1
|
Deng Z, Qishan S, Zhang Q, Wang J, Yue Y, Geng L, Wu N. Low molecular weight fucoidan LF2 improves the immunosuppressive tumor microenvironment and enhances the anti-pancreatic cancer activity of oxaliplatin. Biomed Pharmacother 2024; 173:116360. [PMID: 38422657 DOI: 10.1016/j.biopha.2024.116360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
Chemotherapy remains the cornerstone of pancreatic cancer treatment. However, the dense interstitial and immunosuppressive microenvironment frequently render the ineffective anti-tumor activity of chemotherapeutic agents. Macrophages play a key role in the tumor immunomodulation. In this study, we found that low molecular weight of fucoidan (LF2) directly regulated the differentiation of mononuclear macrophages into the CD86+ M1 phenotype. LF2 significantly upregulated the expressions of M1 macrophage-specific cytokines, including iNOS, IL-6, TNFα and IL-12. LF2 modulated macrophage phenotypic transformation through activation of TLR4-NFκB pathway. Furthermore, we observed that LF2 enhanced the pro-apoptotic activity of oxaliplatin (OXA) in vitro by converting macrophages to a tumoricidal M1 phenotype. Meanwhile, LF2 increased intratumoral M1 macrophage infiltration and ameliorated the immunosuppressed tumor microenvironment, which in turn enhanced the anti-pancreatic ductal adenocarcinoma (PDAC) activity of OXA in vivo. Taken together, our results suggested that LF2 could act as a TLR4 agonist targeting macrophages and has a synergistic effect against PDAC when combined with OXA.
Collapse
Affiliation(s)
- Zhenzhen Deng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suo Qishan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine drugs and biological products, Pilot National Laboratory for Marine Science and Technology (Qingdao), China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Liu J, Zhang J, Zheng Y, Zhao G, Jiang H, Yuan B. miR-302d Targeting of CDKN1A Regulates DNA Damage and Steroid Hormone Secretion in Bovine Cumulus Cells. Genes (Basel) 2023; 14:2195. [PMID: 38137018 PMCID: PMC10743266 DOI: 10.3390/genes14122195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: DNA damage in cumulus cells hinders oocyte maturation and affects steroid hormone secretion. It is crucial to identify the key factors that regulate cellular DNA damage and steroid hormone secretion. (2) Methods: Treatment of bovine cumulus cells with bleomycin to induce DNA damage. The effects of DNA damage on cell biology were determined by detecting changes in DNA damage degree, cell cycle, viability, apoptosis, and steroid hormones. It was verified that mir-302d targeted regulation of CDKN1A expression, and then affected DNA damage and steroid hormone secretion in cumulus cells. (3) Results: Bleomycin induced increased DNA damage, decreased G1-phase cells, increased S-phase cells, inhibited proliferation, promoted apoptosis, affected E2 and P4 secretion, increased CDKN1A expression, and decreased miR-302d expression. Knockdown of CDKN1A reduced DNA damage, increased G1-phase cells, decreased G2-phase cells, promoted proliferation, inhibited apoptosis, increased E2 and P4 secretion, and increased the expression of BRCA1, MRE11, ATM, CDK1, CDK2, CCNE2, STAR, CYP11A1, and HSD3B1. The expression of RAD51, CCND1, p53, and FAS was decreased. Overexpression of CDKN1A resulted in the opposite results. miR-302d targets CDKN1A expression to regulate DNA damage and then affects the cell cycle, proliferation, apoptosis, steroid hormone secretion, and the expression of related genes. (4) Conclusions: miR-302d and CDKN1A were candidate molecular markers for the diagnosis of DNA damage in bovine cumulus cells.
Collapse
Affiliation(s)
- Jianbo Liu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (J.L.); (J.Z.); (G.Z.); (H.J.)
- Experimental Testing Center, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Jiabao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (J.L.); (J.Z.); (G.Z.); (H.J.)
| | - Yi Zheng
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (J.L.); (J.Z.); (G.Z.); (H.J.)
| | - Guokun Zhao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (J.L.); (J.Z.); (G.Z.); (H.J.)
| | - Hao Jiang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (J.L.); (J.Z.); (G.Z.); (H.J.)
