1
|
Yang L, Sun M, Ying L, Liu X, Zhao W, Lin R, Shu Q. sTREM2 in the prognostic evaluation of acute lung injury after cardiac surgery in infants. Pediatr Res 2024; 95:770-774. [PMID: 38007519 DOI: 10.1038/s41390-023-02915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/14/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Previous studies have shown that TREM2 plays a protective role in acute lung injury (ALI). This prospective study aimed to investigate the role of sTREM2 as a forecasting factor for ALI in infants after pediatric cardiac surgery undergoing cardiopulmonary bypass (CPB). METHODS Seventy-five consecutive patients younger than 1 year who underwent cardiac surgery were enrolled in this study. Sixty-one fulfilled the inclusion criteria and had been divided into ALI and non-ALI groups. Children's demographic characteristics and clinical data were collected. Perioperative sTREM2 levels were analyzed at five timepoints. RESULTS In this study, children in the ALI group were younger, lighter, with higher RACHS-1 scores and underwent significantly longer CPB time. Post-CPB ALI had an impact on clinical outcomes, which contributed to a longer duration of mechanical ventilation, ICU and hospital stay than non-ALI group. Significant differences were manifested off-CPB, 1 h/6 h after CPB, and day 1 after surgery between the two groups. Binary logistic models revealed that off-CPB sTREM2 was significantly associated with the incidence of post-CPB ALI after adjustment. ROC analysis showed that the AUC of off-CPB sTREM2 level was 0.791, and the optimal cutoff value was 788.6 pg/ml. CONCLUSIONS The off-CPB sTREM2 level was an independent prognostic factor for post-CPB ALI in infants. IMPACT Plasma sTREM2 works together with downstream TREM2 to regulate inflammation response by binding the receptor to other cells. Previous studies have shown that TREM2 plays a protective role in ischemia-reperfusion and has anti-inflammatory effects on acute lung injury (ALI). This study analyzed the risk factors of post-cardiopulmonary bypass (CPB) ALI. We found that weight and off-CPB sTREM2 level were independent prognostic factors for post-CPB ALI. Plasma sTREM2 may serve as an early biomarker in the prognostic evaluation of acute lung injury after cardiac surgery in infants.
Collapse
Affiliation(s)
- Lijun Yang
- Department of Extracorporeal Circulation and Extracorporeal Life Support, Heart Institute, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Binjiang District, Hangzhou, Zhejiang, China
| | - Mingwei Sun
- Department of Extracorporeal Circulation and Extracorporeal Life Support, Heart Institute, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Binjiang District, Hangzhou, Zhejiang, China
| | - Liyang Ying
- Department of Cardiac Surgery, Heart Institute, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Binjiang District, Hangzhou, Zhejiang, China
| | - Xiwang Liu
- Department of Cardiac Surgery, Heart Institute, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Binjiang District, Hangzhou, Zhejiang, China
| | - Wenting Zhao
- Department of Extracorporeal Circulation and Extracorporeal Life Support, Heart Institute, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Binjiang District, Hangzhou, Zhejiang, China
| | - Ru Lin
- Department of Extracorporeal Circulation and Extracorporeal Life Support, Heart Institute, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Binjiang District, Hangzhou, Zhejiang, China
| | - Qiang Shu
- Department of Cardiac Surgery, Heart Institute, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Binjiang District, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Fatehi Hassanabad A, Schoettler FI, Kent WD, Adams CA, Holloway DD, Ali IS, Novick RJ, Ahsan MR, McClure RS, Shanmugam G, Kidd WT, Kieser TM, Fedak PW, Deniset JF. Cardiac surgery elicits pericardial inflammatory responses that are distinct compared with postcardiopulmonary bypass systemic inflammation. JTCVS OPEN 2023; 16:389-400. [PMID: 38204649 PMCID: PMC10774980 DOI: 10.1016/j.xjon.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/22/2023] [Accepted: 06/12/2023] [Indexed: 01/12/2024]
Abstract
