1
|
Chen J, Chen K, Xue S, Cheng X, Qi Y, Wang H, Li W, Cheng G, Xiong Y, Mu C, Gu M. Integration of caveolin-mediated cytosolic delivery and enzyme-responsive releasing of squalenoyl nanoparticles enhance the anti-cancer efficacy of chidamide in pancreatic cancer. Int J Pharm 2024; 655:124072. [PMID: 38561133 DOI: 10.1016/j.ijpharm.2024.124072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/29/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
We explored the potential of overcoming the dense interstitial barrier in pancreatic cancer treatment by enhancing the uptake of hydrophilic chemotherapeutic drugs. In this study, we synthesized the squalenoyl-chidamide prodrug (SQ-CHI), linking lipophilic squalene (SQ) with the hydrophilic antitumor drug chidamide (CHI) through a trypsin-responsive bond. Self-assembled nanoparticles with sigma receptor-bound aminoethyl anisamide (AEAA) modification, forming AEAA-PEG-SQ-CHI NPs (A-C NPs, size 116.6 ± 0.4 nm), and reference nanoparticles without AEAA modification, forming mPEG-SQ-CHI NPs (M-C NPs, size 88.3 ± 0.3 nm), were prepared. A-C NPs exhibited significantly higher in vitro CHI release (74.7 %) in 0.5 % trypsin medium compared to release (20.2 %) in medium without trypsin. In vitro cell uptake assays revealed 3.6 and 2.3times higher permeation of A-C NPs into tumorspheres of PSN-1/HPSC or CFPAC-1/HPSC, respectively, compared to M-C NPs. Following intraperitoneal administration to subcutaneous tumor-bearing nude mice, the A-C NPs group demonstrated significant anti-pancreatic cancer efficacy, inducing cancer cell apoptosis and inhibiting proliferation in vivo. Mechanistic studies revealed that AEAA surface modification on nanoparticles promoted intracellular uptake through caveolin-mediated endocytosis. This nanoparticle system presents a novel therapeutic approach for pancreatic cancer treatment, offering a delivery strategy to enhance efficacy through improved tumor permeation, trypsin-responsive drug release, and specific cell surface receptor-mediated intracellular uptake.
Collapse
Affiliation(s)
- Junyan Chen
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Kaidi Chen
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Shuai Xue
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Xiao Cheng
- Huzhou Institute for Food and Drug Control, Huzhou 313000, Zhejiang, China.
| | - Yuwei Qi
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Hangjie Wang
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Wei Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Guilin Cheng
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Yang Xiong
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Chaofeng Mu
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Mancang Gu
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| |
Collapse
|
2
|
Wang Z, Zhao L, Zhang B, Feng J, Wang Y, Zhang B, Jin H, Ding L, Wang N, He S. Discovery of novel polysubstituted N-alkyl acridone analogues as histone deacetylase isoform-selective inhibitors for cancer therapy. J Enzyme Inhib Med Chem 2023; 38:2206581. [PMID: 37144599 PMCID: PMC10165928 DOI: 10.1080/14756366.2023.2206581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
Pan-histone deacetylase (HDAC) inhibitors often have some toxic side effects. In this study, three series of novel polysubstituted N-alkyl acridone analogous were designed and synthesised as HDAC isoform-selective inhibitors. Among them, 11b and 11c exhibited selective inhibition of HDAC1, HDAC3, and HDAC10, with IC50 values ranging from 87 nM to 418 nM. However, these compounds showed no inhibitory effect against HDAC6 and HDAC8. Moreover, 11b and 11c displayed potent antiproliferative activity against leukaemia HL-60 cells and colon cancer HCT-116 cells, with IC50 values ranging from 0.56 μM to 4.21 μM. Molecular docking and energy scoring functions further analysed the differences in the binding modes of 11c with HDAC1/6. In vitro anticancer studies revealed that the hit compounds 11b and 11c effectively induced histone H3 acetylation, S-phase cell cycle arrest, and apoptosis in HL-60 cells in a concentration-dependent manner.
