1
|
Yu X, Ren P, Yang R, Yue H, Tang Q, Xue C. Astaxanthin Ameliorates Skeletal Muscle Atrophy in Mice With Cancer Cachexia. Nutr Cancer 2024; 76:529-542. [PMID: 38567899 DOI: 10.1080/01635581.2024.2335584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 06/06/2024]
Abstract
Astaxanthin (AST) is a natural marine carotenoid with a variety of biological activities. This study aimed to demonstrate the possible mechanisms by which AST improves skeletal muscle atrophy in cancer cachexia. In this study, the effects of different doses of AST (30 mg/kg b.w., 60 mg/kg b.w. and 120 mg/kg b.w.) on skeletal muscle functions were explored in mice with cancer cachexia. The results showed that AST (30, 60 and 120 mg/kg b.w.) could effectively protect cachexia mice from body weight and skeletal muscle loss. AST dose-dependently ameliorated the decrease in myofibres cross-sectional area and increased the expression of myosin heavy chain (MHC). AST treatment decreased both the serum and muscle level of IL-6 but not TNF-α in C26 tumor-bearing cachexia mice. Moreover, AST alleviated skeletal muscle atrophy by decreasing the expression of two muscle-specific E3 ligases MAFBx and MuRF-1. AST improved mitochondrial function by downregulating the levels of muscle Fis1, LC3B and Bax, upregulating the levels of muscle Mfn2 and Bcl-2. In conclusion, our study show that AST might be expected to be a nutritional supplement for cancer cachexia patients.
Collapse
Affiliation(s)
- Xinyue Yu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Shandong, Qingdao, China
| | - Pengfei Ren
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Shandong, Qingdao, China
| | - Ruzhen Yang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Shandong, Qingdao, China
| | - Han Yue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Shandong, Qingdao, China
| | - Qingjuan Tang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Shandong, Qingdao, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Shandong, Qingdao, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
2
|
Astragaloside IV alleviates sepsis-induced muscle atrophy by inhibiting the TGF-β1/Smad signaling pathway. Int Immunopharmacol 2023; 115:109640. [PMID: 36586273 DOI: 10.1016/j.intimp.2022.109640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Muscle atrophy occurs in patients with sepsis and increases mortality and disability. Remission of muscle atrophy may improve the quality of life in patients with sepsis. Astragaloside IV (ASIV) has been shown to have excellent anti-inflammatory and anti-fibrotic effects and to reduce organ damage caused by sepsis. However, the effect of ASIV on sepsis-induced muscle atrophy has not been reported. Therefore, this study explored the pharmacological effects and mechanisms of ASIV in sepsis-induced muscle atrophy. METHODS Cecal ligation and puncture (CLP) was used to establish a mouse model of sepsis and lipopolysaccharide (LPS)-stimulated C2C12 myotubes. After administration of ASIV, the body weight, tibialis anterior (TA) and gastrocnemius muscle weight and fiber cross-sectional area of the mice were measured. The diameter of myotubes was observed by immunofluorescence staining. ELISA was used to assess inflammatory factors in plasma and cell culture supernatants. RT-PCR and Western blotting were used to detect the expression of MuRF1, Atrogin-1 and TGF-β1/Smad signaling pathway components in TA and C2C12 myotubes. RESULTS Our study found that ASIV reduced serum inflammatory factors and improved survival in septic mice. ASIV alleviated muscle mass reduction, myofiber cross-sectional area reduction, and C2C12 myotube atrophy by inhibiting the expression of the E3 ubiquitin ligases MuRF1 and atrogin-1. In addition, we observed that ASIV inhibited TGF-β1/Smad signaling. Inhibition of the TGF-β1/Smad signaling pathway partly blocked the anti-muscle atrophy effect of ASIV. CONCLUSION ASIV can alleviate sepsis-induced muscle atrophy, which may be related to the inhibition of the TGF-β1/Smad signaling pathway.
Collapse
|
3
|
Liu C, Liu A, Zhou J, Zhang Y, Zhou F, Chen H, Liu Q, Zhang S, Huang J, Liu Z. Role and Mechanism of Theaflavins in Regulating Skeletal Muscle Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13233-13250. [PMID: 36215649 DOI: 10.1021/acs.jafc.2c04063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Persistent inflammatory infiltration of skeletal muscle is a principal trigger for the loss of muscle mass and strength. Theaflavins, the main functional components of black tea, have effects on muscle health, but their biological effects on skeletal muscle inflammation are unclear. We constructed in vitro and in vivo models of muscle inflammation and found that theaflavins reduced the expression of inflammatory factors (IL-1β, IL-6, and TNF-α) by regulating the TLR4/MyD88/NF-κB signaling pathway to alleviate muscle inflammation. In addition, TF1 can regulate the metabolic function of skeletal muscle under inflammatory conditions, reduce the content of proinflammatory substances, improve the mechanical properties (stiffness and roughness) of the surface of inflammatory myotubes, and promote the recovery of muscle after an inflammatory injury. In conclusion, theaflavins may serve as a diet-derived anti-inflammatory factor with potential modulatory effects on skeletal muscle metabolism and mechanical properties in an inflammatory environment.
