1
|
The immunosuppressive face of sepsis early on intensive care unit-A large-scale microarray meta-analysis. PLoS One 2018; 13:e0198555. [PMID: 29920518 PMCID: PMC6007920 DOI: 10.1371/journal.pone.0198555] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 05/21/2018] [Indexed: 12/15/2022] Open
Abstract
Background Sepsis is defined as a life-threatening condition, resulting from a dysregulated and harmful response of the hosts’ immune system to infection. Apart from this, the (over-)compensating mechanisms counterbalancing the inflammatory response have been proven to render the host susceptible to further infections and increase delayed mortality. Our study aimed to unravel the heterogeneity of immune response in early sepsis and to explain the biology behind it. Methods A systematic search of public repositories yielded 949 microarray samples from patients with sepsis of different infectious origin and early after clinical manifestation. These were merged into a meta-expression set, and after applying sequential conservative bioinformatics filtering, an in-deep analysis of transcriptional heterogeneity, as well as a comparison to samples of healthy controls was performed. Results We can identify two distinct clusters of patients (cluster 1: 655 subjects, cluster 2: 294 subjects) according to their global blood transcriptome. While both clusters exhibit only moderate differences in direct comparison, a comparison of both clusters individually to healthy controls yielded strong expression changes of genes involved in immune responses. Both comparisons found similar regulated genes, with a stronger dysregulation occurring in the larger patient cluster and implicating a loss of monocyte and T cell function, co-occurring with an activation of neutrophil granulocytes. Conclusion We propose a consistent—but in its extent varying—presence of immunosuppression, occurring as early in sepsis as its clinical manifestation and irrespective of the infectious origin. While certain cell types possess contradictory activation states, our finding underlines the urgent need for an early host-directed therapy of sepsis side-by-side with antibiotics.
Collapse
|
2
|
Mueller SW, Baumgartner LJ, MacLaren R, Neumann R, Wiktor AJ, Kiser TH, Lindberg G, Cava L, Fish DN, Janoff EN. Divergent humoral responses to 23-valent pneumococcal polysaccharide vaccine in critically-ill burn and neurosurgical patients. PLoS One 2018; 13:e0197037. [PMID: 29758059 PMCID: PMC5951595 DOI: 10.1371/journal.pone.0197037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/25/2018] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Critically ill hospitalized patients are at increased risk of infection so we assessed the immunogenicity of 23-valent pneumococcal polysaccharide vaccine (PPSV23) administered within six days of injury. METHODS This prospective observational study compared the immunogenicity of PPSV23 among critically ill burn and neurosurgical patients at a tertiary, academic medical center. Patients received PPSV23 vaccination within six days of ICU admission per standard of care. Consent was obtained to measure concentrations of vaccine-specific IgG to 14 of 23 serotype capsule-specific IgG in serum prior to and 14-35 days following PPSV23. A successful immunologic response was defined as both a ≥2-fold rise in capsule-specific IgG from baseline and concentrations of >1 mcg/mL to 10 of 14 measured vaccine serotypes. Immunologic response was compared between burn and neurosurgical patients. Multiple variable regression methods were used to explore associations of clinical and laboratory parameters to immunologic responses. RESULTS Among the 16 burn and 27 neurosurgical patients enrolled, 87.5% and 40.7% generated a successful response to the vaccine, respectively (p = 0.004). Both median post-PPSV23 IgG concentrations (7.79 [4.56-18.1] versus 2.93 [1.49-8.01] mcg/mL; p = 0.006) and fold rises (10.66 [7.44-14.56] versus 3.48 [1.13-6.59]; p<0.001) were significantly greater in burn compared with neurosurgical patients. Presence of burn injury was directly and days from injury to immunization were inversely correlated with successful immunologic response (both p<0.03). Burn injury was associated with both increased median antibody levels post-PPSV23 and fold rise to 14 vaccine serotypes (p<0.03), whereas absolute lymphocyte count was inversely correlated with median antibody concentrations (p = 0.034). CONCLUSION Critically ill burn patients can generate successful responses to PPSV23 during acute injury whereas responses among neurosurgical patients is comparatively blunted. Further study is needed to elucidate the mechanisms of differential antigen responsiveness in these populations, including the role of acute stress responses, as well as the durability of these antibody responses.