Collapse
Affiliation(s)
- Ze Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Li Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, People's Republic of China
| | - Bo Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Jiahe Feng
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Yule Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Bin Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Haixiao Jin
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, People's Republic of China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, People's Republic of China
| |
Collapse
|
3
|
Parveen R, Harihar D, Chatterji BP. Recent histone deacetylase inhibitors in cancer therapy. Cancer 2023; 129:3372-3380. [PMID: 37560925 DOI: 10.1002/cncr.34974] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 08/11/2023]
Abstract
Cancer metastasis increases the complexity of the disease and escalates patient mortality. Traditional chemotherapy has been associated with low efficacy and marked side effects. Studies pivot toward histone deacetylase (HDAC) enzymes and inhibitors because they are critical for chromatin structure, gene regulation, and cellular activities that are linked to metastasis and cancer progression. HDAC inhibitors (HDACi) can alter gene expression patterns and can lead to cell-cycle arrest and apoptosis in neoplastic cells. Several HDACi drugs like vorinostat, romidepsin, panobinostat, and belinostat are approved by the Food and Drug Administration. China and Japan have approved the use of tucidinostat, a new subtype-selective HDACi that inhibits class 1 HDAC1, HDAC2, HDAC3, as well as class 2b HDAC10. These drugs have shown promising results in the treatment of multiple carcinoma including cervical cancer, T-cell lymphoma, brain cancer, and breast cancer. This review highlights the HDACi classes, the mechanism of action of these inhibitors, their preclinical and clinical efficacy, and the latest clinical trials and patents used in cancer therapeutics. Overall, this review focuses on patents and clinical trials data from 2019 onward to give a better viewpoint on current trends in HDACis as chemotherapy agents.
Collapse
Affiliation(s)
- Roza Parveen
- Faculty of Medicine and Health Sciences, Tampere University, Tampere, Finland
| | - Divya Harihar
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | | |
Collapse
|
4
|
Nie Q, Chen W, Zhang T, Ye S, Ren Z, Zhang P, Wen J. Iron oxide nanoparticles induce ferroptosis via the autophagic pathway by synergistic bundling with paclitaxel. Mol Med Rep 2023; 28:198. [PMID: 37681444 PMCID: PMC10510030 DOI: 10.3892/mmr.2023.13085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
In recent years, inhibiting tumor cell activity by triggering cell ferroptosis has become a research hotspot. The development of generic targeted nanotherapeutics might bring new ideas for non‑invasive applications. Currently, the potential mechanism underlying the universal application of paclitaxel (PTX)‑loaded iron oxide nanoparticles (IONP@PTX) to different types of tumors is unclear. The present study aimed to prepare IONP@PTX for targeted cancer therapy and further explore the potential mechanisms underlying the inhibitory effects of this material on the NCI‑H446 human small cell lung cancer and brain M059K malignant glioblastoma cell lines. First, a CCK‑8 assay was performed to determine cell viability, and then the combination index for evaluating drug combination interaction effect was evaluated. Intracellular reactive oxygen species (ROS) and lipid peroxidation levels were monitored using a DCFH‑DA fluorescent probe and a C11‑BODIPY™ fluorescent probe, respectively. Furthermore, western blotting assay was performed to determine the expression of autophagy‑ and iron death‑related proteins. The experimental results showed that, compared with either IONP monotherapy, PTX monotherapy, or IONP + PTX, IONP@PTX exerted a synergistic effect on the viability of both cell types, with significantly increased total iron ion concentration, ROS levels and lipid peroxidation levels. IONP@PTX significantly increased the expression of autophagy‑related proteins Beclin 1 and histone deacetylase 6 (HDAC6) in both cell lines (P<0.05), increased the expression of light chain 3 (LC3)‑II/I in NCI‑H446 cells (P<0.05) and decreased that of sequestosome1 (p62) in M059K cells (P<0.05). Moreover, the addition of rapamycin enhanced the IONP@PTX‑induced the upregulation of Beclin 1, LC3‑II/I and HDAC6 and the downregulation of mTORC1 protein in both cell lines (P<0.05). Moreover, rapamycin enhanced the IONP@PTX‑induced downregulation of p62 protein in NCI‑H446 cells (P<0.05), suggesting that IONP@PTX induces ferroptosis, most likely through autophagy. Collectively, the present findings show that IONP works synergistically with PTX to induce ferroptosis via the autophagic pathway.
