1
|
Huang X, Li S, Gao W, Shi J, Cheng M, Mi Y, Liu Y, Sang M, Li Z, Geng C. KIF20A is a Prognostic Marker for Female Patients with Estrogen Receptor-Positive Breast Cancer and Receiving Tamoxifen as Adjuvant Endocrine Therapy. Int J Gen Med 2023; 16:3623-3635. [PMID: 37637711 PMCID: PMC10455948 DOI: 10.2147/ijgm.s425918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Purpose Our aim was to verify whether KIF20A has the potential to serve as a prognostic marker for female patients with estrogen receptor (ER)-positive breast cancer (BC) and treated with tamoxifen (TAM). Patients and Methods Online tools were used to investigate the potential correlation between KIF20A gene expression and survival of patients with ER-positive BC and TAM treatment. Furthermore, immunohistochemistry (IHC) was conducted to assess the expression levels of KIF20A in patients included from our center. The prognostic value of KIF20A for disease-free survival (DFS) and overall survival (OS) was further evaluated using Cox regression analysis. Results According to the results obtained from online tools, it was found that patients with low KIF20A expression exhibited significantly better survival outcomes in terms of relapse-free survival (RFS), distant metastasis-free survival (DMFS), and OS compared to those with high KIF20A expression (P < 0.001, P < 0.001, and P = 0.008, respectively). Additionally, significantly lower gene expression of KIF20A was found in patients who responded to TAM than in those who did not respond to TAM (P < 0.001). We further included 203 patients with adjuvant TAM therapy, and IHC for KIF20A was performed on sections from paraffin-embedded blocks. Patients with low KIF20A expression had significantly better DFS and OS (P = 0.001 and 0.002, respectively, log rank test), and the expression of KIF20A was identified as an independent factor for predicting both DFS and OS (P = 0.001 and 0.008, respectively). Conclusion KIF20A expression is an independent prognostic factor for survival in patients with ER-positive BC who received adjuvant TAM therapy. In clinical practice, IHC evaluation of KIF20A expression in surgical samples before administering tamoxifen may assist in predicting the treatment outcomes of these patients.
Collapse
Affiliation(s)
- Xuchen Huang
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Key Laboratory in Hebei Province for Molecular Medicine of Breast Cancer, Shijiazhuang, Hebei, People’s Republic of China
| | - Sainan Li
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Key Laboratory in Hebei Province for Molecular Medicine of Breast Cancer, Shijiazhuang, Hebei, People’s Republic of China
| | - Wei Gao
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Key Laboratory in Hebei Province for Molecular Medicine of Breast Cancer, Shijiazhuang, Hebei, People’s Republic of China
| | - Jiajie Shi
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Key Laboratory in Hebei Province for Molecular Medicine of Breast Cancer, Shijiazhuang, Hebei, People’s Republic of China
| | - Meng Cheng
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Key Laboratory in Hebei Province for Molecular Medicine of Breast Cancer, Shijiazhuang, Hebei, People’s Republic of China
| | - Yunzhe Mi
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Key Laboratory in Hebei Province for Molecular Medicine of Breast Cancer, Shijiazhuang, Hebei, People’s Republic of China
| | - Yueping Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Meixiang Sang
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Ziyi Li
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Cuizhi Geng
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Key Laboratory in Hebei Province for Molecular Medicine of Breast Cancer, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
2
|