Collapse
Affiliation(s)
- Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, Hunan, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultrual University, Changsha 410128, China
| | - Ailing Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Jinghui Zhou
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Yangbo Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Fang Zhou
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Hongyu Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Qi Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Sheng Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, Hunan, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultrual University, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, Hunan, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultrual University, Changsha 410128, China
| |
Collapse
|
4
|
Visweswaran M, Cunningham CW, Sidhu KS. Isolation and Characterisation of an Adipose-derived human mesenchymal stem cell line - ' CKC-Endeavour-1'. J Stem Cells Regen Med 2022; 18:2-10. [PMID: 36003657 DOI: 10.46582/jsrm.1801002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/19/2021] [Indexed: 11/19/2022]
Abstract
Mesenchymal stem cells derived from adipose tissue (ADMSCs) are being increasingly considered in regenerative medicine-based clinical applications. Apart from possessing therapeutic applications themselves, ADMSCs also secrete a myriad of soluble factors which are promising candidates for treating several degenerative diseases such as osteoarthritis and neurodegenerative diseases, wound repair as well as for cosmeceutical purposes. In our research study, we successfully isolated ADMSCs in-house, now called CKC-Endeavour-1 from the lipoaspirate sample of a patient who underwent liposuction. The subsequent expansion of cells was performed in xeno-free and serum-free conditions and their characterisation was performed using tri-lineage differentiation studies. The levels of differentiation were assessed by staining and gene expression which was observed to be comparable between the in-house developed ADMSC cell line and the commercially purchased ADMSCs. Following characterisation, the secretory components from these MSCs, namely, conditioned media (ADMSC-CM) and exosomes (ADMSC-EXO) were harvested from CKC-Endeavour-1 under xeno-free, serum-free, and supplement-free conditions followed by lyophilisation in order to attempt to prolong its shelf-life. The comprehensive analysis of the secretome profile of ADMSC-CM using carried out using cytokine array and demonstrated the presence of 105 cytokines and growth factors. Also, clinical grade Izon columns were used to isolate the exosomes from ADMSC-CM obtaining exosomes in the size range of <200nm, analysed using nanoparticle tracking analysis. Overall, our study developed an ADMSC cell line, CKC-Endeavour-1, along with their CM and exosome (EXO) products under clinically safe conditions. Additionally, we have obtained a comprehensive understanding of the secreted factors present in the ADMSC-CM which could be further explored in detail to tap the best therapeutic benefits from them.
Collapse
|
5
|
Kny M, Fielitz J. Hidden Agenda - The Involvement of Endoplasmic Reticulum Stress and Unfolded Protein Response in Inflammation-Induced Muscle Wasting. Front Immunol 2022; 13:878755. [PMID: 35615361 PMCID: PMC9124858 DOI: 10.3389/fimmu.2022.878755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Critically ill patients at the intensive care unit (ICU) often develop a generalized weakness, called ICU-acquired weakness (ICUAW). A major contributor to ICUAW is muscle atrophy, a loss of skeletal muscle mass and function. Skeletal muscle assures almost all of the vital functions of our body. It adapts rapidly in response to physiological as well as pathological stress, such as inactivity, immobilization, and inflammation. In response to a reduced workload or inflammation muscle atrophy develops. Recent work suggests that adaptive or maladaptive processes in the endoplasmic reticulum (ER), also known as sarcoplasmic reticulum, contributes to this process. In muscle cells, the ER is a highly specialized cellular organelle that assures calcium homeostasis and therefore muscle contraction. The ER also assures correct folding of proteins that are secreted or localized to the cell membrane. Protein folding is a highly error prone process and accumulation of misfolded or unfolded proteins can cause ER stress, which is counteracted by the activation of a signaling network known as the unfolded protein response (UPR). Three ER membrane residing molecules, protein kinase R-like endoplasmic reticulum kinase (PERK), inositol requiring protein 1a (IRE1a), and activating transcription factor 6 (ATF6) initiate the UPR. The UPR aims to restore ER homeostasis by reducing overall protein synthesis and increasing gene expression of various ER chaperone proteins. If ER stress persists or cannot be resolved cell death pathways are activated. Although, ER stress-induced UPR pathways are known to be important for regulation of skeletal muscle mass and function as well as for inflammation and immune response its function in ICUAW is still elusive. Given recent advances in the development of ER stress modifying molecules for neurodegenerative diseases and cancer, it is important to know whether or not therapeutic interventions in ER stress pathways have favorable effects and these compounds can be used to prevent or treat ICUAW. In this review, we focus on the role of ER stress-induced UPR in skeletal muscle during critical illness and in response to predisposing risk factors such as immobilization, starvation and inflammation as well as ICUAW treatment to foster research for this devastating clinical problem.
Collapse
Affiliation(s)
- Melanie Kny
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jens Fielitz
- Department of Molecular Cardiology, DZHK (German Center for Cardiovascular Research), Partner Site, Greifswald, Germany
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
6
|
Cao M, Wang H, Li W, Jiang X, Wang X, Guo W, Gao P, Zou Y. Inverse Associations Between Circulating Secreted Frizzled Related Protein 2 (sFRP2) and Cardiometabolic Risk Factors. Front Cardiovasc Med 2021; 8:723205. [PMID: 34722660 PMCID: PMC8551478 DOI: 10.3389/fcvm.2021.723205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/22/2021] [Indexed: 12/05/2022] Open
Abstract
Background: Secreted frizzled-related protein 2 (sFRP2) plays an important role in metabolic syndrome and cardiovascular diseases (CVDs); However, its relevance with cardiometabolic diseases remains to be elucidated. We aimed to determine the serum levels of sFRP2 in patients at different stages of heart failure (HF) with or without type 2 diabetes mellitus (T2DM), and assess the correlation between circulating sFRP2 levels and cardiometabolic risk factors. Methods: In this study, serum samples from 277 patients visiting Zhongshan Hospital affiliated to Fudan University were collected. These patients were clinically diagnosed and categorized as five groups, including the control group, pre-clinical HF group, pre-clinical HF+T2DM group, HF group and HF+T2DM group. Serum sFRP2 levels were measured with enzyme-linked immunosorbent assay (ELISA) tests and the clinical characteristics of each patient were recorded. Spearman rank correlation analysis and multiple stepwise linear regression analysis were conducted. Univariate and multivariate logistic regression analysis were performed to screen risk factors for HF in patients with CVDs. Results: Serum sFRP2 levels were significantly lower in the HF+T2DM group compared with the other four groups. Spearman rank correlation analysis showed that sFRP2 was negatively correlated with parameters including patients' age, fasting plasma glucose (FPG), glycated hemoglobin A1c (HbA1c), cardiac troponin T (cTNT), N-terminal pro-B-type natriuretic peptide (NT-proBNP), high-sensitivity C-reactive protein (hs-CRP), left atrial dimension (LAD) and left ventricular posterior wall (LVPW), and positively correlated with hemoglobin, estimated glomerular filtration rate (eGFR), albumin, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and left ventricular ejection fraction (LVEF). However, in multiple regression analysis, significant associations with ln(sFRP2) were observed only in FPG, hs-CRP and LAD. Higher serum sFRP2 was significantly linked to lower odds of HF in patients with CVDs. Conclusion: sFRP2 progressively decreased when glucose homeostasis and cardiac function deteriorated. sFRP2 acted as a risk factor for HF in patients with CVDs, especially in those with concomitant T2DM.
