1
|
Wang X, Sheng W, Wang Y, Li L, Li Y, Zhang S, Liu X, Chen S, Zhen Y. A Macropinocytosis-Intensifying Albumin Domain-Based scFv Antibody and Its Conjugate Directed against K-Ras Mutant Pancreatic Cancer. Mol Pharm 2018; 15:2403-2412. [PMID: 29757658 DOI: 10.1021/acs.molpharmaceut.8b00234] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enhanced macropinocytosis has been found in K-Ras mutant pancreatic cancer cells, through which albumin can massively enter into the K-Ras-driven cancer cells, suggesting its role in serving as a macropinocytosis-intensifying drug delivery carrier. In the present study, a novel recombinant protein Fv-LDP-D3 and its reconstituted analogue Fv-LDP-D3-AE were designed and prepared. Fv is the fragment of an anti-EGFR antibody, D3 is the domain III of human serum albumin (HSA), LDP is the apoprotein of the antitumor antibiotic lidamycin (LDM), and AE is an extremely cytotoxic enediyne chromophore derived from LDM. As shown, the recombinant protein Fv-LDP-D3 presented intensive and selective binding capacity to pancreatic cancer cells and inhibited cell proliferation by blocking EGFR signaling. Moreover, Fv-LDP-D3 showed prominent tumor imaging in pancreatic carcinoma xenograft. The reconstituted, enediyne-integrated analogue Fv-LDP-D3-AE displayed highly potent cytotoxicity to pancreatic cancer cells through apoptosis induction and G2/M arrest. Fv-LDP-D3 and Fv-LDP-D3-AE markedly inhibited the tumor growth of the pancreatic carcinoma AsPC-1 xenograft. Study results indicated that the novel recombinant protein displays both EGFR-targeting and macropinocytosis-intensifying attributes, presenting a new format of scFv antibody that integrates with albumin domain III. It might be a feasible strategy to develop targeted drugs for K-Ras mutant pancreatic cancer.
Collapse
Affiliation(s)
- Xiaofei Wang
- Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , No. 1 Tiantanxili , Beijing 100050 , China
| | - Weijin Sheng
- Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , No. 1 Tiantanxili , Beijing 100050 , China
| | - Yangyang Wang
- Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , No. 1 Tiantanxili , Beijing 100050 , China
| | - Liang Li
- Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , No. 1 Tiantanxili , Beijing 100050 , China
| | - Yi Li
- Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , No. 1 Tiantanxili , Beijing 100050 , China
| | - Shenghua Zhang
- Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , No. 1 Tiantanxili , Beijing 100050 , China
| | - Xiujun Liu
- Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , No. 1 Tiantanxili , Beijing 100050 , China
| | - Shuzhen Chen
- Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , No. 1 Tiantanxili , Beijing 100050 , China
| | - Yongsu Zhen
- Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , No. 1 Tiantanxili , Beijing 100050 , China
| |
Collapse
|
2
|
Prokaryotic expression of MLAA-34 and generation of a novel human ScFv against MLAA-34 by phage display technology. Oncotarget 2017; 8:39077-39086. [PMID: 28388565 PMCID: PMC5503596 DOI: 10.18632/oncotarget.16590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/09/2017] [Indexed: 01/16/2023] Open
Abstract
MLAA-34 is a newly identified monocytic leukemia-associated antigen that is overexpressed in acute monocytic leukemia specifically, thus providing a novel target for the therapy of acute monocytic leukemia. In this study, we first expressed MLAA-34 protein in Escherichia coli (E.coli) BL21 (DE3) cells and purified it by nickel ion affinity chromatography with high purity (>90%). Then, MLAA-34 was used as antigen for biopanning anti-MLAA-34 single chain antibody fragment (ScFv) from a fully human ScFv library, and a high affinity ScFv named MA1 was selected by phage-ELISA. Finally, after expression of MA1, we found that MA1 can specifically bind with U937 MLAA-34 positive cells, and the binding affinity of MA1 was at the nanomolar level. Furthermore, inhibition of U937 cell proliferation indicated that the novel antibody MA1 has the potential to be used as a therapeutic agent for acute monocytic leukemia.