Wang H, Shan X, Peng Y, Zhou W. Circular RNAs in the chemoresistance of triple-negative breast cancer: A systematic review. Drug Dev Res 2023; 84:805-814. [PMID: 37114737 DOI: 10.1002/ddr.22069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023]
Abstract
This study aims to assess studies on circular RNAs (circRNAs) in the chemoresistance of triple-negative breast cancer (TNBC) and provide relevant references for the development of new TNBC chemotherapy sensitivity biomarkers and therapeutic targets. The PubMed, Embase, Web of Knowledge, Cochrane Library, and four Chinese databases were searched up to January 27, 2023, and studies related to TNBC chemoresistance were included. The basic characteristics of the studies and the mechanisms of circRNAs in regulating TNBC chemoresistance were analyzed. A total of 28 studies published between 2018 and 2023 were included, and the chemotherapeutics included adriamycin, paclitaxel, docetaxel, 5-fluorouracil, lapatinib, and so forth. A total of 30 circRNAs were identified, 86.67% (n = 26) of these circRNAs were reported to act as microRNA (miRNA) sponges to regulate chemotherapy sensitivity, while only two circRNAs (circRNA-MTO1 and circRNA-CREIT) interacted with proteins. A total of 14, 12, and 2 circRNAs were reported to be associated with chemoresistance to adriamycin, taxanes, and 5-fluorouracil, respectively. Six circRNAs were found to act as miRNA sponges that promote chemotherapy resistance by regulating the PI3K/Akt signalling pathway. CircRNAs participate in the regulation of TNBC chemoresistance and can be used as biomarkers and therapeutic targets for improving chemotherapy sensitivity. However, further studies are needed to confirm the role of circRNAs in TNBC chemoresistance.
Collapse
Affiliation(s)
- Hongmei Wang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuefeng Shan
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Peng
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiying Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Yang S, Hui TL, Wang HQ, Zhang X, Mi YZ, Cheng M, Gao W, Geng CZ, Li SN. High expression of autophagy-related gene EIF4EBP1 could promote tamoxifen resistance and predict poor prognosis in breast cancer. World J Clin Cases 2023; 11:4788-4799. [PMID: 37583983 PMCID: PMC10424051 DOI: 10.12998/wjcc.v11.i20.4788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Breast cancer (BC) remains a public health problem. Tamoxifen (TAM) resistance has caused great difficulties for treatment of BC patients. Eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1) plays critical roles in the tumorigenesis and progression of BC. However, the expression and mechanism of EIF4EBP1 in determining the efficacy of TAM therapy in BC patients are still unclear. AIM To investigate the expression and functions of EIF4EBP1 in determining the efficacy of TAM therapy in BC patients. METHODS High-throughput sequencing data of breast tumors were downloaded from the Gene Expression Omnibus database. Differential gene expression analysis identified EIF4EBP1 to be significantly upregulated in cancer tissues. Its prognostic value was analyzed. The biological function and related pathways of EIF4EBP1 was analyzed. Subsequently, the expression of EIF4EBP1 was determined by real-time reverse transcription polymerase chain reaction and western blotting. Cell Counting Kit-8 assays, colony formation assay and wound healing assay were used to understand the phenotypes of function of EIF4EBP1. RESULTS EIF4EBP1 was upregulated in the TAM-resistant cells, and EIF4EBP1 was related to the prognosis of BC patients. Gene Set Enrichment Analysis showed that EIF4EBP1 might be involved in Hedgehog signaling pathways. Decreasing the expression of EIF4EBP1 could reverse TAM resistance, whereas overexpression of EIF4EBP1 promoted TAM resistance. CONCLUSION This study indicated that EIF4EBP1 was overexpressed in the BC and TAM-resistant cell line, which increased cell proliferation, invasion, migration and TAM resistance in BC cells.