Collapse
Affiliation(s)
- Mengying Cao
- Shanghai Institute of Cardiovascular Diseases, Shanghai Clinical Bioinformatics Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenshu Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China
| | - Xueli Jiang
- Shanghai Institute of Cardiovascular Diseases, Shanghai Clinical Bioinformatics Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaolin Wang
- Shanghai Institute of Cardiovascular Diseases, Shanghai Clinical Bioinformatics Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pan Gao
- Shanghai Institute of Cardiovascular Diseases, Shanghai Clinical Bioinformatics Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Shanghai Clinical Bioinformatics Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Cao Y, Wang Z, Yu T, Zhang Y, Wang Z, Lu Z, Lu W, Yu J. Sepsis induces muscle atrophy by inhibiting proliferation and promoting apoptosis via PLK1-AKT signalling. J Cell Mol Med 2021; 25:9724-9739. [PMID: 34514712 PMCID: PMC8505846 DOI: 10.1111/jcmm.16921] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
Sepsis and sepsis-induced skeletal muscle atrophy are common in patients in intensive care units with high mortality, while the mechanisms are controversial and complicated. In the present study, the atrophy of skeletal muscle was evaluated in sepsis mouse model as well as the apoptosis of muscle fibres. Sepsis induced atrophy of skeletal muscle and apoptosis of myofibres in vivo and in vitro. In cell-based in vitro experiments, lipopolysaccharide (LPS) stimulation also inhibited the proliferation of myoblasts. At the molecular level, the expression of polo-like kinase 1 (PLK1) and phosphorylated protein kinase B (p-AKT) was decreased. Overexpression of PLK1 partly rescued LPS-induced apoptosis, proliferation suppression and atrophy in C2C12 cells. Furthermore, inhibiting the AKT pathway deteriorated LPS-induced atrophy in PLK1-overexpressing C2C12 myotubes. PLK1 was found to participate in regulating apoptosis and E3 ubiquitin ligase activity in C2C12 cells. Taken together, these results indicate that sepsis induces skeletal muscle atrophy by promoting apoptosis of muscle fibres and inhibiting proliferation of myoblasts via regulation of the PLK1-AKT pathway. These findings enhance understanding of the mechanism of sepsis-induced skeletal muscle atrophy.
Collapse
Affiliation(s)
- Ying‐Ya Cao
- Department of Anesthesiology and Critical Care MedicineTianjin Nankai HospitalTianjin Medical UniversityTianjinChina
| | - Zhen Wang
- Department of Intensive Care UnitThe First Affiliated Hospital of Wannan Medical CollegeWuhuAnhuiChina
| | - Tao Yu
- Department of NeurosurgeryThe First Affiliated Hospital of Wannan Medical CollegeWuhuAnhuiChina
| | - Yuan Zhang
- Department of Anesthesiology and Critical Care MedicineTianjin Nankai HospitalTianjin Medical UniversityTianjinChina
| | - Zhong‐Han Wang
- Department of Intensive Care UnitThe First Affiliated Hospital of Wannan Medical CollegeWuhuAnhuiChina
| | - Zi‐Meng Lu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShanxiChina
| | - Wei‐Hua Lu
- Department of Intensive Care UnitThe First Affiliated Hospital of Wannan Medical CollegeWuhuAnhuiChina
| | - Jian‐Bo Yu
- Department of Anesthesiology and Critical Care MedicineTianjin Nankai HospitalTianjin Medical UniversityTianjinChina
| |
Collapse
|
8
|
Haberecht-Müller S, Krüger E, Fielitz J. Out of Control: The Role of the Ubiquitin Proteasome System in Skeletal Muscle during Inflammation. Biomolecules 2021; 11:biom11091327. [PMID: 34572540 PMCID: PMC8468834 DOI: 10.3390/biom11091327] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
The majority of critically ill intensive care unit (ICU) patients with severe sepsis develop ICU-acquired weakness (ICUAW) characterized by loss of muscle mass, reduction in myofiber size and decreased muscle strength leading to persisting physical impairment. This phenotype results from a dysregulated protein homeostasis with increased protein degradation and decreased protein synthesis, eventually causing a decrease in muscle structural proteins. The ubiquitin proteasome system (UPS) is the predominant protein-degrading system in muscle that is activated during diverse muscle atrophy conditions, e.g., inflammation. The specificity of UPS-mediated protein degradation is assured by E3 ubiquitin ligases, such as atrogin-1 and MuRF1, which target structural and contractile proteins, proteins involved in energy metabolism and transcription factors for UPS-dependent degradation. Although the regulation of activity and function of E3 ubiquitin ligases in inflammation-induced muscle atrophy is well perceived, the contribution of the proteasome to muscle atrophy during inflammation is still elusive. During inflammation, a shift from standard- to immunoproteasome was described; however, to which extent this contributes to muscle wasting and whether this changes targeting of specific muscular proteins is not well described. This review summarizes the function of the main proinflammatory cytokines and acute phase response proteins and their signaling pathways in inflammation-induced muscle atrophy with a focus on UPS-mediated protein degradation in muscle during sepsis. The regulation and target-specificity of the main E3 ubiquitin ligases in muscle atrophy and their mode of action on myofibrillar proteins will be reported. The function of the standard- and immunoproteasome in inflammation-induced muscle atrophy will be described and the effects of proteasome-inhibitors as treatment strategies will be discussed.