Objectives Cardiac surgery using cardiopulmonary bypass contributes to a robust systemic inflammatory process. Local intrapericardial postsurgical inflammation is believed to trigger important clinical implications, such as postoperative atrial fibrillation and postsurgical intrathoracic adhesions. Immune mediators in the pericardial space may underlie such complications. Methods In this prospective pilot clinical study, 12 patients undergoing isolated coronary artery bypass graft surgery were enrolled. Native pericardial fluid and venous blood samples (baseline) were collected immediately after pericardiotomy. Postoperative pericardial fluid and venous blood samples were collected 48-hours after cardiopulmonary bypass and compared with baseline. Flow cytometry determined proportions of specific immune cells, whereas multiplex analysis probed for inflammatory mediators. Results Neutrophils are the predominant cells in both the pericardial space and peripheral blood postoperatively. There are significantly more CD163lo macrophages in blood compared with pericardial effluent after surgery. Although there are significantly more CD163hi macrophages in native pericardial fluid compared with baseline blood, after surgery there are significantly fewer of these cells present in the pericardial space compared with blood. Postoperatively, concentration of interleukin receptor antagonist 6, and interleukin 8 were significantly higher in the pericardial space compared with blood. After surgery, compared with blood, the pericardial space has a significantly higher concentration of matrix metalloproteinase 3, matrix metalloproteinase 8, and matrix metalloproteinase 9. The same trend was observed with transformational growth factor β. Conclusions Cardiac surgery elicits an inflammatory response in the pericardial space, which differs from systemic inflammatory responses. Future work should determine whether or not this distinct local inflammatory response contributes to postsurgical complications and could be modified to influence clinical outcomes.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Friederike I. Schoettler
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - William D.T. Kent
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Corey A. Adams
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Daniel D. Holloway
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Imtiaz S. Ali
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Richard J. Novick
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Muhammad R. Ahsan
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robert Scott McClure
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ganesh Shanmugam
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - William T. Kidd
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Teresa M. Kieser
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul W.M. Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Justin F. Deniset
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Asfari A, Doyle EA, Jay GD, Aristizabal N, Manchikalapati A, Rahman AKMF, Hock KM, Borasino S, Ambalavanan N, Schmidt TA, Rhodes LA. Plasma proteoglycan 4: a novel biomarker for acute lung injury after pediatric cardiac surgery. Transl Pediatr 2023; 12:1668-1675. [PMID: 37814710 PMCID: PMC10560364 DOI: 10.21037/tp-23-194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/27/2023] [Indexed: 10/11/2023] Open
Abstract
Background Identification of biological molecules related to post cardiopulmonary bypass (CPB) lung injury could help diagnose, predict and potentially impact patient's clinical course after cardiac surgery. Proteoglycan 4 (PRG4) initially identified as potential biomarker for patients with prolonged mechanical ventilation following CPB in a prior study. To further validate these findings, we sought to understand the association of lower plasma PRG4 with prolonged mechanical ventilation and worse lung compliance in a larger cohort of pediatric patients post CPB. Methods Retrospective chart review study. Pediatric Cardiac Intensive Care Unit, Tertiary Hospital. Infants <1 year old with tetralogy of Fallot, ventricular septal defect, or atrioventricular septal defect who underwent surgical repair 2012-2020 and had stored plasma samples in our biorepository were screened for inclusion. Patients with mechanical ventilation before surgery were excluded. Patients were divided into quartiles based on postoperative duration of mechanical ventilation (control <25th percentile, study >75th percentile). Preoperative and 48-hour postoperative samples for each cohort (20 patients each) were tested for PRG4 level using enzyme-linked immunosorbent assay (ELISA) technique. Results Study group had lower lung compliance, higher mean airway pressure and higher oxygen need postoperative when compared to control group. Plasma PRG4 levels before surgery and 48 hours postoperative were lower in study group compared to control group (P=0.0232 preoperative; P=0.0016 postoperative). Plasma PRG4 levels were compared preoperative to PRG4 levels postoperative in both group, there was no statistically significant difference (study group: P=0.0869; control group: P=0.6500). Conclusions Lower levels of plasma PRG4 is associated with longer duration of mechanical ventilation, worse ventilator compliance and higher oxygen requirement after cardiac surgery in our patient population. Further validation of this finding in a larger and more diverse patient population is necessary prior to its application at the bedside.