Collapse
Affiliation(s)
- Shan Yang
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Tian-Li Hui
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Hao-Qi Wang
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Xi Zhang
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Yun-Zhe Mi
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Meng Cheng
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Wei Gao
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Cui-Zhi Geng
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Sai-Nan Li
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| |
Collapse
|
4
|
Wang Y, Luo X, Wu N, Liao Q, Wang J. SRC-3/TRAF4 facilitates ovarian cancer development by activating the PI3K/AKT signaling pathway. Med Oncol 2023; 40:76. [PMID: 36625999 PMCID: PMC9831961 DOI: 10.1007/s12032-022-01944-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Ovarian cancer is the seventh most common cancer in women, and it causes many deaths in women worldwide. Patients with ovarian cancer have a poor prognosis and low survival rate. This study aimed to explore the role of the SRC-3/TRAF4/PI3K/AKT pathway in ovarian cancer development. METHODS SRC-3 and TRAF4 expression in ovarian cancer cell lines were assessed using qRT-PCR and western-blotting. The expression of SRC-3 and TRAF4 in ovarian cancer cells was downregulated by transient transfection with sh-RNAs. An MTT assay was performed to evaluate cell proliferation. Cell migration and invasion were measured using a Transwell assay. Cell stemness was detected using a cell spheroidization assay and western blotting. The expression levels of stem cell factors and PI3K/AKT pathway proteins were determined by qRT-PCR and western blot analysis. RESULTS SRC-3 and TRAF4 were upregulated in ovarian cancer cell lines. TRAF4 is a downstream factor of SRC-3, and the protein level of TRAF4 was regulated by SRC-3. SRC-3 knockdown reduced TRAF4 expression. Silencing SRC-3 or TRAF4 inhibited cell proliferation, migration, and invasion, as well as the expression of stem cell factors. Furthermore, sh-TRAF4 as well as treatment with LY294002, the PI3K/Akt inhibitor, inhibited the phosphorylation of Akt and PI3K, thus repressing the activation of PI3K/AKT signaling pathway in ovarian cancer cell lines. However, TRAF4 overexpression reversed the effect of SRC-3 silencing on cell proliferation, migration, invasion, and stemness. CONCLUSION Our study demonstrated that SRC-3/TRAF4 promotes ovarian cancer cell growth, migration, invasion, and stemness by activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Ying Wang
- grid.216417.70000 0001 0379 7164Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xia Luo
- grid.216417.70000 0001 0379 7164Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Nayiyuan Wu
- grid.216417.70000 0001 0379 7164Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qianjin Liao
- grid.216417.70000 0001 0379 7164Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jing Wang
- grid.216417.70000 0001 0379 7164Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
5
|
Gu Y, Gao H, Zhang H, John A, Zhu X, Shivaram S, Yu J, Weinshilboum RM, Wang L. TRAF4 hyperactivates HER2 signaling and contributes to Trastuzumab resistance in HER2-positive breast cancer. Oncogene 2022; 41:4119-4129. [PMID: 35864174 PMCID: PMC9417995 DOI: 10.1038/s41388-022-02415-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/09/2022]
Abstract
The HER2 receptor modulates downstream signaling by forming homodimers and heterodimers with other members of the HER family. For patients with HER2-positive breast cancer, Trastuzumab, an anti-HER2 monoclonal antibody as first-line therapy has shown significant survival benefits. However, the development of acquired resistance to Trastuzumab continues to be a significant obstacle. TNF receptor-associated factor 4 (TRAF4) upregulation was discovered to be associated with a worse clinical outcome. Here we identified TRAF4 overexpression as one of the putative mechanisms for HER2-positive breast cancer cells to maintain HER2 signaling during Trastuzumab treatment, while TRAF4 knockdown reduced HER2 stability and improved Trastuzumab sensitivity. Mechanistically, TRAF4 regulates HER2 level through its impact on SMAD specific E3 ubiquitin protein ligase protein 2 (SMURF2). The development of a membrane-associated protein complex containing HER2, TRAF4, and SMURF2 has been observed. SMURF2 bound to the HER2 cytoplasmic domain, and directly ubiquitinated it leading to HER2 degradation, whereas TRAF4 stabilized HER2 by degrading SMURF2 and inhibiting the binding of SMURF2 to HER2. Moreover, downregulation of TRAF4 has decreased the AKT/mTOR signaling. In conclusion, we discovered a new HER2 signaling regulation that involves the TRAF4-SMURF2 complex, a possible mechanism that might contribute to anti-HER2 resistance, making TRAF4 a viable target for treating HER2 + breast cancer.
