD-NP. On the contrary, in rats, nanoparticles based on Gantrez conjugates appeared to be capable of crossing the protective mucus layer and reach the intestinal epithelium, whereas conventional Gantrez nanoparticles displayed a mucoadhesive profile. Finally, the pharmacokinetic study revealed that both formulations were able to enhance the relative oral bioavailability of CPT; although this value was found to be 2.6-times higher for G-mPEG-NP than for G-HPCD-NP.
Collapse
Affiliation(s)
- Judit Huarte
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain
| | - Socorro Espuelas
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain
| | | | - Juan M Irache
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain
| |
Collapse
|
15
|
Roberts JA, Varma VR, An Y, Varma S, Candia J, Fantoni G, Tiwari V, Anerillas C, Williamson A, Saito A, Loeffler T, Schilcher I, Moaddel R, Khadeer M, Lovett J, Tanaka T, Pletnikova O, Troncoso JC, Bennett DA, Albert MS, Yu K, Niu M, Haroutunian V, Zhang B, Peng J, Croteau DL, Resnick SM, Gorospe M, Bohr VA, Ferrucci L, Thambisetty M. A brain proteomic signature of incipient Alzheimer's disease in young APOE ε4 carriers identifies novel drug targets. SCIENCE ADVANCES 2021; 7:eabi8178. [PMID: 34757788 PMCID: PMC8580310 DOI: 10.1126/sciadv.abi8178] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/14/2021] [Indexed: 05/13/2023]
Abstract
Aptamer-based proteomics revealed differentially abundant proteins in Alzheimer’s disease (AD) brains in the Baltimore Longitudinal Study of Aging and Religious Orders Study (mean age, 89 ± 9 years). A subset of these proteins was also differentially abundant in the brains of young APOE ε4 carriers relative to noncarriers (mean age, 39 ± 6 years). Several of these proteins represent targets of approved and experimental drugs for other indications and were validated using orthogonal methods in independent human brain tissue samples as well as in transgenic AD models. Using cell culture–based phenotypic assays, we showed that drugs targeting the cytokine transducer STAT3 and the Src family tyrosine kinases, YES1 and FYN, rescued molecular phenotypes relevant to AD pathogenesis. Our findings may accelerate the development of effective interventions targeting the earliest molecular triggers of AD.
Collapse
Affiliation(s)
- Jackson A. Roberts
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032
| | - Vijay R. Varma
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yang An
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | - Julián Candia
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Giovanna Fantoni
- Clinical Research Core, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vinod Tiwari
- Section on DNA Repair, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Andrew Williamson
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Atsushi Saito
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tina Loeffler
- QPS Austria GmbH, Parkring 12, 8074 Grambach, Austria
| | | | - Ruin Moaddel
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mohammed Khadeer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jacqueline Lovett
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Toshiko Tanaka
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Juan C. Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Marilyn S. Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kaiwen Yu
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mingming Niu
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Vahram Haroutunian
- Departments of Psychiatry and Neuroscience, The Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences and Department of Pharmacological Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Deborah L. Croteau
- Section on DNA Repair, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Susan M. Resnick
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A. Bohr
- Section on DNA Repair, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
16
|
Hao Z, Sekkath Veedu J. Current Strategies for Extensive Stage Small Cell Lung Cancer Beyond First-line Therapy. Clin Lung Cancer 2021; 23:14-20. [PMID: 34656433 DOI: 10.1016/j.cllc.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/22/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
Extensive stage small cell lung cancer carries extremely poor prognosis and adding immune checkpoint inhibitor to platinum etoposide combination in first line only improved outcomes modestly. Once disease recurs, treatment response is only transient in nature. Various strategies that are being explored include dual checkpoint blockade, BiTE and CAR-T cell approaches. Immune checkpoint inhibitors are being combined with PARP inhibitors. Other approaches currently being investigated include liposomal irinotecan and combining known active agents for SCLC in relapsed setting such as newly approved lurbinectedin with doxorubicin, paclitaxel, irinotecan or topotecan with ATR inhibitor (Berzosertib). Temozolomide has also been tested in combination with a Parp inhibitor. New antibody or small molecule drug conjugates are being actively investigated, so is a biomarker based approach. Better understanding of small cell lung cancer disease biology via high through-put genomic, proteomic and methylation profiling offer glimpse of hope in our efforts to contain this deadly disease. A table of representative molecular targets under investigation is provided in the end.