Collapse
|
3
|
Liu WJ, Song XR, Zuo BL, Wang XW. Construction of an Ec-LDP-D5 fusion protein that targets human epidermal growth factor receptor and its anti-pancreatic cancer activity. PRECISION RADIATION ONCOLOGY 2017. [DOI: 10.1002/pro6.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Wen-juan Liu
- Shandong Provincial Key Laboratory of Radiation Oncology; Shandong Cancer Hospital and Institute; Jinan China
| | - Xian-rang Song
- Shandong Provincial Key Laboratory of Radiation Oncology; Shandong Cancer Hospital and Institute; Jinan China
| | - Bin-li Zuo
- Shandong Provincial Key Laboratory of Radiation Oncology; Shandong Cancer Hospital and Institute; Jinan China
| | - Xing-wu Wang
- Shandong Provincial Key Laboratory of Radiation Oncology; Shandong Cancer Hospital and Institute; Jinan China
| |
Collapse
|
4
|
Yang JL, Liu DX, Zhen SJ, Zhou YG, Zhang DJ, Yang LY, Chen HB, Feng Q. A novel anti-p21Ras scFv antibody reacting specifically with human tumour cell lines and primary tumour tissues. BMC Cancer 2016; 16:131. [PMID: 26897358 PMCID: PMC4761205 DOI: 10.1186/s12885-016-2168-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 02/14/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ras genes play an important role in the development and progression of human tumours. Neutralizing Ras proteins in the cytoplasm could be an effective approach to blocking ras signalling. In this study, we prepared anti-p21Ras single chain fragment variable antibody (scFv) and investigated its immunoreactivity with human tumours. METHODS The coding sequences of H-ras, K-ras, and N-ras were separately ligated into the vector pET-28a(+). Then, recombinant expressing plasmids were induced by IPTG for p21Ras expression in E. coli. Hybridoma cell lines producing anti-p21Ras monoclonal antibodies were isolated using wildtype p21Ras proteins as immunogens. Anti-p21Ras scFv antibody was prepared from the hybridoma by the phage scFv display method. The immunoreactivity of the anti-p21Ras monoclonal antibody and the scFv antibody was identified by ELISA and immunocytochemistry. RESULTS We prokaryotically expressed wildtype H-p21Ras, K-p21Ras and N-p21Ras and generated the hybridoma cell line KGH-R1, producing anti-p21Ras monoclonal antibodies. It was demonstrated that KGH-R1 monoclonal antibody could recognize wildtype and mutated H-p21Ras, K-p21Ras and N-p21Ras in human tumour cell lines. In all 14 types of primary human cancer tissues tested, the monoclonal antibody presented strong immunoreactivity but showed weak or negative immunoreactivity in the corresponding normal tissues. Subsequently, we prepared anti-p21Ras scFv from hybridoma KGH-R1, which showed the same immunoreactivity as the original monoclonal antibody. Sequence analysis demonstrated that the nucleotides and amino acids of the scFv exhibited an approximately 50 % difference from the anti-p21Ras scFv reported previously. CONCLUSIONS This study presents a novel anti-p21Ras scFv antibody. Our data suggest that the scFv may be useful for ras signalling blockage and may be a potential therapeutic antibody for ras-derived tumours.
Collapse
Affiliation(s)
- Ju-Lun Yang
- Department of Pathology, Kunming General Hospital/Kunming Medical University, Kunming, 650032, Yunnan Province, China.