Collapse
Affiliation(s)
- Scott W. Mueller
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, United States of America
- * E-mail:
| | - Laura J. Baumgartner
- Department of Clinical Sciences, Touro University California College of Pharmacy, Vallejo, California, United States of America
| | - Rob MacLaren
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, United States of America
| | - Robert Neumann
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Arek J. Wiktor
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado United States of America
| | - Tyree H. Kiser
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, United States of America
| | - Gordon Lindberg
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado United States of America
| | - Luis Cava
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Douglas N. Fish
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, United States of America
| | - Edward N. Janoff
- Division of Infectious Disease, Mucosal and Vaccine Research Program Colorado (MAVRC), University of Colorado School of Medicine and Denver Veterans Affairs Medical Center, Aurora, Colorado, United States of America
| |
Collapse
|
3
|
Shubin NJ, Pham TN, Staudenmayer KL, Parent BA, Qiu Q, O'Keefe GE. A Potential Mechanism for Immune Suppression by Beta-Adrenergic Receptor Stimulation following Traumatic Injury. J Innate Immun 2018; 10:202-214. [PMID: 29455206 DOI: 10.1159/000486972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/17/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND β-Adrenergic agents suppress inflammation and may play an important role in posttraumatic infections. Mechanisms may include inhibition of MAP kinase signaling. We sought to determine whether MKP-1 contributed to catecholamine suppression of innate immunity and also wanted to know whether early catecholamine treatment after traumatic injury increases the risk of later nosocomial infection. METHODS We performed experiments using THP-1 cells and peripheral blood mononuclear cells from healthy individuals. We exposed cells to epinephrine and/or LPS and measured inflammatory gene transcription and MAP kinase activation. We inhibited MKP-1 activity to determine its role in catecholamine-induced immune suppression. Finally, we studied injured subjects to determine whether early catecholamine treatment was associated with nosocomial infection. RESULTS Epinephrine increases MKP-1 transcripts and protein and decreases LPS-induced p38 and JNK phosphorylation and TNF-α gene transcription. RNAi inhibition of MKP-1 at least partially restores LPS-induced TNF-α gene expression (p = 0.024). In the clinical cohort, subjects treated with β-adrenergic agents had an increased risk of ventilator-associated pneumonia (aOR = 1.9; 95% CI = 1.3-2.6) and bacteremia (aOR = 1.5; 95% CI = 1.1-2.3). CONCLUSIONS MKP-1 may have a role in catecholamine-induced suppression of innate immunity, and exogenous catecholamines might contribute to nosocomial infection risk.
Collapse
Affiliation(s)
- Nicholas J Shubin
- Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, Washington, USA
| | - Tam N Pham
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | | | - Brodie A Parent
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Qian Qiu
- Harborview Injury Prevention and Research Center, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Grant E O'Keefe
- Harborview Injury Prevention and Research Center, Department of Surgery, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Abstract
The development of organ dysfunction (OD) is related to the intensity and balance between trauma-induced simultaneous, opposite inflammatory responses. Early proinflammation via innate immune system activation may cause early OD, whereas antiinflammation, via inhibition of the adaptive immune system and apoptosis, may induce immunoparalysis, impaired healing, infections, and late OD. Patients discharged with low-level OD may develop the persistent inflammation-immunosuppression catabolism syndrome. Although the incidence of multiple organ failure has decreased over time, it remains morbid, lethal, and resource intensive. However, single OD, especially acute lung injury, remains frequent. Treatment is limited, and prevention remains the mainstay strategy.