Collapse
Affiliation(s)
- Zhonglin Hao
- Division of Medical Oncology, Department of Medicine, Markey Cancer Center, College of Medicine, University of Kentucky, Lexington KY.
| | - Janeesh Sekkath Veedu
- Division of Medical Oncology, Department of Medicine, Markey Cancer Center, College of Medicine, University of Kentucky, Lexington KY
| |
Collapse
|
17
|
Cortinovis D, Bidoli P, Canova S, Colonese F, Gemelli M, Lavitrano ML, Banna GL, Liu SV, Morabito A. Novel Cytotoxic Chemotherapies in Small Cell Lung Carcinoma. Cancers (Basel) 2021; 13:1152. [PMID: 33800236 PMCID: PMC7962524 DOI: 10.3390/cancers13051152] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 01/08/2023] Open
Abstract
Small cell lung cancer (SCLC) is one of the deadliest thoracic neoplasms, in part due to its fast doubling time and early metastatic spread. Historically, cytotoxic chemotherapy consisting of platinum-etoposide or anthracycline-based regimens has demonstrated a high response rate, but early chemoresistance leads to a poor prognosis in advanced SCLC. Only a fraction of patients with limited-disease can be cured by chemo-radiotherapy. Given the disappointing survival rates in advanced SCLC, new cytotoxic agents are eagerly awaited. Unfortunately, few novel chemotherapy drugs have been developed in the latest decades. This review describes the results and potential application in the clinical practice of novel chemotherapy agents for SCLC.
Collapse
Affiliation(s)
- Diego Cortinovis
- Department Medical Oncology—ASST-Monza Ospedale San Gerardo, via Pergolesi 33, 20090 Monza, Italy; (P.B.); (S.C.); (F.C.); (M.G.)
| | - Paolo Bidoli
- Department Medical Oncology—ASST-Monza Ospedale San Gerardo, via Pergolesi 33, 20090 Monza, Italy; (P.B.); (S.C.); (F.C.); (M.G.)
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Stefania Canova
- Department Medical Oncology—ASST-Monza Ospedale San Gerardo, via Pergolesi 33, 20090 Monza, Italy; (P.B.); (S.C.); (F.C.); (M.G.)
| | - Francesca Colonese
- Department Medical Oncology—ASST-Monza Ospedale San Gerardo, via Pergolesi 33, 20090 Monza, Italy; (P.B.); (S.C.); (F.C.); (M.G.)
| | - Maria Gemelli
- Department Medical Oncology—ASST-Monza Ospedale San Gerardo, via Pergolesi 33, 20090 Monza, Italy; (P.B.); (S.C.); (F.C.); (M.G.)
| | | | - Giuseppe Luigi Banna
- Department of Oncology, Portsmouth Hospitals University NHS Trust, Cosham, Portsmouth PO6 3LY, UK;
| | - Stephen V. Liu
- Lombardi Comprehensive Cancer Center, Georgetown University, 3800 Reservoir Road NW, Washington, DC 20007, USA;
| | - Alessandro Morabito
- SC Oncologia Medica Toraco-Polmonare, IRCCS Istituto Nazionale dei Tumori, Fondazione Pascale, 80100 Napoli, Italy;
| |
Collapse
|
18
|
Li J, Tan T, Zhao L, Liu M, You Y, Zeng Y, Chen D, Xie T, Zhang L, Fu C, Zeng Z. Recent Advancements in Liposome-Targeting Strategies for the Treatment of Gliomas: A Systematic Review. ACS APPLIED BIO MATERIALS 2020; 3:5500-5528. [PMID: 35021787 DOI: 10.1021/acsabm.0c00705] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Malignant tumors represent some of the most intractable diseases that endanger human health. A glioma is a tumor of the central nervous system that is characterized by severe invasiveness, blurred boundaries between the tumor and surrounding normal tissue, difficult surgical removal, and high recurrence. Moreover, the blood-brain barrier (BBB) and multidrug resistance (MDR) are important factors that contribute to the lack of efficacy of chemotherapy in treating gliomas. A liposome is a biofilm-like drug delivery system with a unique phospholipid bilayer that exhibits high affinities with human tissues/organs (e.g., BBB). After more than five decades of development, classical and engineered liposomes consist of four distinct generations, each with different characteristics: (i) traditional liposomes, (ii) stealth liposomes, (iii) targeting liposomes, and (iv) biomimetic liposomes, which offer a promising approach to promote drugs across the BBB and to reverse MDR. Here, we review the history, preparatory methods, and physicochemical properties of liposomes. Furthermore, we discuss the mechanisms by which liposomes have assisted in the diagnosis and treatment of gliomas, including drug transport across the BBB, inhibition of efflux transporters, reversal of MDR, and induction of immune responses. Finally, we highlight ongoing and future clinical trials and applications toward further developing and testing the efficacies of liposomes in treating gliomas.