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (J.L.); (J.Z.); (G.Z.); (H.J.)
| |
Collapse
|
3
|
Qi Q, Zhang X, Yao L, Chen Y, Weng H. Pueratin improves diminished ovarian reserve by inhibiting apoptosis. Exp Ther Med 2021; 22:1423. [PMID: 34721677 PMCID: PMC8549093 DOI: 10.3892/etm.2021.10858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/30/2021] [Indexed: 11/22/2022] Open
Abstract
Pueratin (Pue) is an extract from Pueraria lobata, and exhibits therapeutic effects for the treatment of inflammation. However, the beneficial effects and mechanisms underlying Pue in the treatment of diminished ovarian reserve (DOR) remains to be fully elucidated. The aim of the present study was to investigate the effect of Pue on Bcl-2 and Bax protein expression in rats with DOR, associated with infertility within clinical practice, induced by 4-vinylcyclohexene diepoxide (VCD). A model of DOR was established in female Sprague Dawley rats by an intraperitoneal injection of 80 mg/kg VCD daily for 45 days. From day 1, the Sprague Dawley rats were orally administered with drugs daily for 45 days. They were divided into normal, model, Pue-low dose (L), Pue-medium dose (M) and Pue-high dose (H) groups (50, 100 and 300 mg/kg Pue, respectively). Follicle-stimulating hormone (FSH), luteinizing hormone (LH) and estradiol (E2) levels were subsequently detected using ELISA. H&E staining and TUNEL staining were used to evaluate histopathological changes and apoptosis levels in the ovary, respectively. Bcl-2 and Bax protein expression levels in rat ovaries were evaluated using immunohistochemistry and western blotting. Compared with those in the model group, FSH and LH levels in the Pue-L, -M and -H groups were significantly decreased, whilst E2 levels were significantly increased (P<0.05). After intragastric administration, the volume of the ovaries and uteri of rats in the Pue groups was increased compared with the model group, and the numbers of primordial follicles and primary follicles were also increased. The number of apoptotic cells and the expression of Bax were significantly reduced in a dose-dependent manner (P<0.05), compared with the model group. In addition, Bcl-2 protein expression and the Bcl-2/Bax ratio were found to be significantly increased in the Pue-treated groups in a dose-dependent manner (P<0.05), compared with the model group. In conclusion, Pue treatment improved ovarian function by regulating hormone balance in addition to Bcl-2 and Bax expression.
Collapse
Affiliation(s)
- Quan Qi
- Reproductive Medicine Center, Guangdong Women and Children Hospital, Guangdong, Guangzhou 511442, P.R. China
| | - Xiqian Zhang
- Reproductive Medicine Center, Guangdong Women and Children Hospital, Guangdong, Guangzhou 511442, P.R. China
| | - Li Yao
- Reproductive Medicine Center, Guangdong Women and Children Hospital, Guangdong, Guangzhou 511442, P.R. China
| | - Ye Chen
- Reproductive Medicine Center, Guangdong Women and Children Hospital, Guangdong, Guangzhou 511442, P.R. China
| | - Huinan Weng
- Reproductive Medicine Center, Guangdong Women and Children Hospital, Guangdong, Guangzhou 511442, P.R. China
| |
Collapse
|
4
|
How Macrophages Become Transcriptionally Dysregulated: A Hidden Impact of Antitumor Therapy. Int J Mol Sci 2021; 22:ijms22052662. [PMID: 33800829 PMCID: PMC7961970 DOI: 10.3390/ijms22052662] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are the essential components of the tumor microenvironment. TAMs originate from blood monocytes and undergo pro- or anti-inflammatory polarization during their life span within the tumor. The balance between macrophage functional populations and the efficacy of their antitumor activities rely on the transcription factors such as STAT1, NF-κB, IRF, and others. These molecular tools are of primary importance, as they contribute to the tumor adaptations and resistance to radio- and chemotherapy and can become important biomarkers for theranostics. Herein, we describe the major transcriptional mechanisms specific for TAM, as well as how radio- and chemotherapy can impact gene transcription and functionality of macrophages, and what are the consequences of the TAM-tumor cooperation.