Collapse
Affiliation(s)
- Angela Sauaia
- University of Colorado Denver, 655 Broadway #365, Denver, CO 80203, USA.
| | | | - Ernest E Moore
- Denver Health Medical Center, University of Colorado Denver, 655 Broadway #365, Denver, CO 80203, USA
| |
Collapse
|
5
|
Chen YC, Chen TW, Su MC, Chen CJ, Chen KD, Liou CW, Tang P, Wang TY, Chang JC, Wang CC, Lin HC, Chin CH, Huang KT, Lin MC, Hsiao CC. Whole Genome DNA Methylation Analysis of Obstructive Sleep Apnea: IL1R2, NPR2, AR, SP140 Methylation and Clinical Phenotype. Sleep 2016; 39:743-55. [PMID: 26888452 DOI: 10.5665/sleep.5620] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 11/03/2015] [Indexed: 12/14/2022] Open
Abstract
STUDY OBJECTIVES We hypothesized that DNA methylation patterns may contribute to disease severity or the development of hypertension and excessive daytime sleepiness (EDS) in patients with obstructive sleep apnea (OSA). METHODS Illumina's (San Diego, CA, USA) DNA methylation 27-K assay was used to identify differentially methylated loci (DML). DNA methylation levels were validated by pyrosequencing. A discovery cohort of 15 patients with OSA and 6 healthy subjects, and a validation cohort of 72 patients with sleep disordered breathing (SDB). RESULTS Microarray analysis identified 636 DMLs in patients with OSA versus healthy subjects, and 327 DMLs in patients with OSA and hypertension versus those without hypertension. In the validation cohort, no significant difference in DNA methylation levels of six selected genes was found between the primary snoring subjects and OSA patients (primary outcome). However, a secondary outcome analysis showed that interleukin-1 receptor 2 (IL1R2) promoter methylation (-114 cytosine followed by guanine dinucleotide sequence [CpG] site) was decreased and IL1R2 protein levels were increased in the patients with SDB with an oxygen desaturation index > 30. Androgen receptor (AR) promoter methylation (-531 CpG site) and AR protein levels were both increased in the patients with SDB with an oxygen desaturation index > 30. Natriuretic peptide receptor 2 (NPR2) promoter methylation (-608/-618 CpG sites) were decreased, whereas levels of both NPR2 and serum C type natriuretic peptide protein were increased in the SDB patients with EDS. Speckled protein 140 (SP140) promoter methylation (-194 CpG site) was increased, and SP140 protein levels were decreased in the patients with SDB and EDS. CONCLUSIONS IL1R2 hypomethylation and AR hypermethylation may constitute an important determinant of disease severity, whereas NPR2 hypomethylation and SP140 hypermethylation may provide a biomarker for vulnerability to EDS in OSA. COMMENTARY A commentary on this article appears in this issue on page 723.