Collapse
Affiliation(s)
- Qi Nie
- Guangxi Clinical Medical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541104, P.R. China
| | - Wenqing Chen
- Guangxi Clinical Medical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541104, P.R. China
| | - Tianmei Zhang
- Guangxi Clinical Medical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Shangrong Ye
- Guangxi Clinical Medical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Zhongyu Ren
- Guangxi Clinical Medical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Peng Zhang
- Guangxi Clinical Medical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Jian Wen
- Guangxi Clinical Medical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541104, P.R. China
| |
Collapse
|
5
|
Contreras-Sanzón E, Prado-Garcia H, Romero-Garcia S, Nuñez-Corona D, Ortiz-Quintero B, Luna-Rivero C, Martínez-Cruz V, Carlos-Reyes Á. Histone deacetylases modulate resistance to the therapy in lung cancer. Front Genet 2022; 13:960263. [PMID: 36263432 PMCID: PMC9574126 DOI: 10.3389/fgene.2022.960263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/07/2022] [Indexed: 12/07/2022] Open
Abstract
The acetylation status of histones located in both oncogenes and tumor suppressor genes modulate cancer hallmarks. In lung cancer, changes in the acetylation status are associated with increased cell proliferation, tumor growth, migration, invasion, and metastasis. Histone deacetylases (HDACs) are a group of enzymes that take part in the elimination of acetyl groups from histones. Thus, HDACs regulate the acetylation status of histones. Although several therapies are available to treat lung cancer, many of these fail because of the development of tumor resistance. One mechanism of tumor resistance is the aberrant expression of HDACs. Specific anti-cancer therapies modulate HDACs expression, resulting in chromatin remodeling and epigenetic modification of the expression of a variety of genes. Thus, HDACs are promising therapeutic targets to improve the response to anti-cancer treatments. Besides, natural compounds such as phytochemicals have potent antioxidant and chemopreventive activities. Some of these compounds modulate the deregulated activity of HDACs (e.g. curcumin, apigenin, EGCG, resveratrol, and quercetin). These phytochemicals have been shown to inhibit some of the cancer hallmarks through HDAC modulation. The present review discusses the epigenetic mechanisms by which HDACs contribute to carcinogenesis and resistance of lung cancer cells to anticancer therapies.