Collapse
|
5
|
Malfitano AM, Pisanti S, Napolitano F, Di Somma S, Martinelli R, Portella G. Tumor-Associated Macrophage Status in Cancer Treatment. Cancers (Basel) 2020; 12:cancers12071987. [PMID: 32708142 PMCID: PMC7409350 DOI: 10.3390/cancers12071987] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor-associated macrophages (TAMs) represent the most abundant innate immune cells in tumors. TAMs, exhibiting anti-inflammatory phenotype, are key players in cancer progression, metastasis and resistance to therapy. A high TAM infiltration is generally associated with poor prognosis, but macrophages are highly plastic cells that can adopt either proinflammatory/antitumor or anti-inflammatory/protumor features in response to tumor microenvironment stimuli. In the context of cancer therapy, many anticancer therapeutics, apart from their direct effect on tumor cells, display different effects on TAM activation status and density. In this review, we aim to evaluate the indirect effects of anticancer therapies in the modulation of TAM phenotypes and pro/antitumor activity.
Collapse
Affiliation(s)
- Anna Maria Malfitano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.N.); (S.D.S.)
- Correspondence: (A.M.M.); (G.P.); Tel.: +39-081-746-3056 (G.P.)
| | - Simona Pisanti
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvador Allende, Baronissi, 84081 Salerno, Italy; (S.P.); (R.M.)
| | - Fabiana Napolitano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.N.); (S.D.S.)
| | - Sarah Di Somma
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.N.); (S.D.S.)
| | - Rosanna Martinelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvador Allende, Baronissi, 84081 Salerno, Italy; (S.P.); (R.M.)
| | - Giuseppe Portella
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.N.); (S.D.S.)
- Correspondence: (A.M.M.); (G.P.); Tel.: +39-081-746-3056 (G.P.)
| |
Collapse
|
6
|
Larionova I, Cherdyntseva N, Liu T, Patysheva M, Rakina M, Kzhyshkowska J. Interaction of tumor-associated macrophages and cancer chemotherapy. Oncoimmunology 2019. [PMID: 31143517 DOI: 10.1080/2162402x.2019.1596004] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022] Open
Abstract
It has been recently recognized that the tumor microenvironment (TME) is an essential factor that defines the efficiency of chemotherapy. The local TME, consisting of immune cells with diverse phenotypes and functions, can strongly modulate the response to chemotherapy. Tumor-associated macrophages (TAMs) that display pronounced heterogeneity and phenotypic plasticity are the major innate immune component in the microenvironment of solid tumors. In our review, we elucidate the complex role of TAMs in the progression of different types of solid tumors, summarize the current knowledge about the effects of different anticancer chemotherapeutic agents on monocytes/macrophages, and describe the mechanisms of chemotherapy resistance mediated by TAMs.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nadezhda Cherdyntseva
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Tengfei Liu
- Department of Innate Immunity and Tolerance, University of Heidelberg, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Mannheim, Germany
| | - Marina Patysheva
- laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Militsa Rakina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,Department of Innate Immunity and Tolerance, University of Heidelberg, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Mannheim, Germany.,German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| |
Collapse
|
7
|
Larionova I, Cherdyntseva N, Liu T, Patysheva M, Rakina M, Kzhyshkowska J. Interaction of tumor-associated macrophages and cancer chemotherapy. Oncoimmunology 2019; 8:1596004. [PMID: 31143517 PMCID: PMC6527283 DOI: 10.1080/2162402x.2019.1596004] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/17/2019] [Accepted: 03/09/2019] [Indexed: 02/08/2023] Open
Abstract
It has been recently recognized that the tumor microenvironment (TME) is an essential factor that defines the efficiency of chemotherapy. The local TME, consisting of immune cells with diverse phenotypes and functions, can strongly modulate the response to chemotherapy. Tumor-associated macrophages (TAMs) that display pronounced heterogeneity and phenotypic plasticity are the major innate immune component in the microenvironment of solid tumors. In our review, we elucidate the complex role of TAMs in the progression of different types of solid tumors, summarize the current knowledge about the effects of different anticancer chemotherapeutic agents on monocytes/macrophages, and describe the mechanisms of chemotherapy resistance mediated by TAMs.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nadezhda Cherdyntseva
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Tengfei Liu
- Department of Innate Immunity and Tolerance, University of Heidelberg, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Mannheim, Germany
| | - Marina Patysheva
- laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Militsa Rakina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,Department of Innate Immunity and Tolerance, University of Heidelberg, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Mannheim, Germany.,German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| |
Collapse
|
8
|
Singh J, Srivastva AK, Mandal P, Chandra S, Dubey D, Dwivedi A, Chopra D, Tripathi A, Ray RS. Under ambient UVA exposure, pefloxacin exhibits both immunomodulatory and genotoxic effects via multiple mechanisms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 178:593-605. [PMID: 29275239 DOI: 10.1016/j.jphotobiol.2017.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 11/19/2022]
Abstract
Pefloxacin (PFLX) is an antibiotic, which shows broad spectrum antimicrobial activities. It is an important derivative of fluoroquinolones (FLQs) group. Ultraviolet radiation (200-400nm) causes major problem for living being which comes at the earth surface naturally through sunlight and increasing regularly due to ozone depletion. PFLX was photodegraded in 5h and forms photoproduct under UVA exposure. At the non photocytotoxic dose PFLX, shows reduced phagocytosis activity, NO (nitric oxide) production, large vacuole formation and down regulated IL-6, TNF-α and IL-1 in BALB/c macrophages at both genes and proteins levels. At higher doses (photocytotoxic doses), PFLX induced a concentration dependent decrease in cell viability of human keratinocyte cell line (HaCaT) and peritoneal macrophages of BALB/c mice. Our molecular docking suggests that PFLX binds only to the cleaved DNA in the DNA-human TOP2A complex. Topoisomerase assay confirmed that PFLX inhibits human topoisomerase by forming an adduct with DNA. Photosensitized PFLX also caused intracellular ROS mediated DNA damage and formation of micronuclei and cyclobutane pyrimidine dimers (CPDs). Increase intracellular ROS leads to apoptosis which was proved through lysosomal destabilization and reduced mitochondrial membrane potential (MMP). Our present study shows that ambient UVA exposure in the presence of PFLX caused immunomodulatory as well as photogenotoxic effects. Therefore, patients under PFLX drug treatment should avoid sunlight exposure, especially during peak hours for their photosafety.
Collapse
Affiliation(s)
- Jyoti Singh
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, 226001, Uttar Pradesh, India
| | - Ajeet K Srivastva
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226001, India
| | - Payal Mandal
- Proteomics and Environmental Carcinogenesis Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, 226001, Uttar Pradesh, India
| | - Sonam Chandra
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, 226001, Uttar Pradesh, India
| | - Divya Dubey
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226001, India
| | - Ashish Dwivedi
- Pineal Research Lab, Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Deepti Chopra
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226001, India
| | - Anurag Tripathi
- Proteomics and Environmental Carcinogenesis Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, 226001, Uttar Pradesh, India
| | - Ratan Singh Ray
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
9
|
Singh SV, Ajay AK, Mohammad N, Malvi P, Chaube B, Meena AS, Bhat MK. Proteasomal inhibition sensitizes cervical cancer cells to mitomycin C-induced bystander effect: the role of tumor microenvironment. Cell Death Dis 2015; 6:e1934. [PMID: 26492368 PMCID: PMC4632313 DOI: 10.1038/cddis.2015.292] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 11/23/2022]
Abstract
Inaccessibility of drugs to poorly vascularized strata of tumor is one of the limiting factors in cancer therapy. With the advent of bystander effect (BE), it is possible to perpetuate the cellular damage from drug-exposed cells to the unexposed ones. However, the role of infiltrating tumor-associated macrophages (TAMs), an integral part of the tumor microenvironment, in further intensifying BE remains obscure. In the present study, we evaluated the effect of mitomycin C (MMC), a chemotherapeutic drug, to induce BE in cervical carcinoma. By using cervical cancer cells and differentiated macrophages, we demonstrate that MMC induces the expression of FasL via upregulation of PPARγ in both cell types (effector cells) in vitro, but it failed to induce bystander killing in cervical cancer cells. This effect was primarily owing to the proteasomal degradation of death receptors in the cervical cancer cells. Pre-treatment of cervical cancer cells with MG132, a proteasomal inhibitor, facilitates MMC-mediated bystander killing in co-culture and condition medium transfer experiments. In NOD/SCID mice bearing xenografted HeLa tumors administered with the combination of MMC and MG132, tumor progression was significantly reduced in comparison with those treated with either agent alone. FasL expression was increased in TAMs, and the enhanced level of Fas was observed in these tumor sections, thereby causing increased apoptosis. These findings suggest that restoration of death receptor-mediated apoptotic pathway in tumor cells with concomitant activation of TAMs could effectively restrict tumor growth.