| | - Du-Xian Liu
- Department of Molecular Biology, Kunming General Hospital/Kunming Medical University, Kunming, 650032, Yunnan Province, China
| | - Shi-Jian Zhen
- Department of Molecular Biology, Kunming General Hospital/Kunming Medical University, Kunming, 650032, Yunnan Province, China
| | - Yun-Gang Zhou
- Department of Molecular Biology, Kunming General Hospital/Kunming Medical University, Kunming, 650032, Yunnan Province, China
| | - Dai-Jun Zhang
- Department of Pathology, Kunming General Hospital/Kunming Medical University, Kunming, 650032, Yunnan Province, China
| | - Li-Ying Yang
- Department of Pathology, Kunming General Hospital/Kunming Medical University, Kunming, 650032, Yunnan Province, China
| | - Hao-Bing Chen
- Department of Pathology, Kunming General Hospital/Kunming Medical University, Kunming, 650032, Yunnan Province, China
| | - Qiang Feng
- Department of Pathology, Kunming General Hospital/Kunming Medical University, Kunming, 650032, Yunnan Province, China
| |
Collapse
|
5
|
Construction of a genetically engineered chimeric apoprotein consisting of sequences derived from lidamycin and neocarzinostatin. Anticancer Drugs 2016; 27:24-8. [DOI: 10.1097/cad.0000000000000300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Gao R, Li L, Shang B, Zhao C, Sheng W, Li D. A Gelatinases-targeting scFv-based Fusion Protein Shows Enhanced Antitumour Activity with Endostar against Hepatoma. Basic Clin Pharmacol Toxicol 2015; 117:105-16. [PMID: 25615234 DOI: 10.1111/bcpt.12379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/09/2015] [Indexed: 12/26/2022]
Abstract
Gelatinases play important roles in tumour invasion and metastasis and are thus considered promising targets for cancer therapy. In this study, a new single-chain variable fragment (scFv)-based fusion protein Fv-LDP, composed of the anti-gelatinases scFv and lidamycin apoprotein (LDP), was prepared, and its combination with angiogenesis inhibitor Endostar was then investigated. The fusion protein Fv-LDP specifically bound to various tumour cells, and its binding capability to human pulmonary giant cell carcinoma (PG) cells was higher than that of LDP. Fv-LDP inhibited the expression and secretion of gelatinases and could be internalized into tumour cells via endocytosis. Fv-LDP also suppressed the growth of human hepatoma cells and murine hepatoma 22 transplanted in Kunming mice in various degrees. In addition, Endostar could enhance the synergistic or additive inhibition of Fv-LDP on the growth, migration or invasion of human hepatoma cells shown by a colony formation assay and a transwell-based migration or invasion assay, respectively. In vivo, Fv-LDP/Endostar combination showed a significantly synergistic effect on the growth of a human hepatoma xenograft, with an inhibition rate of 80.8% compared with the Fv-LDP (44.1%) or Endostar (8.9%)-treated group. The above-mentioned results indicate that the fusion protein Fv-LDP is effective against transplantable hepatoma in mice and human hepatoma xenografts in athymic mice. Moreover, Endostar can potentiate the inhibition effect of Fv-LDP on the growth of human hepatoma cells and xenografts. These data will provide a new combined strategy for improving the therapeutic efficacy of treatments for hepatoma or other gelatinase-overexpressing tumours.
Collapse
Affiliation(s)
- Ruijuan Gao
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liang Li
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Boyang Shang
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chunyan Zhao
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Weijin Sheng
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Diandong Li
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Liu WJ, Liu XJ, Li L, Li Y, Zhang SH, Zhen YS. Tuftsin-based, EGFR-targeting fusion protein and its enediyne-energized analog show high antitumor efficacy associated with CD47 down-regulation. Cancer Immunol Immunother 2014; 63:1261-72. [PMID: 25164878 PMCID: PMC11029470 DOI: 10.1007/s00262-014-1604-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 08/15/2014] [Indexed: 01/13/2023]
Abstract
Tuftsin (TF) is an immunomodulator tetrapeptide (Thr-Lys-Pro-Arg) that binds to the receptor neuropilin-1 (Nrp1) on the surface of cells. Many reports have described anti-tumor activity of tuftsin to relate with nonspecific activation of the host immune system. Lidamycin (LDM) that displays extremely potent cytotoxicity to cancer cells is composed of an apoprotein (LDP) and an enediyne chromophore (AE). In addition, Ec is an EGFR-targeting oligopeptide. In the present study, LDP was used as protein scaffold and the specific carrier for the highly potent AE. Genetically engineered fusion proteins LDP-TF and Ec-LDP-TF were prepared; then, the enediyne-energized fusion protein Ec-LDM-TF was generated by integration of AE into Ec-LDP-TF. The tuftsin-based fusion proteins LDP-TF and Ec-LDP-TF significantly enhanced the phagocytotic activity of macrophages as compared with LDP (P < 0.05). Ec-LDP-TF effectively bound to tumor cells and macrophages; furthermore, it markedly suppressed the growth of human epidermoid carcinoma A431 xenograft in athymic mice by 84.2 % (P < 0.05) with up-regulated expression of TNF-α and IFN-γ. Ec-LDM-TF further augmented the therapeutic efficacy, inhibiting the growth of A431 xenograft by 90.9 % (P < 0.05); notably, the Ec-LDM-TF caused marked down-regulation of CD47 in A431 cells. Moreover, the best therapeutic effect was recorded in the group of animals treated with the combination of Ec-LDP-TF with Ec-LDM-TF. The results suggest that tuftsin-based, enediyne-energized, and EGFR-targeting fusion proteins exert highly antitumor efficacy with CD47 modulation. Tuftsin-based fusion proteins are potentially useful for treatment of EGFR- and CD47-overexpressing cancers.
