1
|
Sun Q, Lei X, Yang X. CircRNAs as upstream regulators of miRNA//HMGA2 axis in human cancer. Pharmacol Ther 2024; 263:108711. [PMID: 39222752 DOI: 10.1016/j.pharmthera.2024.108711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/21/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
High mobility group protein A2 (HMGA2) is widely recognized as a chromatin-binding protein, whose overexpression is observed in nearly all human cancers. It exerts its oncogenic effects by influencing various cellular processes such as the epithelial-mesenchymal transition, cell differentiation, and DNA damage repair. MicroRNA (miRNA) serves as a pivotal gene expression regulator, concurrently modulating multiple genes implicated in cancer progression, including HMGA2. It also serves as a significant biomarker for cancer. Circular RNA (circRNA) plays a crucial role in gene regulation primarily by sequestering miRNAs and impeding their ability to enhance the expression of other genes, including HMGA2. Increasingly, studies have underscored the vital role of miRNA/HMGA2 interactions in cancer. Given the significance of circRNA as an upstream regulatory mediator and the complexity of regulatory mechanisms, we hereby present a comprehensive overview of the pivotal role of circRNAs as upstream regulators of the miRNA//HMGA2 axis in human cancers. This insight may herald a novel direction for future cancer research.
Collapse
Affiliation(s)
- Qiqi Sun
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China.
| |
Collapse
|
2
|
Li W, Wang Y, Li X, Wu H, Jia L. Dexmedetomidine hydrochloride plus sufentanil citrate inhibits glucose metabolism and epithelial‑mesenchymal transition in human esophageal squamous carcinoma KYSE30 cells by modulating the JAK/STAT3/HIF‑1α axis. Oncol Lett 2024; 27:273. [PMID: 38686357 PMCID: PMC11056934 DOI: 10.3892/ol.2024.14406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/10/2023] [Indexed: 05/02/2024] Open
Abstract
Dexmedetomidine hydrochloride (DEX-HCl) and sufentanil citrate (SFC) are commonly used anesthetic drugs for esophageal cancer (EC) surgery. The present study was performed to investigate the effect of DEX-HCl and SFC treatment on glucose metabolism and epithelial-mesenchymal transition in EC. Cell counting kit-8 (CCK8), clonogenic, wound healing and Transwell migration assays were performed to assess the effects of the DEX-HCl and SFC on KYSE30 cell proliferation, invasion and migration. Changes in lactate and glucose levels in KYSE30 cells were also detected. Western blot analysis was used to determine the protein expression levels of the JAK/STAT signaling pathway and glucose metabolism-related proteins. The results of CCK8, clonogenic and wound healing assays demonstrated that DEX-HCl and SFC inhibited KYSE30 cell proliferation, invasion and migration. Similarly, the combined DEX-HCl and SFC treatment significantly reduced lactate production, ATP production and glucose levels in KYSE30 cells. Western blotting indicated that DEX-HCl and SFC could reduce JAK/STAT and metastasis-related protein expression. Demonstrating a reduction in Hexokinase 2, matrix metallopeptidase 2 and 9, N-cadherin and lactate dehydrogenase A protein expression levels. The effects of DEX-HCl and SFC combined treatment were counteracted by the addition of JAK/STAT pathway activator RO8191, which suggested that DEX-HCl and SFC could serve a role in mediating the JAK/STAT signaling pathway in KYSE30 cells.
Collapse
Affiliation(s)
- Weijing Li
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yong Wang
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xiaolin Li
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Han Wu
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Li Jia
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
3
|
Carnet Le Provost K, Kepp O, Kroemer G, Bezu L. Trial watch: dexmedetomidine in cancer therapy. Oncoimmunology 2024; 13:2327143. [PMID: 38481729 PMCID: PMC10936656 DOI: 10.1080/2162402x.2024.2327143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024] Open
Abstract
Dexmedetomidine (DEX) is a highly selective α2-adrenoceptor agonist that is widely used in intensive and anesthetic care for its sedative and anxiolytic properties. DEX has the capacity to alleviate inflammatory pain while limiting immunosuppressive glucocorticoid stress during major surgery, thus harboring therapeutic benefits for oncological procedures. Recently, the molecular mechanisms of DEX-mediated anticancer effects have been partially deciphered. Together with additional preclinical data, these mechanistic insights support the hypothesis that DEX-induced therapeutic benefits are mediated via the stimulation of adaptive anti-tumor immune responses. Similarly, published clinical trials including ancillary studies described an immunostimulatory role of DEX during the perioperative period of cancer surgery. The impact of DEX on long-term patient survival remains elusive. Nevertheless, DEX-mediated immunostimulation offers an interesting therapeutic option for onco-anesthesia. Our present review comprehensively summarizes data from preclinical and clinical studies as well as from ongoing trials with a distinct focus on the role of DEX in overcoming (tumor microenvironment (TME)-imposed) cancer therapy resistance. The objective of this update is to guide clinicians in their choice toward immunostimulatory onco-anesthetic agents that have the capacity to improve disease outcome.