Collapse
Affiliation(s)
- Stefanie Haberecht-Müller
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany;
- Correspondence: (E.K.); (J.F.)
| | - Jens Fielitz
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, 17475 Greifswald, Germany
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, 17475 Greifswald, Germany
- Correspondence: (E.K.); (J.F.)
| |
Collapse
|
9
|
Skeletal Lipocalin-2 Is Associated with Iron-Related Oxidative Stress in ob/ob Mice with Sarcopenia. Antioxidants (Basel) 2021; 10:antiox10050758. [PMID: 34064680 PMCID: PMC8150392 DOI: 10.3390/antiox10050758] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 12/03/2022] Open
Abstract
Obesity and insulin resistance accelerate aging-related sarcopenia, which is associated with iron load and oxidative stress. Lipocalin-2 (LCN2) is an iron-binding protein that has been associated with skeletal muscle regeneration, but details regarding its role in obese sarcopenia remain unclear. Here, we report that elevated LCN2 levels in skeletal muscle are linked to muscle atrophy-related inflammation and oxidative stress in leptin-deficient ob/ob mice. RNA sequencing analyses indicated the LCN2 gene expression is enhanced in skeletal muscle of ob/ob mice with sarcopenia. In addition to muscular iron accumulation in ob/ob mice, expressions of iron homeostasis-related divalent metal transporter 1, ferritin, and hepcidin proteins were increased in ob/ob mice compared to lean littermates, whereas expressions of transferrin receptor and ferroportin were reduced. Collectively, these findings demonstrate that LCN2 functions as a potent proinflammatory factor in skeletal muscle in response to obesity-related sarcopenia and is thus a therapeutic candidate target for sarcopenia treatment.
Collapse
|
10
|
Pablo Tortola C, Fielitz B, Li Y, Rüdebusch J, Luft FC, Fielitz J. Activation of Tripartite Motif Containing 63 Expression by Transcription Factor EB and Transcription Factor Binding to Immunoglobulin Heavy Chain Enhancer 3 Is Regulated by Protein Kinase D and Class IIa Histone Deacetylases. Front Physiol 2021; 11:550506. [PMID: 33519497 PMCID: PMC7838639 DOI: 10.3389/fphys.2020.550506] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 12/09/2020] [Indexed: 01/07/2023] Open
Abstract
Rationale The ubiquitin–proteasome system (UPS) is responsible for skeletal muscle atrophy. We showed earlier that the transcription factor EB (TFEB) plays a role by increasing E3 ubiquitin ligase muscle really interesting new gene-finger 1(MuRF1)/tripartite motif-containing 63 (TRIM63) expression. MuRF 1 ubiquitinates structural proteins and mediates their UPS-dependent degradation. We now investigated how TFEB-mediated TRIM63 expression is regulated. Objective Because protein kinase D1 (PKD1), histone deacetylase 5 (HDAC5), and TFEB belong to respective families with close structural, regulatory, and functional properties, we hypothesized that these families comprise a network regulating TRIM63 expression. Methods and Results We found that TFEB and transcription factor for immunoglobulin heavy-chain enhancer 3 (TFE3) activate TRIM63 expression. The class IIa HDACs HDAC4, HDAC5, and HDAC7 inhibited this activity. Furthermore, we could map the HDAC5 and TFE3 physical interaction. PKD1, PKD2, and PKD3 reversed the inhibitory effect of all tested class IIa HDACs toward TFEB and TFE3. PKD1 mediated nuclear export of all HDACs and lifted TFEB and TFE3 repression. We also mapped the PKD2 and HDAC5 interaction. We found that the inhibitory effect of PKD1 and PKD2 toward HDAC4, HDAC5, and HDAC7 was mediated by their phosphorylation and 14-3-3 mediated nuclear export. Conclusion TFEB and TFE3 activate TRIM63 expression. Both transcription factors are controlled by HDAC4, HDAC5, HDAC7, and all PKD-family members. We propose that the multilevel PKD/HDAC/TFEB/TFE3 network tightly controls TRIM63 expression.