Collapse
Affiliation(s)
- S V Singh
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411007, India
| | - A K Ajay
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411007, India
| | - N Mohammad
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411007, India
| | - P Malvi
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411007, India
| | - B Chaube
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411007, India
| | - A S Meena
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411007, India
| | - M K Bhat
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411007, India
| |
Collapse
|
10
|
Wong DYQ, Yeo CHF, Ang WH. Immuno-chemotherapeutic platinum(IV) prodrugs of cisplatin as multimodal anticancer agents. Angew Chem Int Ed Engl 2014; 53:6752-6. [PMID: 24844571 DOI: 10.1002/anie.201402879] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Indexed: 12/22/2022]
Abstract
There is growing consensus that the clinical therapeutic efficacy of some chemotherapeutic agents depends on their off-target immune-modulating effects. Pt anticancer drugs have previously been identified to be potent immunomodulators of both the innate and the adaptive immune system. Nevertheless, there has been little development in the rational design of Pt-based chemotherapeutic agents to exploit their immune-activating capabilities. The FPR1/2 formyl peptide receptors are highly expressed in immune cells, as well as in many metastatic cancers. Herein, we report a rationally designed multimodal Pt(IV) prodrug containing a FPR1/2-targeting peptide that combines chemotherapy with immunotherapy to achieve therapeutic synergy and demonstrate the feasibility of this approach.
Collapse
Affiliation(s)
- Daniel Yuan Qiang Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore (Singapore)
| | | | | |
Collapse
|
11
|
Wong DYQ, Yeo CHF, Ang WH. Immuno-Chemotherapeutic Platinum(IV) Prodrugs of Cisplatin as Multimodal Anticancer Agents. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402879] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Greeneltch KM, Schneider M, Steinberg SM, Liewehr DJ, Stewart TJ, Liu K, Abrams SI. Host Immunosurveillance Controls Tumor Growth via IFN Regulatory Factor-8–Dependent Mechanisms. Cancer Res 2007; 67:10406-16. [DOI: 10.1158/0008-5472.can-07-1228] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Sodhi A, Chauhan P. Interaction between cisplatin treated murine peritoneal macrophages and L929 cells: involvement of adhesion molecules, cytoskeletons, upregulation of Ca2+ and nitric oxide dependent cytotoxicity. Mol Immunol 2006; 44:2265-76. [PMID: 17188358 DOI: 10.1016/j.molimm.2006.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2006] [Revised: 10/24/2006] [Accepted: 11/06/2006] [Indexed: 11/15/2022]
Abstract
Murine peritoneal macrophages on treatment with cisplatin (10 microg/ml) showed increased binding to L929 cells. Cisplatin treated macrophage on co-incubation with L929 cells form a distinct cytoplasmic contact between the two cells. The plasmalemmae of the two cells fuse over a large surface area. The formation of contact between the cisplatin treated macrophage and L929 cell results in the induction of apoptosis in L929 cell. Untreated macrophages did not form a contact with L929 cells and no apoptosis is observed in L929 cells. Immunofluorescence microscopical studies clearly show the participation of cytoskeleton and the adhesion molecules in the formation of contact between the two cells. Further, a significant enhancement of the expression of iNOS and cytosolic Ca2+ was observed in cisplatin treated macrophages co-incubated with L929 cells. Cisplatin treated macrophages produced significant amount of NO when co-incubated with L929 cells, while there was minimal production of NO by untreated macrophages co-incubated with L929 cells. Cisplatin treated macrophage-induced L929 cell death was NO dependent, since L-NMMA (500 microM) significantly inhibited the cytotoxicity of L929 cells. The addition of excess L-arginine (2mM) reversed the L-NMMA induced inhibition of NO production and L929 cell cytotoxicity.
Collapse
Affiliation(s)
- Ajit Sodhi
- School of Biotechnology, Banaras Hindu University, Varanasi 221005, India.
| | | |
Collapse
|