Collapse
Affiliation(s)
- Yung-Che Chen
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taiwan
| | - Ting-Wen Chen
- Molecular Medicine Research Center, Chang Gung University, Taiwan.,Bioinformatics Center, Chang Gung University, Taiwan
| | - Mao-Chang Su
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Chang Gung University of Science and Technology, Chia-yi, Taiwan
| | - Chung-Jen Chen
- Division of Rheumatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuang-Den Chen
- Center of Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Petrus Tang
- Molecular Medicine Research Center, Chang Gung University, Taiwan.,Bioinformatics Center, Chang Gung University, Taiwan
| | - Ting-Ya Wang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jen-Chieh Chang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taiwan
| | - Chin-Chou Wang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Chang Gung University of Science and Technology, Chia-yi, Taiwan
| | - Hsin-Ching Lin
- Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chien-Hung Chin
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuo-Tung Huang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taiwan
| | - Chang-Chun Hsiao
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taiwan
| |
Collapse
|
6
|
Galbraith N, Walker S, Galandiuk S, Gardner S, Polk HC. The Significance and Challenges of Monocyte Impairment: For the Ill Patient and the Surgeon. Surg Infect (Larchmt) 2016; 17:303-12. [PMID: 26958709 DOI: 10.1089/sur.2015.245] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Trauma, major elective surgery, and overt sepsis can lead to a cascade of immunological change. A subset of these patients will have a degree of immune suppression that leads to hyporesponsive innate defenses, increasing the risk of infective co-morbidity and death. This article is an overview of monocyte impairment in the high-risk surgical patient. Specifically, our primary focus is on observations made pertaining to monocyte function and pathophysiological mechanisms underpinning this impairment. Clinical factors influencing monocyte function are also discussed. METHODS A Pubmed search was conducted to review aspects of monocyte impairment in the surgical patient. Search terms included "monocyte impairment," "immunoparalysis," and "endotoxin tolerance" cross-referenced against terms including "trauma," "major surgery," and "sepsis." RESULTS Findings revealed a broad variety of monocyte defects reported in surgical patients. They ranged from altered cytokine responses, particularly ex vivo TNF-α production, to impaired antigen presentation such as depressed HLA-DR expression. The latter is the most commonly described marker of secondary infection and death. Studies of underlying mechanisms have commonly utilized a model of endotoxin tolerance with in vitro monocytes, revealing a complex array of dysregulated pathways. For our purposes, endotoxin tolerance and monocyte impairment are sufficiently similar entities to permit further study as a single subject. In the high risk patient, microRNAs (also referred to as miRNA or miR) are emerging as potential biomarkers that may modify such pathways. Creation of a reliable impaired human monocyte model could be important to all such considerations. CONCLUSION Impairment of monocyte function continues to be predictive of nosocomial infection, multi-organ failure, and death in some surgical patients. However, the optimal marker that could identify a patient as high risk early enough, and whether it might guide potential therapy, still is yet to be proven.
Collapse
Affiliation(s)
- Norman Galbraith
- Department of Surgery, University of Louisville School of Medicine , Louisville, Kentucky
| | - Samuel Walker
- Department of Surgery, University of Louisville School of Medicine , Louisville, Kentucky
| | - Susan Galandiuk
- Department of Surgery, University of Louisville School of Medicine , Louisville, Kentucky
| | - Sarah Gardner
- Department of Surgery, University of Louisville School of Medicine , Louisville, Kentucky
| | - Hiram C Polk
- Department of Surgery, University of Louisville School of Medicine , Louisville, Kentucky
| |
Collapse
|
7
|
Bohr S, Patel SJ, Vasko R, Shen K, Golberg A, Berthiaume F, Yarmush ML. The Role of CHI3L1 (Chitinase-3-Like-1) in the Pathogenesis of Infections in Burns in a Mouse Model. PLoS One 2015; 10:e0140440. [PMID: 26528713 PMCID: PMC4631332 DOI: 10.1371/journal.pone.0140440] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/25/2015] [Indexed: 01/12/2023] Open
Abstract
In severe burn injury the unique setting of a depleted, dysfunctional immune system along with a loss of barrier function commonly results in opportunistic infections that eventually proof fatal. Unfortunately, the dynamic sequence of bacterial contamination, colonization and eventually septic invasion with bacteria such as Pseudomonas species is still poorly understood although a limiting factor in clinical decision making. Increasing evidence supports the notion that inhibition of bacterial translocation into the wound site may be an effective alternative to prevent infection. In this context we investigated the role of the mammalian Chitinase-3-Like-1 (CHI3L1) non-enyzmatic protein predominately expressed on epithelial as well as innate immune cells as a potential bacterial-translocation-mediating factor. We show a strong trend that a modulation of chitinase expression is likely to be effective in reducing mortality rates in a mouse model of burn injury with superinfection with the opportunistic PA14 Pseudomonas strain, thus demonstrating possible clinical leverage.