Collapse
Affiliation(s)
- Jie Li
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| | - Tiantian Tan
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| | - Liping Zhao
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| | - Mengmeng Liu
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| | - Yu You
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Yiying Zeng
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| | - Dajing Chen
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| | - Tian Xie
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| | - Lele Zhang
- School of Medicine, Chengdu University, Chengdu 610106, Sichuan, China
| | - Chaomei Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Zhaowu Zeng
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| |
Collapse
|
19
|
Woodman C, Vundu G, George A, Wilson CM. Applications and strategies in nanodiagnosis and nanotherapy in lung cancer. Semin Cancer Biol 2020; 69:349-364. [PMID: 32088362 DOI: 10.1016/j.semcancer.2020.02.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/24/2020] [Accepted: 02/11/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is the second most common cancer and the leading cause of death in both men and women in the world. Lung cancer is heterogeneous in nature and diagnosis is often at an advanced stage as it develops silently in the lung and is frequently associated with high mortality rates. Despite the advances made in understanding the biology of lung cancer, progress in early diagnosis, cancer therapy modalities and considering the mechanisms of drug resistance, the prognosis and outcome still remains low for many patients. Nanotechnology is one of the fastest growing areas of research that can solve many biological problems such as cancer. A growing number of therapies based on using nanoparticles (NPs) have successfully entered the clinic to treat pain, cancer, and infectious diseases. Recent progress in nanotechnology has been encouraging and directed to developing novel nanoparticles that can be one step ahead of the cancer reducing the possibility of multi-drug resistance. Nanomedicine using NPs is continuingly impacting cancer diagnosis and treatment. Chemotherapy is often associated with limited targeting to the tumor, side effects and low solubility that leads to insufficient drug reaching the tumor. Overcoming these drawbacks of chemotherapy by equipping NPs with theranostic capability which is leading to the development of novel strategies. This review provides a synopsis of current progress in theranostic applications for lung cancer diagnosis and therapy using NPs including liposome, polymeric NPs, quantum dots, gold NPs, dendrimers, carbon nanotubes and magnetic NPs.
Collapse
Affiliation(s)
- Christopher Woodman
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom
| | - Gugulethu Vundu
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom
| | - Alex George
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom; Jubilee Centre for Medical Research, Jubilee Mission Medical College & Research Institute, Thrissur, Kerala, India
| | - Cornelia M Wilson
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom; University of Liverpool, Institute of Translation Medicine, Dept of Molecular & Clinical Cancer Medicine, United Kingdom; Novel Global Community Educational Foundation, Australia.