Collapse
Affiliation(s)
- Cristina Pablo Tortola
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Fielitz
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Yi Li
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Rüdebusch
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Friedrich C Luft
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jens Fielitz
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| |
Collapse
|
11
|
Huang Z, Zhong L, Zhu J, Xu H, Ma W, Zhang L, Shen Y, Law BYK, Ding F, Gu X, Sun H. Inhibition of IL-6/JAK/STAT3 pathway rescues denervation-induced skeletal muscle atrophy. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1681. [PMID: 33490193 PMCID: PMC7812230 DOI: 10.21037/atm-20-7269] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background The molecular mechanisms underlying denervated skeletal muscle atrophy with concomitant muscle mass loss have not been fully elucidated. Therefore, this study aimed to attain a deeper understanding of the molecular mechanisms underlying denervated skeletal muscle atrophy as a critical step to developing targeted therapy and retarding the concomitant loss of skeletal muscle mass. Methods We employed microarray analysis to reveal the potential molecular mechanisms underlying denervated skeletal muscle atrophy. We used in vitro and in vivo atrophy models to explore the roles of the interleukin 6 (IL-6), Janus kinase (JAK), and signal transducers and activators of transcription 3 (STAT3) in muscle atrophy. Results In this study, microarray analysis of the differentially expressed genes demonstrated that inflammation-related cytokines were markedly triggered and IL-6/JAK/STAT3 signaling pathway was strongly activated during denervated skeletal muscle atrophy. The high level of IL-6 enhanced C2C12 myotube atrophy through the activation of JAK/STAT3, while inhibiting JAK/STAT3 pathway by ruxolitinib (a JAK1/2 inhibitor) or C188-9 (a STAT3 inhibitor) significantly attenuated C2C12 myotube atrophy induced by IL-6. Pharmacological blocking of IL-6 by tocilizumab (antibody against IL-6 receptor) and pharmacological/genetic inhibition of JAK/STAT3 pathway by ruxolitinib/C188-9 (JAK/STAT3 inhibitor) and STAT3 short hairpin RNA (shRNA) lentivirus in tibialis anterior muscles could suppress muscle atrophy and inhibit mitophagy, and was accompanied by the decreased expression of atrophic genes (MuRF1 and MAFbx) and autophagy-related genes (PINK1, BNIP3, Beclin 1, ATG7, and LC3B). Conclusions Taken together, the results suggest that IL-6/JAK/STAT3 pathway may be a principal mediator in denervated skeletal muscle atrophy, meaning targeted therapy against IL-6/JAK/STAT3 pathway might have potential as a therapeutic strategy for prevention of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Ziwei Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Lou Zhong
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Hua Xu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Wenjing Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Lilei Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
12
|
Berezin AE, Berezin AA, Lichtenauer M. Emerging Role of Adipocyte Dysfunction in Inducing Heart Failure Among Obese Patients With Prediabetes and Known Diabetes Mellitus. Front Cardiovasc Med 2020; 7:583175. [PMID: 33240938 PMCID: PMC7667132 DOI: 10.3389/fcvm.2020.583175] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue dysfunction is a predictor for cardiovascular (CV) events and heart failure (HF) in patient population with obesity, metabolic syndrome, and known type 2 diabetes mellitus. Previous preclinical and clinical studies have yielded controversial findings regarding the role of accumulation of adipose tissue various types in CV risk and HF-related clinical outcomes in obese patients. There is evidence for direct impact of infiltration of epicardial adipocytes into the underlying myocardium to induce adverse cardiac remodeling and mediate HF development and atrial fibrillation. Additionally, perivascular adipocytes accumulation is responsible for release of proinflammatory adipocytokines (adiponectin, leptin, resistin), stimulation of oxidative stress, macrophage phenotype switching, and worsening vascular reparation, which all lead to microvascular inflammation, endothelial dysfunction, atherosclerosis acceleration, and finally to increase in CV mortality. However, systemic effects of white and brown adipose tissue can be different, and adipogenesis including browning of adipose tissue and deficiency of anti-inflammatory adipocytokines (visfatin, omentin, zinc-α2-glycoprotein, glypican-4) was frequently associated with adipose triglyceride lipase augmentation, altered glucose homeostasis, resistance to insulin of skeletal muscles, increased cardiomyocyte apoptosis, lowered survival, and weak function of progenitor endothelial cells, which could significantly influence on HF development, as well as end-organ fibrosis and multiple comorbidities. The exact underlying mechanisms for these effects are not fully understood, while they are essential to help develop improved treatment strategies. The aim of the review is to summarize the evidence showing that adipocyte dysfunction may induce the onset of HF and support advance of HF through different biological mechanisms involving inflammation, pericardial, and perivascular adipose tissue accumulation, adverse and electrical cardiac remodeling, and skeletal muscle dysfunction. The unbalancing effects of natriuretic peptides, neprilysin, and components of renin–angiotensin system, as exacerbating cause of altered adipocytokine signaling on myocardium and vasculature, in obesity patients at high risk of HF are disputed. The profile of proinflammatory and anti-inflammatory adipocytokines as promising biomarker for HF risk stratification is discussed in the review.