Collapse
Affiliation(s)
- Stefan Bohr
- Center for Engineering in Medicine, Shriners Hospitals for Children and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Department Plastic and Hand Surgery—Burn Center, UKA University Clinics RWTH, Aachen, Germany
- * E-mail:
| | - Suraj J. Patel
- Center for Engineering in Medicine, Shriners Hospitals for Children and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Radovan Vasko
- Department of Medicine, New York Medical College, Valhalla, NY, United States of America
- Department of Nephrology & Rheumatology, UMG University Clinics, Goettingen, Germany
| | - Keyue Shen
- Center for Engineering in Medicine, Shriners Hospitals for Children and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Alexander Golberg
- Center for Engineering in Medicine, Shriners Hospitals for Children and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Porter School of Environmental Studies, Tel Aviv University, Tel Aviv, Israel
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers University, New Brunswick, NJ, United States of America
| | - Martin L. Yarmush
- Center for Engineering in Medicine, Shriners Hospitals for Children and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Biomedical Engineering, Rutgers University, New Brunswick, NJ, United States of America
| |
Collapse
|
8
|
Weiterer S, Uhle F, Lichtenstern C, Siegler BH, Bhuju S, Jarek M, Bartkuhn M, Weigand MA. Sepsis induces specific changes in histone modification patterns in human monocytes. PLoS One 2015; 10:e0121748. [PMID: 25793379 PMCID: PMC4368631 DOI: 10.1371/journal.pone.0121748] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/03/2015] [Indexed: 12/16/2022] Open
Abstract
Background Sepsis is a global burden and the primary cause of death in intensive care units worldwide. The pathophysiological changes induced by the host’s systemic inflammatory response to infection are not yet fully understood. During sepsis, the immune system is confronted with a variety of factors, which are integrated within the individual cells and result in changes of their basal state of responsiveness. Epigenetic mechanisms like histone modifications are known to participate in the control of immune reactions, but so far the situation during sepsis is unknown. Methods and Findings In a pilot approach, we performed combined chromatin immunoprecipitation followed by high-throughput sequencing to assess the genome-wide distribution of the chromatin modifications histone 3 lysine 4 and 27 trimethylation and lysine 9 acetylation in monocytes isolated from healthy donors (n = 4) and patients with sepsis (n = 2). Despite different underlying causes for sepsis, a comparison over promoter regions shows a high correlation between the patients for all chromatin marks. These findings hold true also when comparing patients to healthy controls. Despite the global similarity, differential analysis reveals a set of distinct promoters with significant enrichment or depletion of histone marks. Further analysis of overrepresented GO terms show an enrichment of genes involved in immune function. To the most prominent ones belong different members of the HLA family located within the MHC cluster together with the gene coding for the major regulator of this locus—CIITA. Conclusions We are able to show for the first time that sepsis in humans induces selective and precise changes of chromatin modifications in distinct promoter regions of immunologically relevant genes, shedding light on basal regulatory mechanisms that might be contributing to the functional changes occurring in monocytes.
Collapse
Affiliation(s)
- Sebastian Weiterer
- Department of Anaesthesiology, Heidelberg University Hospital, Heidelberg, Germany
- German Centre for Infection Research (DZIF), partner site Giessen-Marburg-Langen, Giessen, Germany
- * E-mail:
| | - Florian Uhle
- Department of Anaesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Benedikt H. Siegler
- Department of Anaesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabin Bhuju
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Jarek
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marek Bartkuhn
- Institute for Genetics, Justus-Liebig-University, Giessen, Germany
| | - Markus A. Weigand
- Department of Anaesthesiology, Heidelberg University Hospital, Heidelberg, Germany
- German Centre for Infection Research (DZIF), partner site Giessen-Marburg-Langen, Giessen, Germany
| |
Collapse
|
9
|
Could altered leukocyte gene expression profile in trauma patients guide immune interventions to prevent gram-negative bacteremia? Crit Care Med 2014; 42:1550-1. [PMID: 24836792 DOI: 10.1097/ccm.0000000000000270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|