| |
Collapse
|
20
|
Macarulla Mercadé T, Chen LT, Li CP, Siveke JT, Cunningham D, Bodoky G, Blanc JF, Lee KH, Dean A, Belanger B, Wang-Gillam A. Liposomal Irinotecan + 5-FU/LV in Metastatic Pancreatic Cancer: Subgroup Analyses of Patient, Tumor, and Previous Treatment Characteristics in the Pivotal NAPOLI-1 Trial. Pancreas 2020; 49:62-75. [PMID: 31856081 PMCID: PMC6946097 DOI: 10.1097/mpa.0000000000001455] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVES The NAnoliPOsomaL Irinotecan (NAPOLI-1) study (NCT01494506) was the largest global phase 3 study in a post-gemcitabine metastatic pancreatic adenocarcinoma (mPAC) population (N = 417). The subanalyses reported here investigated the prognostic effect of tumor characteristics and disease stage, prior treatment characteristics, baseline patient characteristics on survival outcomes in NAPOLI-1, and whether liposomal irinotecan (nal-IRI) + 5-fluorouracil/leucovorin (5-FU/LV) benefited patients with mPAC across subgroups. METHODS Post hoc analyses were performed in the NAPOLI-1 population (4 across tumor characteristics and disease stage, 6 across prior treatment characteristics, and 4 across patient baseline characteristics). Survival outcomes were estimated by Kaplan-Meier analysis and patient safety data were evaluated. RESULTS Mortality and morbidity risk was lower on nal-IRI+5-FU/LV treatment across subgroups. Exceptions were patients who had received prior nonliposomal irinotecan and those who had undergone prior Whipple procedure (overall survival hazard ratio = 1.25 and 1.23, respectively). Decreased appetite, liver metastases, and number of measurable metastatic lesions seemed to be prognostic of survival in this population. Subgroup safety data were generally comparable with those in the overall NAPOLI-1 safety population. CONCLUSIONS A diverse population of patients with mPAC that progressed on gemcitabine-based therapy benefited from nal-IRI+5-FU/LV versus 5-FU/LV, potentially helping guide treatment decisions for challenging cases.
Collapse
Affiliation(s)
- Teresa Macarulla Mercadé
- From the Vall d'Hebron University Hospital (HUVH) and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes
- Department of Internal Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan
| | - Chung-Pin Li
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital
- National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Jens T. Siveke
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen
- German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - David Cunningham
- The Royal Marsden NHS Foundation Trust, London and Surrey, United Kingdom
| | - György Bodoky
- Department of Oncology, Szent László Hospital, Budapest, Hungary
| | | | - Kyung-Hun Lee
- Department of Internal Medicine and Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Andrew Dean
- St. John of God Hospital, Subiaco, Western Australia, Australia
| | | | | |
Collapse
|
21
|
Potent Antitumor Activity of Liposomal Irinotecan in an Organoid- and CRISPR-Cas9-Based Murine Model of Gallbladder Cancer. Cancers (Basel) 2019; 11:cancers11121904. [PMID: 31795490 PMCID: PMC6966678 DOI: 10.3390/cancers11121904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/25/2022] Open
Abstract
Gallbladder cancer is associated with a dismal prognosis, and accurate in vivo models will be elemental to improve our understanding of this deadly disease and develop better treatment options. We have generated a transplantation-based murine model for gallbladder cancer that histologically mimics the human disease, including the development of distant metastasis. Murine gallbladder–derived organoids are genetically modified by either retroviral transduction or transfection with CRISPR/Cas9 encoding plasmids, thereby allowing the rapid generation of complex cancer genotypes. We characterize the model in the presence of two of the most frequent oncogenic drivers—Kras and ERBB2—and provide evidence that the tumor histology is highly dependent on the driver oncogene. Further, we demonstrate the utility of the model for the preclinical assessment of novel therapeutic approaches by showing that liposomal Irinotecan (Nal-IRI) is retained in tumor cells and significantly prolongs the survival of gallbladder cancer–bearing mice compared to conventional irinotecan.
Collapse
|
22
|
Dehshahri A, Ashrafizadeh M, Ghasemipour Afshar E, Pardakhty A, Mandegary A, Mohammadinejad R, Sethi G. Topoisomerase inhibitors: Pharmacology and emerging nanoscale delivery systems. Pharmacol Res 2019; 151:104551. [PMID: 31743776 DOI: 10.1016/j.phrs.2019.104551] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023]
Abstract
Topoisomerase enzymes have shown unique roles in replication and transcription. These enzymes which were initially found in Escherichia coli have attracted considerable attention as target molecules for cancer therapy. Nowadays, there are several topoisomerase inhibitors in the market to treat or at least control the progression of cancer. However, significant toxicity, low solubility and poor pharmacokinetic properties have limited their wide application and these characteristics need to be improved. Nano-delivery systems have provided an opportunity to modify the intrinsic properties of molecules and also to transfer the toxic agent to the target tissues. These delivery systems leads to the re-introduction of existing molecules present in the market as novel therapeutic agents with different physicochemical and pharmacokinetic properties. This review focusses on a variety of nano-delivery vehicles used for the improvement of pharmacological properties of topoisomerase inhibitors and thus enabling their potential application as novel drugs in the market.