Collapse
Affiliation(s)
- Alexander E Berezin
- Internal Medicine Department, State Medical University, Ministry of Health of Ukraine, Zaporozhye, Ukraine
| | - Alexander A Berezin
- Internal Medicine Department, Medical Academy of Post-Graduate Education, Ministry of Health of Ukraine, Zaporozhye, Ukraine
| | - Michael Lichtenauer
- Division of Cardiology, Department of Internal Medicine II, Paracelsus Medical University Salzburg, Salzburg, Austria
| |
Collapse
|
13
|
Shen Y, Zhang Q, Huang Z, Zhu J, Qiu J, Ma W, Yang X, Ding F, Sun H. Isoquercitrin Delays Denervated Soleus Muscle Atrophy by Inhibiting Oxidative Stress and Inflammation. Front Physiol 2020; 11:988. [PMID: 32903465 PMCID: PMC7435639 DOI: 10.3389/fphys.2020.00988] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
Although denervated muscle atrophy is common, the underlying molecular mechanism remains unelucidated. We have previously found that oxidative stress and inflammatory response may be early events that trigger denervated muscle atrophy. Isoquercitrin is a biologically active flavonoid with antioxidative and anti-inflammatory properties. The present study investigated the effect of isoquercitrin on denervated soleus muscle atrophy and its possible molecular mechanisms. We found that isoquercitrin was effective in alleviating soleus muscle mass loss following denervation in a dose-dependent manner. Isoquercitrin demonstrated the optimal protective effect at 20 mg/kg/d, which was the dose used in subsequent experiments. To further explore the protective effect of isoquercitrin on denervated soleus muscle atrophy, we analyzed muscle proteolysis via the ubiquitin-proteasome pathway, mitophagy, and muscle fiber type conversion. Isoquercitrin significantly inhibited the denervation-induced overexpression of two muscle-specific ubiquitin ligases—muscle RING finger 1 (MuRF1) and muscle atrophy F-box (MAFbx), and reduced the degradation of myosin heavy chains (MyHCs) in the target muscle. Following isoquercitrin treatment, mitochondrial vacuolation and autophagy were inhibited, as evidenced by reduced level of autophagy-related proteins (ATG7, BNIP3, LC3B, and PINK1); slow-to-fast fiber type conversion in the target muscle was delayed via triggering expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α); and the production of reactive oxygen species (ROS) in the target muscle was reduced, which might be associated with the upregulation of antioxidant factors (SOD1, SOD2, NRF2, NQO1, and HO1) and the downregulation of ROS production-related factors (Nox2, Nox4, and DUOX1). Furthermore, isoquercitrin treatment reduced the levels of inflammatory factors—interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α)—in the target muscle and inactivated the JAK/STAT3 signaling pathway. Overall, isoquercitrin may alleviate soleus muscle atrophy and mitophagy and reverse the slow-to-fast fiber type conversion following denervation via inhibition of oxidative stress and inflammatory response. Our study findings enrich the knowledge regarding the molecular regulatory mechanisms of denervated muscle atrophy and provide a scientific basis for isoquercitrin as a protective drug for the prevention and treatment of denervated muscle atrophy.
Collapse
Affiliation(s)
- Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qiuyu Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ziwei Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiayi Qiu
- School of Nursing, Nantong University, Nantong, China
| | - Wenjing Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
14
|
Hahn A, Kny M, Pablo-Tortola C, Todiras M, Willenbrock M, Schmidt S, Schmoeckel K, Jorde I, Nowak M, Jarosch E, Sommer T, Bröker BM, Felix SB, Scheidereit C, Weber-Carstens S, Butter C, Luft FC, Fielitz J. Serum amyloid A1 mediates myotube atrophy via Toll-like receptors. J Cachexia Sarcopenia Muscle 2020; 11:103-119. [PMID: 31441598 PMCID: PMC7015249 DOI: 10.1002/jcsm.12491] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/28/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Critically ill patients frequently develop muscle atrophy and weakness in the intensive-care-unit setting [intensive care unit-acquired weakness (ICUAW)]. Sepsis, systemic inflammation, and acute-phase response are major risk factors. We reported earlier that the acute-phase protein serum amyloid A1 (SAA1) is increased and accumulates in muscle of ICUAW patients, but its relevance was unknown. Our objectives were to identify SAA1 receptors and their downstream signalling pathways in myocytes and skeletal muscle and to investigate the role of SAA1 in inflammation-induced muscle atrophy. METHODS We performed cell-based in vitro and animal in vivo experiments. The atrophic effect of SAA1 on differentiated C2C12 myotubes was investigated by analysing gene expression, protein content, and the atrophy phenotype. We used the cecal ligation and puncture model to induce polymicrobial sepsis in wild type mice, which were treated with the IкB kinase inhibitor Bristol-Myers Squibb (BMS)-345541 or vehicle. Morphological and molecular analyses were used to investigate the phenotype of inflammation-induced muscle atrophy and the effects of BMS-345541 treatment. RESULTS The SAA1 receptors Tlr2, Tlr4, Cd36, P2rx7, Vimp, and Scarb1 were all expressed in myocytes and skeletal muscle. Treatment of differentiated C2C12 myotubes with recombinant SAA1 caused myotube atrophy and increased interleukin 6 (Il6) gene expression. These effects were mediated by Toll-like receptors (TLR) 2 and 4. SAA1 increased the phosphorylation and activity of the transcription factor nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NF-κB) p65 via TLR2 and TLR4 leading to an increased binding of NF-κB to NF-κB response elements in the promoter region of its target genes resulting in an increased expression of NF-κB target genes. In polymicrobial sepsis, skeletal muscle mass, tissue morphology, gene expression, and protein content were associated with the atrophy response. Inhibition of NF-κB signalling by BMS-345541 increased survival (28.6% vs. 91.7%, P < 0.01). BMS-345541 diminished inflammation-induced atrophy as shown by a reduced weight loss of the gastrocnemius/plantaris (vehicle: -21.2% and BMS-345541: -10.4%; P < 0.05), tibialis anterior (vehicle: -22.7% and BMS-345541: -17.1%; P < 0.05) and soleus (vehicle: -21.1% and BMS-345541: -11.3%; P < 0.05) in septic mice. Analysis of the fiber type specific myocyte cross-sectional area showed that BMS-345541 reduced inflammation-induced atrophy of slow/type I and fast/type II myofibers compared with vehicle-treated septic mice. BMS-345541 reversed the inflammation-induced atrophy program as indicated by a reduced expression of the atrogenes Trim63/MuRF1, Fbxo32/Atrogin1, and Fbxo30/MuSA1. CONCLUSIONS SAA1 activates the TLR2/TLR4//NF-κB p65 signalling pathway to cause myocyte atrophy. Systemic inhibition of the NF-κB pathway reduced muscle atrophy and increased survival of septic mice. The SAA1/TLR2/TLR4//NF-κB p65 atrophy pathway could have utility in combatting ICUAW.