Collapse
Affiliation(s)
- Wen-Juan Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Tiantan Xili, Beijing, 100050 China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, 250117 Shandong China
| | - Xiu-Jun Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Tiantan Xili, Beijing, 100050 China
| | - Liang Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Tiantan Xili, Beijing, 100050 China
| | - Yi Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Tiantan Xili, Beijing, 100050 China
| | - Sheng-Hua Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Tiantan Xili, Beijing, 100050 China
| | - Yong-Su Zhen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Tiantan Xili, Beijing, 100050 China
| |
Collapse
|
8
|
Zhen HY, Zhou J, Wu HN, Yao C, Zhang T, Wu T, Quan CS, Li YL. Lidamycin regulates p53 expression by repressing Oct4 transcription. Biochem Biophys Res Commun 2014; 447:224-30. [DOI: 10.1016/j.bbrc.2014.03.082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
|
9
|
Jiang WG, Lu XA, Shang BY, Fu Y, Zhang SH, Zhou D, Li L, Li Y, Luo Y, Zhen YS. Genetically engineered endostatin-lidamycin fusion proteins effectively inhibit tumor growth and metastasis. BMC Cancer 2013; 13:479. [PMID: 24128285 PMCID: PMC4016579 DOI: 10.1186/1471-2407-13-479] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 09/20/2013] [Indexed: 01/07/2023] Open
Abstract
Background Endostatin (ES) inhibits endothelial cell proliferation, migration, invasion, and tube formation. It also shows antiangiogenesis and antitumor activities in several animal models. Endostatin specifically targets tumor vasculature to block tumor growth. Lidamycin (LDM), which consists of an active enediyne chromophore (AE) and a non-covalently bound apo-protein (LDP), is a member of chromoprotein family of antitumor antibiotics with extremely potent cytotoxicity to cancer cells. Therefore, we reasoned that endostatin-lidamycin (ES-LDM) fusion proteins upon energizing with enediyne chromophore may obtain the combined capability targeting tumor vasculature and tumor cell by respective ES and LDM moiety. Methods In this study, we designed and obtained two new endostatin-based fusion proteins, endostatin-LDP (ES-LDP) and LDP-endostatin (LDP-ES). In vitro, the antiangiogenic effect of fusion proteins was determined by the wound healing assay and tube formation assay and the cytotoxicity of their enediyne-energized analogs was evaluated by CCK-8 assay. Tissue microarray was used to analyze the binding affinity of LDP, ES or ES-LDP with specimens of human lung tissue and lung tumor. The in vivo efficacy of the fusion proteins was evaluated with human lung carcinoma PG-BE1 xenograft and the experimental metastasis model of 4T1-luc breast cancer. Results ES-LDP and LDP-ES disrupted the formation of endothelial tube structures and inhibited endothelial cell migration. Evidently, ES-LDP accumulated in the tumor and suppressed tumor growth and metastasis. ES-LDP and ES show higher binding capability than LDP to lung carcinoma; in addition, ES-LDP and ES share similar binding capability. Furthermore, the enediyne-energized fusion protein ES-LDP-AE demonstrated significant efficacy against lung carcinoma xenograft in athymic mice. Conclusions The ES-based fusion protein therapy provides some fundamental information for further drug development. Targeting both tumor vasculature and tumor cells by endostatin-based fusion proteins and their enediyne-energized analogs probably provides a promising modality in cancer therapy.
Collapse
Affiliation(s)
- Wen-guo Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P, R, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|