Collapse
Affiliation(s)
- Ahmed Asfari
- Section of Cardiac Critical Care, Division of Cardiology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Erica A. Doyle
- Biomedical Engineering Department, School of Dental Medicine, UConn Health, Farmington, CT, USA
| | - Gregory D. Jay
- Department of Emergency Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Natalia Aristizabal
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ananya Manchikalapati
- Division of Critical Care, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Kristal M. Hock
- Section of Cardiac Critical Care, Division of Cardiology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Santiago Borasino
- Section of Cardiac Critical Care, Division of Cardiology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Namasivayam Ambalavanan
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tannin A. Schmidt
- Biomedical Engineering Department, School of Dental Medicine, UConn Health, Farmington, CT, USA
| | - Leslie A. Rhodes
- Section of Cardiac Critical Care, Division of Cardiology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
4
|
Siegel PM, Barta BA, Orlean L, Steenbuck ID, Cosenza-Contreras M, Wengenmayer T, Trummer G, Wolf D, Westermann D, Schilling O, Diehl P. The serum proteome of VA-ECMO patients changes over time and allows differentiation of survivors and non-survivors: an observational study. J Transl Med 2023; 21:319. [PMID: 37173738 PMCID: PMC10176307 DOI: 10.1186/s12967-023-04174-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is applied in patients with refractory hemodynamic failure. Exposure of blood components to high shear stress and the large extracorporeal surfaces in the ECMO circuit trigger a complex inflammatory response syndrome and coagulopathy which are believed to worsen the already poor prognosis of these patients. Mass spectrometry-based proteomics allow a detailed characterization of the serum proteome as it provides the identity and concentration of large numbers of individual proteins at the same time. In this study, we aimed to characterize the serum proteome of patients receiving VA-ECMO. METHODS Serum samples were collected on day 1 and day 3 after initiation of VA-ECMO. Samples underwent immunoaffinity based depletion for the 14 most abundant serum proteins, in-solution digestion and PreOmics clean-up. A spectral library was built with multiple measurements of a master-mix sample using variable mass windows. Individual samples were measured in data independent acquisition (DIA) mode. Raw files were analyzed by DIA-neural network. Unique proteins were log transformed and quantile normalized. Differential expression analysis was conducted with the LIMMA-R package. ROAST was applied to generate gene ontology enrichment analyses. RESULTS Fourteen VA-ECMO patients and six healthy controls were recruited. Seven patients survived. Three hundred and fifty-one unique proteins were identified. One hundred and thirty-seven proteins were differentially expressed between VA-ECMO patients and controls. One hundred and forty-five proteins were differentially expressed on day 3 compared to day 1. Many of the differentially expressed proteins were involved in coagulation and the inflammatory response. The serum proteomes of survivors and non-survivors on day 3 differed from each other according to partial least-squares discriminant analysis (PLS-DA) and 48 proteins were differentially expressed. Many of these proteins have also been ascribed to processes in coagulation and inflammation (e.g., Factor IX, Protein-C, Kallikrein, SERPINA10, SEMA4B, Complement C3, Complement Factor D and MASP-1). CONCLUSION The serum proteome of VA-ECMO patients displays major changes compared to controls and changes from day 1 until day 3. Many changes in the serum proteome are related to inflammation and coagulation. Survivors and non-survivors can be differentiated according to their serum proteomes using PLS-DA analysis on day 3. Our results build the basis for future studies using mass-spectrometry based serum proteomics as a tool to identify novel prognostic biomarkers. TRIAL REGISTRATION DRKS00011106.
Collapse
Affiliation(s)
- Patrick Malcolm Siegel
- Department of Cardiology and Angiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Bálint András Barta
- Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Orlean
- Department of Cardiology and Angiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ines Derya Steenbuck
- Department of Cardiology and Angiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miguel Cosenza-Contreras
- Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Wengenmayer
- Interdisciplinary Medical Intensive Care (IMIT), Medical Center, University of Freiburg, Freiburg, Germany
| | - Georg Trummer
- Department of Cardiovascular Surgery, Medical Center, University of Freiburg, Freiburg, Germany
| | - Dennis Wolf
- Department of Cardiology and Angiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dirk Westermann
- Department of Cardiology and Angiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Schilling
- Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Diehl
- Department of Cardiology and Angiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Neutrophil Count as Atrioventricular Block (AVB) Predictor following Pediatric Heart Surgery. Int J Mol Sci 2022; 23:ijms232012409. [PMID: 36293263 PMCID: PMC9604473 DOI: 10.3390/ijms232012409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 11/23/2022] Open
Abstract
Neutrophils play a significant role in immune and inflammatory reactions. The preoperative inflammatory activation may have a detrimental effect on postoperative outcomes. The aim of the study was to investigate the relation between preoperative hematological indices on postoperative complications’ risk in pediatric cardiac congenital surgery. The retrospective single center analysis included 93 pediatric patients (48 (65%) males and 45 (35%) females), mean age of 7 (3−30) months referred for cardiac surgery in cardiopulmonary bypass due to functional single ventricle disease (26 procedures), shunts lesions (40 procedures) and cyanotic disease (27 procedures). Among simple hematological indices, the receiver-operating-characteristic curve showed that a neutrophil count below 2.59 K/uL was found as an optimal cut-off point for predicting postoperative atrioventricular block following pediatric cardiac surgery (AUC = 0.845, p < 0.0001) yielding a sensitivity of 100% and a specificity of 65.62%. Preoperative values of neutrophil count below 2.59 K/uL in whole blood analysis can be regarded as a predictive factor (AUC = 0.845, p < 0.0001) for postoperative atrioventricular block in pediatric cardiac surgery.