Collapse
Affiliation(s)
- Alexander Hahn
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Melanie Kny
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Cristina Pablo-Tortola
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Mihail Todiras
- Cardiovascular hormones, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Nicolae Testemiţanu State University of Medicine and Pharmacy, Chișinău, Moldova
| | - Michael Willenbrock
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sibylle Schmidt
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Katrin Schmoeckel
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine, Greifswald, Germany
| | - Ilka Jorde
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine, Greifswald, Germany
| | - Marcel Nowak
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Intracellular Proteolysis, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Ernst Jarosch
- Intracellular Proteolysis, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Thomas Sommer
- Intracellular Proteolysis, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute of Biology, Humboldt-University Berlin, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Barbara M Bröker
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine, Greifswald, Germany
| | - Stephan B Felix
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Claus Scheidereit
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Steffen Weber-Carstens
- Department of Anesthesiology and Intensive Care Medicine, Campus Virchow-Klinikum and Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Christian Butter
- Department of Cardiology, Heart Center Brandenburg and Medical University Brandenburg (MHB), Bernau, Germany
| | - Friedrich C Luft
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jens Fielitz
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
15
|
Wu Y, Liu X, Zheng H, Zhu H, Mai W, Huang X, Huang Y. Multiple Roles of sFRP2 in Cardiac Development and Cardiovascular Disease. Int J Biol Sci 2020; 16:730-738. [PMID: 32071544 PMCID: PMC7019133 DOI: 10.7150/ijbs.40923] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/14/2019] [Indexed: 12/13/2022] Open
Abstract
The Wnt signaling pathway plays important roles in organ development and disease processes. Secreted frizzled-related protein 2 (sFRP2), a vital molecule of Wnt signaling, can regulate cardiac development and cardiovascular disease. Recent studies have suggested that sFRP2 is not only an antagonist of the canonical Wnt signaling pathway, but also has a more complex relationship in myocardial fibrosis, angiogenesis, cardiac hypertrophy and cardiac regeneration. Here, we review the role of sFRP2 and Wnt signaling in cardiac development and cardiovascular disease.
Collapse
Affiliation(s)
- Yu Wu
- Department of Cardiology, Shunde hospital, Southern Medical University, Jiazi Road 1 Lunjiao Town, Shunde District, Foshan, Guangdong, 528308, China
| | - Xinyue Liu
- Department of Cardiology, Shunde hospital, Southern Medical University, Jiazi Road 1 Lunjiao Town, Shunde District, Foshan, Guangdong, 528308, China
| | - Haoxiao Zheng
- Department of Cardiology, Shunde hospital, Southern Medical University, Jiazi Road 1 Lunjiao Town, Shunde District, Foshan, Guangdong, 528308, China
| | - Hailan Zhu
- Department of Cardiology, Shunde hospital, Southern Medical University, Jiazi Road 1 Lunjiao Town, Shunde District, Foshan, Guangdong, 528308, China
| | - Weiyi Mai
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou
| | - Xiaohui Huang
- Department of Cardiology, Shunde hospital, Southern Medical University, Jiazi Road 1 Lunjiao Town, Shunde District, Foshan, Guangdong, 528308, China
| | - Yuli Huang
- Department of Cardiology, Shunde hospital, Southern Medical University, Jiazi Road 1 Lunjiao Town, Shunde District, Foshan, Guangdong, 528308, China.,The George Institute for Global Health, NSW 2042 Australia
| |
Collapse
|
16
|
Shen Y, Zhang R, Xu L, Wan Q, Zhu J, Gu J, Huang Z, Ma W, Shen M, Ding F, Sun H. Microarray Analysis of Gene Expression Provides New Insights Into Denervation-Induced Skeletal Muscle Atrophy. Front Physiol 2019; 10:1298. [PMID: 31681010 PMCID: PMC6798177 DOI: 10.3389/fphys.2019.01298] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 09/27/2019] [Indexed: 01/01/2023] Open
Abstract
Denervation induces skeletal muscle atrophy, accompanied by complex biochemical and physiological changes, with potentially devastating outcomes even an increased mortality. Currently, however, there remains a paucity of effective strategies to treat skeletal muscle atrophy. Therefore, it is required to understand the molecular mechanisms of skeletal muscle atrophy and formulate new treatment strategies. In this study, we investigated the transcriptional profile of denervated skeletal muscle after peripheral nerve injury in rats. The cDNA microarray analysis showed that a huge number of genes in tibialis anterior (TA) muscles were differentially expressed at different times after sciatic nerve transection. Notably, the 24 h of denervation might be a critical time point for triggering TA muscle atrophy. According to the data from self-organizing map (SOM), Pearson correlation heatmap, principal component analysis (PCA), and hierarchical clustering analysis, three nodal transitions in gene expression profile of the denervated TA muscle might partition the period of 0.25 h–28 days post nerve injury into four distinct transcriptional phases. Moreover, the four transcriptional phases were designated as “oxidative stress stage”, “inflammation stage”, “atrophy stage” and “atrophic fibrosis stage”, respectively, which was concluded from Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene ontology (GO) analyses at each transcriptional phase. Importantly, the differentially expressed genes at 24 h post sciatic nerve transection seemed to be mainly involved in inflammation, which might be a critical process in denervation-induced muscle atrophy. Overall, our study would contribute to the understanding of molecular aspects of denervation-induced muscle atrophy, and may also provide a new insight into the time window for targeted therapy.