Collapse
Affiliation(s)
- Yayun Gu
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Huanyao Gao
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Huan Zhang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - August John
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Xiujuan Zhu
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Suganti Shivaram
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Jia Yu
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Richard M Weinshilboum
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Liewei Wang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Ruan X, Zhang R, Li R, Zhu H, Wang Z, Wang C, Cheng Z, Peng H. The Research Progress in Physiological and Pathological Functions of TRAF4. Front Oncol 2022; 12:842072. [PMID: 35242717 PMCID: PMC8885719 DOI: 10.3389/fonc.2022.842072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/26/2022] [Indexed: 11/22/2022] Open
Abstract
Tumour necrosis factor receptor-associated factor 4 (TRAF4) is a member of the TRAF protein family, a cytoplasmic bridging molecule closely associated with various immune functions. The physiological processes of TRAF4 are mainly involved in embryonic development, cell polarity, cell proliferation, apoptosis, regulation of reactive oxygen species production. TRAF4 is overexpressed in a variety of tumors and regulates the formation and development of a variety of tumors. In this review, we summarize the physiological and pathological regulatory functions of TRAF4 and focus on understanding the biological processes involved in this gene, to provide a reference for further studies on the role of this gene in tumorigenesis and development.
Collapse
Affiliation(s)
- Xueqin Ruan
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Hematology, Central South University, Changsha, China
| | - Rong Zhang
- Division of Cancer Immunotherapy, National Cancer Center Exploratory Oncology Research & Clinical Trial Center, Chiba, Japan
| | - Ruijuan Li
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Hematology, Central South University, Changsha, China
| | - Hongkai Zhu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Hematology, Central South University, Changsha, China
| | - Zhihua Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Hematology, Central South University, Changsha, China
| | - Canfei Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Hematology, Central South University, Changsha, China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Hematology, Central South University, Changsha, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Hematology, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Zhang H, Wang J, Ge Y, Ye M, Jin X. Siah1 in cancer and nervous system diseases (Review). Oncol Rep 2021; 47:35. [PMID: 34958110 DOI: 10.3892/or.2021.8246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/10/2021] [Indexed: 11/06/2022] Open
Abstract
The dysregulation of the ubiquitin‑proteasome system will result in the abnormal accumulation and dysfunction of proteins, thus leading to severe diseases. Seven in absentia homolog 1 (Siah1), an E3 ubiquitin ligase, has attracted wide attention due to its varied functions in physiological and pathological conditions, and the numerous newly discovered Siah1 substrates. In cancer and nervous system diseases, the functions of Siah1 as a promoter or a suppressor of diseases are related to the change in cellular microenvironment and subcellular localization. At the same time, complex upstream regulations make Siah1 different from other E3 ubiquitin ligases. Understanding the molecular mechanism of Siah1 will help the study of various signaling pathways and benefit the therapeutic strategy of human diseases (e.g., cancer and nervous system diseases). In the present review, the functions and regulations of Siah1 are described. Moreover, novel substrates of Siah1 discovered in recent studies will be highlighted in cancer and nervous system diseases, providing ideas for future research and clinical targeted therapies using Siah1.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Jie Wang
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Yidong Ge
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Meng Ye
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Xiaofeng Jin
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| |
Collapse
|
8
|