Collapse
Affiliation(s)
- Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Mandegary
- Physiology Research Center, Institute of Neuropharmacology, and Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| |
Collapse
|
23
|
Abstract
Twenty-five years ago, the cytotoxic drug irinotecan (IRT) was first approved in Japan for the treatment of cancer. For more than two decades, the IRT prodrug has largely contributed to the treatment of solid tumors worldwide. Nowadays, this camptothecin derivative targeting topoisomerase 1 remains largely used in combination regimen, like FOLFIRI and FOLFIRINOX, to treat metastatic or advanced solid tumors, such as colon, gastric and pancreatic cancers and others. This review highlights recent discoveries in the field of IRT and its derivatives, including analogues of the active metabolite SN38 (such as FL118), the recently approved liposomal form Nal-IRI and SN38-based immuno-conjugates currently in development (such as sacituzumab govitecan). New information about the IRT mechanism of action are presented, including the discovery of a new protein target, the single-stranded DNA-binding protein FUBP1. Significant progress has been made also to better understand and manage the main limiting toxicities of IRT, chiefly neutropenia and diarrhea. The role of drug-induced inflammation and dysbiosis is underlined and strategies to limit the intestinal toxicity of IRT are discussed (use of β-glucuronidase inhibitors, plant extracts, probiotics). The detailed knowledge of the metabolism of IRT has enabled the identification of potential biomarkers to guide patient selection and to limit drug-induced toxicities, but no robust IRT-specific therapeutic biomarker has been approved yet. IRT is a versatile chemotherapeutic agent which combines well with a variety of anticancer drugs. It offers a large range of drug combinations with cytotoxic agents, targeted products and immuno-active biotherapeutics, to treat a variety of advanced solid carcinoma, sarcoma and cancers with progressive central nervous system diseases. A quarter of century after its first launch, IRT remains an essential anticancer drug, largely prescribed, useful to many patients and scientifically inspiring.
Collapse
|
24
|
Yang X, Yang Y, Jia Q, Hao Y, Liu J, Huang G. Preparation and Evaluation of Irinotecan Poly(Lactic-co-Glycolic Acid) Nanoparticles for Enhanced Anti-tumor Therapy. AAPS PharmSciTech 2019; 20:133. [PMID: 30820689 DOI: 10.1208/s12249-019-1327-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 02/01/2019] [Indexed: 12/25/2022] Open
Abstract
Irinotecan (IRT), the pro-drug of SN-38, has exhibited potent cytotoxicity against various tumors. In order to enhance the anti-tumor effect of IRT, we prepared IRT-loaded PLGA nanoparticles (IRT-PLGA-NPs) by emulsion-solvent evaporation method. Firstly, IRT-PLGA-NPs were characterized through drug loading (DL), entrapment efficiency (EE), particle size, zeta potential, transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). We next studied the in vitro release characteristics of IRT-PLGA-NPs. Finally, the pharmacokinetics and pharmacodynamics profiles of IRT-PLGA-NPs were investigated. The results revealed that IRT-PLGA-NPs were spherical with an average size of (169.97 ± 6.29) nm and its EE and DL were (52.22 ± 2.41)% and (4.75 ± 0.22)%, respectively. IRT-PLGA-NPs could continuously release drug for 14 days in vitro. In pharmacokinetics studies, for pro-drug IRT, the t1/2β of IRT-PLGA-NPs was extended from 0.483 to 3.327 h compared with irinotecan solution (IRT-Sol), and for its active metabolite SN-38, the t1/2β was extended from 1.889 to 4.811 h, which indicated that IRT-PLGA-NPs could prolong the retention times of both IRT and SN-38. The pharmacodynamics results revealed that the tumor doubling time, growth inhibition rate, and specific growth rate of IRT-PLGA-NPs were 2.13-, 1.30-, and 0.47-fold those of IRT-Sol, respectively, which demonstrated that IRT-PLGA-NPs could significantly inhibit the growth of tumor. In summary, IRT-PLGA-NPs, which exhibited excellent therapeutic effect against tumors, might be used as a potential carrier for tumor treatment in clinic.