Collapse
Affiliation(s)
- Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ru Zhang
- The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Liang Xu
- Department of Surgery, Changshu Affiliated Hospital of Nanjing University of Chinese Medicine, Changshu Traditional Chinese Medicine Hospital, Changshu, China
| | - Qiuxian Wan
- Department of Medical Laboratory, School of Public Health, Nantong University, Nantong, China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Jing Gu
- Department of Medical Laboratory, School of Public Health, Nantong University, Nantong, China
| | - Ziwei Huang
- Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wenjing Ma
- Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
17
|
Long-term outcome after the acute respiratory distress syndrome: different from general critical illness? Curr Opin Crit Care 2018; 24:35-40. [PMID: 29189296 PMCID: PMC5757654 DOI: 10.1097/mcc.0000000000000476] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Purpose of review To review the current research data on long-term outcome and health-related quality of life in survivors of the acute respiratory distress syndrome (ARDS) and to compare these findings with those from non-ARDS patients surviving critical illness. Recent findings Between 6 months and 2 years after discharge from ICU, survivors of ARDS present with substantial impairments of the levels of body function (muscle strength, walking capacity and/or physical activity (physical SF-36 score). In contrast to non-ARDS patients from surgical ICUs, a standardized intensified physical therapy during early course of illness in ARDS patients could not show an improvement of long-term physical function performance. Furthermore, a substantial part of further ARDS patients suffer from depression (26–33%), anxiety (38–44%) or posttraumatic stress disorder (22–24%). In general, the level of functional autonomy and daily life activities was reduced, and in one study, 6 months after ICU-discharge this level was significantly lower in ARDS patients compared with non-ARDS patients. In a recent study, 44% of ARDS survivors were jobless 1 year after critical illness, whereas half of previously employed patients returned to work within 4 months after hospital discharge. General health-related quality of life was significantly reduced compared with a matched population in all studies. Summary Surviving ARDS is associated with a long-term substantial reduction in health-related quality of life and such a reduction does not differ from findings in patients surviving other critical illness. In further research, a special attention should be paid to prevention measures of the ‘post intensive care syndrome’ as well as to patient important domains, which might better explain the patient's and families’ demands.
Collapse
|
18
|
Regulation of Akt-mTOR, ubiquitin-proteasome and autophagy-lysosome pathways in locomotor and respiratory muscles during experimental sepsis in mice. Sci Rep 2017; 7:10866. [PMID: 28883493 PMCID: PMC5589872 DOI: 10.1038/s41598-017-11440-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/24/2017] [Indexed: 11/17/2022] Open
Abstract
Sepsis induced loss of muscle mass and function contributes to promote physical inactivity and disability in patients. In this experimental study, mice were sacrificed 1, 4, or 7 days after cecal ligation and puncture (CLP) or sham surgery. When compared with diaphragm, locomotor muscles were more prone to sepsis-induced muscle mass loss. This could be attributed to a greater activation of ubiquitin-proteasome system and an increased myostatin expression. Thus, this study strongly suggests that the contractile activity pattern of diaphragm muscle confers resistance to atrophy compared to the locomotor gastrocnemius muscle. These data also suggest that a strategy aimed at preventing the activation of catabolic pathways and preserving spontaneous activity would be of interest for the treatment of patients with sepsis-induced neuromyopathy.
Collapse
|
19
|
Huang N, Kny M, Riediger F, Busch K, Schmidt S, Luft FC, Slevogt H, Fielitz J. Deletion of Nlrp3 protects from inflammation-induced skeletal muscle atrophy. Intensive Care Med Exp 2017; 5:3. [PMID: 28097512 PMCID: PMC5241267 DOI: 10.1186/s40635-016-0115-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/29/2016] [Indexed: 11/17/2022] Open
Abstract
Background Critically ill patients develop atrophic muscle failure, which increases morbidity and mortality. Interleukin-1β (IL-1β) is activated early in sepsis. Whether IL-1β acts directly on muscle cells and whether its inhibition prevents atrophy is unknown. We aimed to investigate if IL-1β activation via the Nlrp3 inflammasome is involved in inflammation-induced atrophy. Methods We performed an experimental study and prospective animal trial. The effect of IL-1β on differentiated C2C12 muscle cells was investigated by analyzing gene-and-protein expression, and atrophy response. Polymicrobial sepsis was induced by cecum ligation and puncture surgery in Nlrp3 knockout and wild type mice. Skeletal muscle morphology, gene and protein expression, and atrophy markers were used to analyze the atrophy response. Immunostaining and reporter-gene assays showed that IL-1β signaling is contained and active in myocytes. Results Immunostaining and reporter gene assays showed that IL-1β signaling is contained and active in myocytes. IL-1β increased Il6 and atrogene gene expression resulting in myocyte atrophy. Nlrp3 knockout mice showed reduced IL-1β serum levels in sepsis. As determined by muscle morphology, organ weights, gene expression, and protein content, muscle atrophy was attenuated in septic Nlrp3 knockout mice, compared to septic wild-type mice 96 h after surgery. Conclusions IL-1β directly acts on myocytes to cause atrophy in sepsis. Inhibition of IL-1β activation by targeting Nlrp3 could be useful to prevent inflammation-induced muscle failure in critically ill patients. Electronic supplementary material The online version of this article (doi:10.1186/s40635-016-0115-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nora Huang
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Department of Cardiology, Heart Center Brandenburg and Medical University Brandenburg (MHB), Bernau, Germany
| | - Melanie Kny
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Fabian Riediger
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Department of Cardiology and Pneumology, Medical University Brandenburg (MHB), Brandenburg, Germany
| | - Katharina Busch
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sibylle Schmidt
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Friedrich C Luft
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Berlin Institute of Health (BIH), Kapelle-Ufer 2, 10117, Berlin, Germany
| | - Hortense Slevogt
- ZIK Septomics, Host Septomics, Jena, Germany.,Integrated Research and Treatment Center-Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Jens Fielitz
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany. .,Department of Cardiology, Heart Center Brandenburg and Medical University Brandenburg (MHB), Bernau, Germany. .,Berlin Institute of Health (BIH), Kapelle-Ufer 2, 10117, Berlin, Germany.
| |
Collapse
|