Nozhat Z, Heydarzadeh S, Memariani Z, Ahmadi A. Chemoprotective and chemosensitizing effects of apigenin on cancer therapy. Cancer Cell Int 2021; 21:574. [PMID: 34715860 PMCID: PMC8555304 DOI: 10.1186/s12935-021-02282-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Therapeutic resistance to radiation and chemotherapy is one of the major obstacles in cancer treatment. Although synthetic radiosensitizers are pragmatic solution to enhance tumor sensitivity, they pose concerns of toxicity and non-specificity. In the last decades, scientists scrutinized novel plant-derived radiosensitizers and chemosensitizers, such as flavones, owing to their substantial physiological effects like low toxicity and non-mutagenic properties on the human cells. The combination therapy with apigenin is potential candidate in cancer therapeutics. This review explicates the combinatorial strategies involving apigenin to overcome drug resistance and boost the anti-cancer properties. METHODS We selected full-text English papers on international databases like PubMed, Web of Science, Google Scholar, Scopus, and ScienceDirect from 1972 up to 2020. The keywords included in the search were: Apigenin, Chemoprotective, Chemosensitizing, Side Effects, and Molecular Mechanisms. RESULTS In this review, we focused on combination therapy, particularly with apigenin augmenting the anti-cancer effects of chemo drugs on tumor cells, reduce their side effects, subdue drug resistance, and protect healthy cells. The reviewed research data implies that these co-therapies exhibited a synergistic effect on various cancer cells, where apigenin sensitized the chemo drug through different pathways including a significant reduction in overexpressed genes, AKT phosphorylation, NFκB, inhibition of Nrf2, overexpression of caspases, up-regulation of p53 and MAPK, compared to the monotherapies. Meanwhile, contrary to the chemo drugs alone, combined treatments significantly induced apoptosis in the treated cells. CONCLUSION Briefly, our analysis proposed that the combination therapies with apigenin could suppress the unwanted toxicity of chemotherapeutic agents. It is believed that these expedient results may pave the path for the development of drugs with a high therapeutic index. Nevertheless, human clinical trials are a prerequisite to consider the potential use of apigenin in the prevention and treatment of various cancers. Conclusively, the clinical trials to comprehend the role of apigenin as a chemoprotective agent are still in infancy.
Collapse
Affiliation(s)
- Zahra Nozhat
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 China
- Cellular and Molecular Endocrine Research Center, Research Institute of Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Heydarzadeh
- Cellular and Molecular Endocrine Research Center, Research Institute of Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biochemistry, School of Biological Sciences, Falavarjan Branch Islamic Azad University, Isfahan, Iran
| | - Zahra Memariani
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
9
|
Zhou J, Le K, Xu M, Ming J, Yang W, Zhang Q, Lu L, Xi Z, Ruan S, Huang T. CXCR4 Antagonist AMD3100 Reverses the Resistance to Tamoxifen in Breast Cancer via Inhibiting AKT Phosphorylation. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:161-170. [PMID: 32691010 PMCID: PMC7311345 DOI: 10.1016/j.omto.2020.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 06/19/2020] [Indexed: 01/11/2023]
Abstract
Endocrine therapy is a systemic therapy and has become the main treatment strategy for patients with estrogen receptor (ER)-positive breast cancer. However, tamoxifen resistance has become an insurmountable clinical challenge, and the underlying mechanisms are still poorly understood. In this study, we explored the roles of CXC chemokine receptor type 4 (CXCR4) in tamoxifen-treated breast cancer and tamoxifen resistance. Based on the Gene Expression Omnibus (GEO) database, high expression of CXCR4 was found to be associated with worse overall survival (hazard ratio [HR] = 4.646, p < 0.001) and cancer-specific survival (HR = 4.480, p < 0.001) in tamoxifen-treated breast cancer. CXCR4 was also positively correlated with the level of AKT phosphorylation and the resistance to tamoxifen in breast cancer. AMD3100 is a CXCR4 antagonist and was found to decrease phosphorylated (p)-AKT levels of tamoxifen-resistant cells. The reversal effect of AMD3100 on tamoxifen resistance was also confirmed in vitro and in vivo. Taken together, our study demonstrated that CXCR4 could be a potential prognostic biomarker for tamoxifen-treated breast cancer, and the combination of AMD3100 with tamoxifen could be a more efficacious therapeutic strategy for the treatment of tamoxifen resistance.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kehao Le
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ming Xu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wen Yang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiulei Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Linlin Lu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zihan Xi
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shengnan Ruan
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|