1
|
Hashemi M, Khosroshahi EM, Daneii P, Hassanpoor A, Eslami M, Koohpar ZK, Asadi S, Zabihi A, Jamali B, Ghorbani A, Nabavi N, Memarkashani MR, Salimimoghadam S, Taheriazam A, Tan SC, Entezari M, Farahani N, Hushmandi K. Emerging roles of CircRNA-miRNA networks in cancer development and therapeutic response. Noncoding RNA Res 2025; 10:98-115. [PMID: 39351450 PMCID: PMC11440256 DOI: 10.1016/j.ncrna.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/18/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
The complex interplay of epigenetic factors is essential in regulating the hallmarks of cancer and orchestrating intricate molecular interactions during tumor progression. Circular RNAs (circRNAs), known for their covalently closed loop structures, are non-coding RNA molecules exceptionally resistant to enzymatic degradation, which enhances their stability and regulatory functions in cancer. Similarly, microRNAs (miRNAs) are endogenous non-coding RNAs with linear structures that regulate cellular biological processes akin to circRNAs. Both miRNAs and circRNAs exhibit aberrant expressions in various cancers. Notably, circRNAs can function as sponges for miRNAs, influencing their activity. The circRNA/miRNA interaction plays a pivotal role in the regulation of cancer progression, including in brain, gastrointestinal, gynecological, and urological cancers, influencing key processes such as proliferation, apoptosis, invasion, autophagy, epithelial-mesenchymal transition (EMT), and more. Additionally, this interaction impacts the response of tumor cells to radiotherapy and chemotherapy and contributes to immune evasion, a significant challenge in cancer therapy. Both circRNAs and miRNAs hold potential as biomarkers for cancer prognosis and diagnosis. In this review, we delve into the circRNA-miRNA circuit within human cancers, emphasizing their role in regulating cancer hallmarks and treatment responses. This discussion aims to provide insights for future research to better understand their functions and potentially guide targeted treatments for cancer patients using circRNA/miRNA-based strategies.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aria Hassanpoor
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maedeh Eslami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Zabihi
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Hamedan Branch, Hamedan, Iran
| | - Behdokht Jamali
- Department of Microbiology and Genetics, Kherad Institute of Higher Education, Bushehr, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Wang H, Wei S, Wang L, Zhang Z. Comprehensive Analysis of circRNA-Related mRNAs as Prognostic Factors in Non-Smoking Women with Lung Adenocarcinoma. Int J Gen Med 2024; 17:5757-5771. [PMID: 39650787 PMCID: PMC11625186 DOI: 10.2147/ijgm.s490478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/15/2024] [Indexed: 12/11/2024] Open
Abstract
Background Non-smoking women with lung adenocarcinoma(NSWLA) is a significant health problem globally; the carcinogenesis and prognostic signature remain poorly understood. Circular RNAs (circRNAs) are gradually implicated in cancer formation through sponging miRNAs to regulate mRNAs. Methods Tumor and paracancerous specimens from non-smoking women after lung adenocarcinoma surgery were collected for high-throughput sequencing of circRNA. miRNA and mRNA datasets were downloaded from TCGA. A circRNA-miRNA-mRNA network was built using differentially expressed circRNAs (DEcircRNAs), miRNAs (DEmiRNAs), and mRNAs (DEmRNAs). Following that, GSEA was applied to analyze the biological function of mRNAs in the ceRNA network. Utilizing the mRNAs associated with prognosis, we created an original prognostic risk score model. The expression of DEmRNA in the ceRNA network was verified by mRNA-seq and scRNA-seq data (GSE131907). The expression of BTBD3 and EIF4EBP2 was then verified by immunohistochemistry. Results 16 pairs of adenocarcinoma tissues and their corresponding para-tumor samples were collected from thoracic surgery. We created a circRNA related ceRNA in NSWLA. The hsa_circ_0002346 regulation of the cancer cell proliferation may through the hsa_circ_0002346/miR-96-5p/EIF4EBP2 axis. Hsa_circ_0072309 may affect proliferation of lung adenocarcinoma and activate Nature Killer cells by targeting miR-32-5p to regulate PCMTD1 expression. Based upon mRNA (BTBD3, CFL2, EIF4EBP2, EVI5, PCMTD1, SYDE2) related to overall survival, we also created a predictive signature. According to mRNA-seq, scRNA-seq, and immunohistochemical data, the expression of BTBD3 and EIF4EBP2 was lower in tumor samples than in normal tissues nearby. Conclusion The circRNA related mRNAs played an important role in predicting the overall survival of NSWLA. The circRNA in the ceRNA network might unravel the pathogenesis and be potential novel targets for NSWLA.