Collapse
|
6
|
Fatehi Hassanabad A, Schoettler FI, Kent WD, Adams CA, Holloway DD, Ali IS, Novick RJ, Ahsan MR, McClure RS, Shanmugam G, Kidd WT, Kieser TM, Fedak PW, Deniset JF. Comprehensive characterization of the postoperative pericardial inflammatory response: Potential implications for clinical outcomes. JTCVS OPEN 2022; 12:118-136. [PMID: 36590740 PMCID: PMC9801292 DOI: 10.1016/j.xjon.2022.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 01/04/2023]
Abstract
Objective There is a paucity of data on the inflammatory response that takes place in the pericardial space after cardiac surgery. This study provides a comprehensive assessment of the local postoperative inflammatory response. Methods Forty-three patients underwent cardiotomy, where native pericardial fluid was aspirated and compared with postoperative pericardial effluent collected at 4, 24, and 48 hours' postcardiopulmonary bypass. Flow cytometry was used to define the levels and proportions of specific immune cells. Samples were also probed for concentrations of inflammatory cytokines, matrix metalloproteinases (MMPs), and tissue inhibitors of metalloproteinases (TIMPs). Results Preoperatively, the pericardial space mainly contains macrophages and T cells. However, the postsurgical pericardial space was populated predominately by neutrophils, which constituted almost 80% of immune cells present, and peaked at 24 hours. When surgical approaches were compared, minimally invasive surgery was associated with fewer neutrophils in the pericardial space at 4 hours' postsurgery. Analysis of the intrapericardial concentrations of inflammatory mediators showed interleukin-6, MMP-9, and TIMP-1 to be highest postsurgery. Over time, MMP-9 concentrations decreased significantly, whereas TIMP-1 levels increased, resulting in a significant reduction of the ratio of MMP:TIMP after surgery, suggesting that active inflammatory processes may influence extracellular matrix remodeling. Conclusions These results show that cardiac surgery elicits profound alterations in the immune cell profile in the pericardial space. Defining the cellular and molecular mediators that drive pericardial-specific postoperative inflammatory processes may allow for targeted therapies to reduce immune-mediated complications.
Collapse
Key Words
- AVR, aortic valve replacement
- CABG, coronary artery bypass graft
- CD, cluster of differentiation
- CPB, cardiopulmonary bypass
- DC, dendritic cell
- ECM, extracellular matrix
- FS, full median sternotomy
- IL, interleukin
- IL-1Ra, interleukin-1 receptor antagonist
- Inf DC, inflammatory dendritic cell
- MICS, minimally invasive cardiac surgery
- MMP, matrix metalloproteinase
- MMPtot, total matrix metalloproteinases
- Mφ, macrophage
- NK, natural killer cell
- PAOF, postoperative atrial fibrillation
- PPS, postpericardiotomy syndrome
- RAMT-AVR, right anterior minithoracotomy aortic valve replacement
- SSC, side scatter
- TGFβ, transforming growth factor-beta
- TIMP, tissue inhibitor of metalloproteinases
- TIMPtot, total tissue inhibitors of metalloproteinases
- cDC, classical dendritic cell
- conventional cardiac surgery
- inflammation
- minimally invasive cardiac surgery
- pericardial space
- postoperative pericardial fluid
- sAVR, conventional full median sternotomy surgical aortic valve replacement
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Friederike I. Schoettler
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - William D.T. Kent
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Corey A. Adams
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Daniel D. Holloway
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Imtiaz S. Ali
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Richard J. Novick
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Muhammad R. Ahsan
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robert Scott McClure
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ganesh Shanmugam
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - William T. Kidd
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Teresa M. Kieser
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul W.M. Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Justin F. Deniset
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Calgary, Alberta, Canada
- Address for reprints: Justin F. Deniset, PhD, Department of Physiology & Pharmacology, Department of Cardiac Sciences, Libin Cardiovascular Institute Cumming School of Medicine, Health Research Innovation Centre, University of Calgary, 3330 Hospital Dr NW, Room GAC56, Calgary, Alberta, Canada, T2N 4N1.
| |
Collapse
|