Collapse
Affiliation(s)
- Killian Carnet Le Provost
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Oliver Kepp
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Pôle de Biologie, Hôpital européen Georges Pompidou, AP-HP, Paris, France
| | - Lucillia Bezu
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Gustave Roussy, Département Anesthésie, Chirurgie et Interventionnel, Villejuif, France
| |
Collapse
|
4
|
Hashemi M, Rashidi M, Hushmandi K, Ten Hagen TLM, Salimimoghadam S, Taheriazam A, Entezari M, Falahati M. HMGA2 regulation by miRNAs in cancer: affecting cancer hallmarks and therapy response. Pharmacol Res 2023; 190:106732. [PMID: 36931542 DOI: 10.1016/j.phrs.2023.106732] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
High mobility group A 2 (HMGA2) is a protein that modulates the structure of chromatin in the nucleus. Importantly, aberrant expression of HMGA2 occurs during carcinogenesis, and this protein is an upstream mediator of cancer hallmarks including evasion of apoptosis, proliferation, invasion, metastasis, and therapy resistance. HMGA2 targets critical signaling pathways such as Wnt/β-catenin and mTOR in cancer cells. Therefore, suppression of HMGA2 function notably decreases cancer progression and improves outcome in patients. As HMGA2 is mainly oncogenic, targeting expression by non-coding RNAs (ncRNAs) is crucial to take into consideration since it affects HMGA2 function. MicroRNAs (miRNAs) belong to ncRNAs and are master regulators of vital cell processes, which affect all aspects of cancer hallmarks. Long ncRNAs (lncRNAs) and circular RNAs (circRNAs), other members of ncRNAs, are upstream mediators of miRNAs. The current review intends to discuss the importance of the miRNA/HMGA2 axis in modulation of various types of cancer, and mentions lncRNAs and circRNAs, which regulate this axis as upstream mediators. Finally, we discuss the effect of miRNAs and HMGA2 interactions on the response of cancer cells to therapy. Regarding the critical role of HMGA2 in regulation of critical signaling pathways in cancer cells, and considering the confirmed interaction between HMGA2 and one of the master regulators of cancer, miRNAs, targeting miRNA/HMGA2 axis in cancer therapy is promising and this could be the subject of future clinical trial experiments.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
5
|
Motafeghi F, Mortazavi P, Ghassemi-Barghi N, Zahedi M, Shokrzadeh M. Dexamethasone as an anti-cancer or hepatotoxic. Toxicol Mech Methods 2023; 33:161-171. [PMID: 35866224 DOI: 10.1080/15376516.2022.2105183] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The linkage between inflammation and oxidative stress in liver damage has been proven and is undeniable; dexamethasone with some antioxidants can reduce the toxicity of liver tissue. Due to the importance of cancer treatment, glucocorticoids' synergistic effect in inhibiting cancer cell growth is also investigated. Dexamethasone alone and combined with etoposide were tested at concentrations of 1, 5, and 10 μM to evaluate the potency of dexamethasone in inhibiting the growth of A549 cells using oxidative stress factors and DNA damage. Also, intraperitoneal injection of dexamethasone in rats was used to induce liver toxicity. Coenzyme Q10 at different concentrations (1, 10, and 50 mg/kg) was used as an antioxidant to assess the oxidative stress factors and measure Caspase-3 activity. The results showed that dexamethasone combined with etoposide could significantly inhibit the growth of cancer cells and induce apoptosis. Treatment of A549 cells using dexamethasone also inhibits cancer cells' growth by inducing oxidative stress and DNA damage. Dexamethasone also, by inducing oxidative stress and activation of caspase 3, ultimately causes hepatotoxicity. Treatment with different concentrations of CoQ10 showed improved mitochondrial function, antioxidant defense, and liver enzyme. The best effect of coenzyme Q10 on dexamethasone-induced hepatotoxicity is 50 mg/kg. As a result, dexamethasone (alone and combined with etoposide) has an anti-cancer effect by damaging DNA and inducing oxidative stress. Also, CoQ10 has antioxidant effects against dexamethasone-induced hepatotoxicity by improving mitochondrial function and reducing caspase-3 activity.
Collapse
Affiliation(s)
- Farzaneh Motafeghi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Parham Mortazavi
- Department of Pharmacology and Toxicology, Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nasrin Ghassemi-Barghi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Shokrzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|