Collapse
Affiliation(s)
- Hao Wang
- Department of Respiratory Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People’s Republic of China
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital, Hefei, Anhui, 230031, People’s Republic of China
| | - Song Wei
- Department of Respiratory Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People’s Republic of China
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital, Hefei, Anhui, 230031, People’s Republic of China
| | - Lijun Wang
- Department of Respiratory Disease, Building 8 of Tongling People’s Hospital, Tongling, Anhui, 244000, People’s Republic of China
| | - Zhihong Zhang
- Department of Respiratory Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People’s Republic of China
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital, Hefei, Anhui, 230031, People’s Republic of China
| |
Collapse
|
3
|
Teng W, Ling Y, Liu Z, Jiang L, Fu G, Zhou X, Long N, Liu J, Chu L. Advances in the antitumor mechanisms of tripartite motif-containing protein 3. J Cancer Res Clin Oncol 2024; 150:105. [PMID: 38411731 PMCID: PMC10899276 DOI: 10.1007/s00432-024-05632-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 01/24/2024] [Indexed: 02/28/2024]
Abstract
The tripartite motif-containing (TRIM) protein family has steadily become a hotspot in tumor-related research. As a member of the E3 ubiquitin ligase family, TRIM is working on many crucial biological processes, including the regulation of tumor cell proliferation, metastasis, apoptosis, and autophagy. Among the diverse TRIM superfamily members, TRIM3 operates via different mechanisms in various types of tumors. This review primarily focuses on the current state of research regarding the antitumor mechanisms of TRIM3 in different cancers. A more in-depth study of TRIM3 may provide new directions for future antitumor treatments. Our review focuses on TRIM3 proteins and cancer. We searched for relevant articles on the mechanisms by which TRIM3 affects tumorigenesis and development from 1997 to 2023 and summarized the latest progress and future directions. Triad-containing motif protein 3 (TRIM3) is an important protein, which plays a key role in the process of tumorigenesis and development. The comprehensive exploration of TRIM3 is anticipated to pave the way for future advancements in antitumor therapy, which is expected to be a new hallmark for cancer detection and a novel target for drug action. TRIM3 is poised to become a significant milestone in cancer detection and a promising focal point for drug intervention. Recent years have witnessed notable progress in research aimed at unraveling the antitumor mechanism of TRIM3, with far-reaching implications for practical tumor diagnosis, treatment protocols, efficacy evaluation, economics, and pharmaceutical utilization.
Collapse
Affiliation(s)
- Wei Teng
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, People's Republic of China
- Department of Clinical Medicine, Guizhou Medical University, No. 9 Beijing Road, Guiyang, Guizhou, China
| | - Yuanguo Ling
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, People's Republic of China
- Department of Clinical Medicine, Guizhou Medical University, No. 9 Beijing Road, Guiyang, Guizhou, China
| | - Zongwei Liu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, People's Republic of China
- Department of Clinical Medicine, Guizhou Medical University, No. 9 Beijing Road, Guiyang, Guizhou, China
| | - Lishi Jiang
- Department of Clinical Medicine, Guizhou Medical University, No. 9 Beijing Road, Guiyang, Guizhou, China
| | - Genyuan Fu
- Department of Clinical Medicine, Guizhou Medical University, No. 9 Beijing Road, Guiyang, Guizhou, China
| | - Xingwang Zhou
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, People's Republic of China
- Department of Clinical Medicine, Guizhou Medical University, No. 9 Beijing Road, Guiyang, Guizhou, China
| | - Niya Long
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, People's Republic of China
- Department of Clinical Medicine, Guizhou Medical University, No. 9 Beijing Road, Guiyang, Guizhou, China
| | - Jian Liu
- Department of Clinical Medicine, Guizhou Medical University, No. 9 Beijing Road, Guiyang, Guizhou, China
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, People's Republic of China
| | - Liangzhao Chu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, People's Republic of China.
- Department of Clinical Medicine, Guizhou Medical University, No. 9 Beijing Road, Guiyang, Guizhou, China.
| |
Collapse
|
4
|
Heydarnia E, Dorostgou Z, Hedayati N, Mousavi V, Yahyazadeh S, Alimohammadi M, Gheibi M, Heidari P, Igder S, Mafi A, Vakili O. Circular RNAs and cervical cancer: friends or foes? A landscape on circRNA-mediated regulation of key signaling pathways involved in the onset and progression of HPV-related cervical neoplasms. Cell Commun Signal 2024; 22:107. [PMID: 38341592 PMCID: PMC10859032 DOI: 10.1186/s12964-024-01494-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Cervical cancer (CC) is a common gynecologic malignancy, accounting for a significant proportion of women death worldwide. Human papillomavirus (HPV) infection is one of the major etiological causes leading to CC onset; however, genetic, and epigenetic factors are also responsible for disease expansion. Circular RNAs (circRNAs), which are known as a particular subset of non-coding RNA (ncRNA) superfamily, with covalently closed loop structures, have been reported to be involved in the progression of diverse diseases, especially neoplasms. In this framework, abnormally expressed circRNAs are in strong correlation with CC pathogenesis through regulating substantial signaling pathways. Also, these RNA molecules can be considered as promising biomarkers and therapeutic targets for CC diagnosis/prognosis and treatment, respectively. Herein, we first review key molecular mechanisms, including Wnt/β-catenin, MAPK, and PI3K/Akt/mTOR signaling pathways, as well as angiogenesis and metastasis, by which circRNAs interfere with CC development. Then, diagnostic, prognostic, and therapeutic potentials of these ncRNA molecules will be highlighted in depth.
Collapse
Affiliation(s)
- Emad Heydarnia
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Dorostgou
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahide Mousavi
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mobina Gheibi
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Parasta Heidari
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|