Collapse
|
25
|
Malatesta L, Cosco D, Paolino D, Cilurzo F, Costa N, Di Tullio A, Fresta M, Celia C, Di Marzio L, Locatelli M. Simultaneous quantification of Gemcitabine and Irinotecan hydrochloride in rat plasma by using high performance liquid chromatography-diode array detector. J Pharm Biomed Anal 2018; 159:192-199. [PMID: 29990886 DOI: 10.1016/j.jpba.2018.06.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 01/19/2023]
Abstract
In this manuscript we aimed at the simultaneous separation and quantification of Gemcitabine and Irinotecan hydrochloride (injected both as single components and in combination) from Sprague Dawley rat plasma by using a validated method obtained through the use of a High Performance Liquid Chromatography (HPLC)-diode array detector (DAD). Gemcitabine and Irinotecan hydrochloride were detected and quantified using a Zorbax Extend C-18 column (250 mm × 4.6 mm; 5 μm particle size) in gradient elution mode. The chromatographic analyses were carried out in 15 min. The analytical mode was calibrated and validated in the concentration range from 0.1 to 18 μg/mL both for Gemcitabine and Irinotecan hydrochloride. Sprague Dawley rat plasma was used to perform the analysis. 3-methylxanthine was the internal standard. The weighted-matrix matched standard curves of Gemcitabine and Irinotecan hydrochloride showed a good linearity up to 18 μg/mL. Parallelism tests were also performed to evaluate whether the over-range samples could be analyzed after dilution without affecting the analytical performance. The intra- and inter-day precision (RSD%) values of Gemcitabine and Irinotecan hydrochloride were ≤7.14% and ≤11.5%, respectively. The intra- and inter-day trueness (Bias%) values were in the range from -11.5% to 1.70% for both drugs. The analytical mode performance was further tested after collecting Sprague Dawley rat plasma following a single-dose administration of chemotherapeutics or their association. The validated HPLC-DAD method allowed the simultaneous quantification of Gemcitabine and Irinotecan hydrochloride in the rat plasma, besides the evaluation of the pharmacokinetic parameters and drug delivery.
Collapse
Affiliation(s)
- L Malatesta
- University of Chieti - Pescara "G. d'Annunzio", Department of Pharmacy, via dei Vestini 31, 66100 Chieti, Italy
| | - D Cosco
- University of Catanzaro "Magna Graecia", Department of Health Sciences, Viale "S. Venuta" s.n.c., 88100 Catanzaro, Italy
| | - D Paolino
- University of Catanzaro "Magna Graecia", Department of Experimental and Clinical Medicine, Viale "S. Venuta" s.n.c., 88100 Catanzaro, Italy; University of Catanzaro "Magna Græcia", Inter-Regional Research Center for Food Safety & Health, Viale "S. Venuta" s.n.c., 88100 Catanzaro, Italy
| | - F Cilurzo
- University of Chieti - Pescara "G. d'Annunzio", Department of Pharmacy, via dei Vestini 31, 66100 Chieti, Italy
| | - N Costa
- University of Catanzaro "Magna Graecia", Department of Health Sciences, Viale "S. Venuta" s.n.c., 88100 Catanzaro, Italy
| | - A Di Tullio
- University of Chieti - Pescara "G. d'Annunzio", Department of Pharmacy, via dei Vestini 31, 66100 Chieti, Italy
| | - M Fresta
- University of Catanzaro "Magna Graecia", Department of Health Sciences, Viale "S. Venuta" s.n.c., 88100 Catanzaro, Italy
| | - C Celia
- University of Chieti - Pescara "G. d'Annunzio", Department of Pharmacy, via dei Vestini 31, 66100 Chieti, Italy; Houston Methodist Research Institute, Department of Nanomedicine, 6670 Bertner Ave, Houston, TX 77030, USA
| | - L Di Marzio
- University of Chieti - Pescara "G. d'Annunzio", Department of Pharmacy, via dei Vestini 31, 66100 Chieti, Italy
| | - M Locatelli
- University of Chieti - Pescara "G. d'Annunzio", Department of Pharmacy, via dei Vestini 31, 66100 Chieti, Italy; Interuniversity Consortium of Structural and Systems Biology, Viale Medaglie d'Oro 305, 00136 Roma, Italy.
| |
Collapse
|