Collapse
Affiliation(s)
| | - Heriberto Prado-Garcia
- Laboratorio de Onco-Inmunobiologia, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de México, México
| | - Susana Romero-Garcia
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - David Nuñez-Corona
- Posgrado de Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Blanca Ortiz-Quintero
- Departamento de Investigación en Bioquímica, Unidad de Investigación, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de México, México
| | - Cesar Luna-Rivero
- Servicio de Patología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de México, México
| | - Victor Martínez-Cruz
- Laboratorio de Biología Molecular, Instituto Nacional de Pediatría, Ciudad de México, México
| | - Ángeles Carlos-Reyes
- Laboratorio de Onco-Inmunobiologia, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de México, México
- *Correspondence: Ángeles Carlos-Reyes,
| |
Collapse
|
6
|
Tian C, Huang S, Xu Z, Liu W, Li D, Liu M, Zhu C, Wu L, Jiang X, Ding H, Zhao Q. Design, synthesis, and biological evaluation of β-carboline 1,3,4-oxadiazole based hybrids as HDAC inhibitors with potential antitumor effects. Bioorg Med Chem Lett 2022; 64:128663. [PMID: 35272009 DOI: 10.1016/j.bmcl.2022.128663] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022]
Abstract
A series of novel β-carboline 1,3,4-oxadiazole based hybrids were designed, synthesized, and tested for cytotoxicity and HDAC inhibition. Among the target compounds, compound ZDLT-1 displayed high inhibitory activity for class I HDACs 1, 2, and 3, and potent anti-proliferative activity against HCT116 cells with an IC50 value of 0.173 ± 0.018 μM, it also exhibited better inhibitory activity with an IC50 value of 6 nM for HDAC6 than SAHA (IC50 = 15 nM). Furthermore, the pharmacological experiment of Hoechst staining, colony formation, cell apoptosis assay, and wound healing scratch assay indicated that compound ZDLT-1 was a potent cytotoxic agent against HCT116 cells with cell apoptosis induction. Further, in silico prediction of physicochemical properties, drug-likeness, and ADME parameters suggested that compound ZDLT-1 is a promising anticancer agent. Taken together, the high potency cytotoxicity and class I HDACs inhibitory activity of compound ZDLT-1, which with the β-carboline 1,3,4-oxadiazole based hybrids as potent anticancer agents could be nominated for further modification and optimization.
Collapse
Affiliation(s)
- Caizhi Tian
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, PR China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Shuoqi Huang
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, PR China; School of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Zihua Xu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, PR China
| | - Wenwu Liu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, PR China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Deping Li
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, PR China; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Mingyue Liu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, PR China; School of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Chengze Zhu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Limeng Wu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, PR China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xiaowen Jiang
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, PR China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Huaiwei Ding
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Qingchun Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, PR China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
7
|
Chen X, Lin H, Chen J, Wu L, Zhu J, Ye Y, Chen S, Du H, Li J. Paclitaxel Inhibits Synoviocyte Migration and Inflammatory Mediator Production in Rheumatoid Arthritis. Front Pharmacol 2021; 12:714566. [PMID: 34566640 PMCID: PMC8458635 DOI: 10.3389/fphar.2021.714566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/26/2021] [Indexed: 11/23/2022] Open
Abstract
Activated fibroblast-like synoviocytes (FLSs) play a crucial role in the pathogenesis and progression of rheumatoid arthritis (RA). It is urgent to develop new drugs that can effectively inhibit the abnormal activation of RA-FLS. In our study, the RA-FLS cell line, MH7A, and mice with collagen-induced arthritis (CIA) were used to evaluate the effect of paclitaxel (PTX). Based on the results, PTX inhibited the migration of RA-FLS in a dose-dependent manner and significantly reduced the spontaneous expression of IL-6, IL-8, and RANKL mRNA and TNF-α-induced transcription of the IL-1β, IL-8, MMP-8, and MMP-9 genes. However, PTX had no significant effect on apoptosis in RA-FLS. Mechanistic studies revealed that PTX significantly inhibited the TNF-α-induced phosphorylation of ERK1/2 and JNK in the mitogen-activated protein kinase (MAPK) pathway and suppressed the TNF-α-induced activation of AKT, p70S6K, 4EBP1, and HIF-1α in the AKT/mTOR pathway. Moreover, PTX alleviated synovitis and bone destruction in CIA mice. In conclusion, PTX inhibits the migration and inflammatory mediator production of RA-FLS by targeting the MAPK and AKT/mTOR signaling pathways, which provides an experimental basis for the potential application in the treatment of RA.
Collapse
Affiliation(s)
- Xiaochen Chen
- Department of Rheumatic and TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haofeng Lin
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jinyang Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Lisheng Wu
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Junqing Zhu
- Department of Rheumatic and TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongnong Ye
- Department of Drug and Device Center, Huaxin Orthopaedic Hospital, Shantou University, Guangzhou, China
| | - Shixian Chen
- Department of Rheumatic and TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongyan Du
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Juan Li
- Department of Rheumatic and TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|