1
|
Carlson AP, Mayer AR, Cole C, van der Horn HJ, Marquez J, Stevenson TC, Shuttleworth CW. Cerebral autoregulation, spreading depolarization, and implications for targeted therapy in brain injury and ischemia. Rev Neurosci 2024; 35:651-678. [PMID: 38581271 PMCID: PMC11297425 DOI: 10.1515/revneuro-2024-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
Cerebral autoregulation is an intrinsic myogenic response of cerebral vasculature that allows for preservation of stable cerebral blood flow levels in response to changing systemic blood pressure. It is effective across a broad range of blood pressure levels through precapillary vasoconstriction and dilation. Autoregulation is difficult to directly measure and methods to indirectly ascertain cerebral autoregulation status inherently require certain assumptions. Patients with impaired cerebral autoregulation may be at risk of brain ischemia. One of the central mechanisms of ischemia in patients with metabolically compromised states is likely the triggering of spreading depolarization (SD) events and ultimately, terminal (or anoxic) depolarization. Cerebral autoregulation and SD are therefore linked when considering the risk of ischemia. In this scoping review, we will discuss the range of methods to measure cerebral autoregulation, their theoretical strengths and weaknesses, and the available clinical evidence to support their utility. We will then discuss the emerging link between impaired cerebral autoregulation and the occurrence of SD events. Such an approach offers the opportunity to better understand an individual patient's physiology and provide targeted treatments.
Collapse
Affiliation(s)
- Andrew P. Carlson
- Department of Neurosurgery, University of New Mexico School of Medicine, MSC10 5615, 1 UNM, Albuquerque, NM, 87131, USA
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Albuquerque, NM, 87106, USA
| | - Andrew R. Mayer
- Mind Research Network, 1101 Yale, Blvd, NE, Albuquerque, NM, 87106, USA
| | - Chad Cole
- Department of Neurosurgery, University of New Mexico School of Medicine, MSC10 5615, 1 UNM, Albuquerque, NM, 87131, USA
| | | | - Joshua Marquez
- University of New Mexico School of Medicine, 915 Camino de Salud NE, Albuquerque, NM, 87106, USA
| | - Taylor C. Stevenson
- Department of Neurosurgery, University of New Mexico School of Medicine, MSC10 5615, 1 UNM, Albuquerque, NM, 87131, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Albuquerque, NM, 87106, USA
| |
Collapse
|
2
|
Petrovčič R, Rakusa M, Markota A. Monitoring of Cerebral Blood Flow Autoregulation after Cardiac Arrest. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1381. [PMID: 39336422 PMCID: PMC11433513 DOI: 10.3390/medicina60091381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024]
Abstract
Background: Cardiac arrest remains one of the leading causes of death. After successful resuscitation of patients in cardiac arrest, post-cardiac arrest syndrome develops, part of it being an impaired cerebral blood flow autoregulation. Monitoring cerebral blood flow autoregulation after cardiac arrest is important for optimizing patient care and prognosticating patients' survival, yet remains a challenge. There are still gaps in clinical implications and everyday use. In this article, we present a systematic review of studies with different methods of monitoring cerebral blood flow autoregulation after non-traumatic cardiac arrest. Methods: A comprehensive literature search was performed from 1 June 2024 to 27 June 2024 by using multiple databases: PubMed, Web of Science, and the Cochrane Central Register of Controlled Trials. Inclusion criteria were studies with an included description of the measurement of cerebral blood flow autoregulation in adult patients after non-traumatic cardiac arrest. Results: A total of 16 studies met inclusion criteria. Our data show that the most used methods in the reviewed studies were near-infrared spectroscopy and transcranial Doppler. The most used mathematical methods for calculating cerebral autoregulation were cerebral oximetry index, tissue oxygenation reactivity index, and mean flow index. Conclusions: The use of various monitoring and mathematical methods for calculating cerebral blood flow autoregulation poses a challenge for standardization, validation, and daily use in clinical practice. In the future studies, focus should be considered on clinical validation and transitioning autoregulation monitoring techniques to everyday clinical practice, which could improve the survival outcomes of patients after cardiac arrest.
Collapse
Affiliation(s)
- Rok Petrovčič
- Emergency Department, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
| | - Martin Rakusa
- Department of Neurologic Diseases, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| | - Andrej Markota
- Department of Intensive Internal Medicine, Division of Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| |
Collapse
|
3
|
Haberl H, Unterberg M, Adamzik M, Hagedorn A, Wolf A. [Current Aspects of Intensive Medical Care for Traumatic Brain Injury - Part 1 - Primary Treatment Strategies, Haemodynamic Management and Multimodal Monitoring]. Anasthesiol Intensivmed Notfallmed Schmerzther 2024; 59:450-465. [PMID: 39074790 DOI: 10.1055/a-2075-9351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
This two-part article deals with the intensive medical care of traumatic brain injury. Part 1 addresses the primary treatment strategy, haemodynamic management and multimodal monitoring, Part 2 secondary treatment strategies, long-term outcome, neuroprognostics and chronification. Traumatic brain injury is a complex clinical entity with a high mortality rate. The primary aim is to maintain homeostasis based on physiological targeted values. In addition, further therapy must be geared towards intracranial pressure. In addition to this, there are other monitoring options that appear sensible from a pathophysiological point of view with appropriate therapy adjustment. However, there is still a lack of data on their effectiveness. A further aspect is the inflammation of the cerebrum with the "cross-talk" of the organs, which has a significant influence on further intensive medical care.
Collapse
|
4
|
Vu EL, Brown CH, Brady KM, Hogue CW. Monitoring of cerebral blood flow autoregulation: physiologic basis, measurement, and clinical implications. Br J Anaesth 2024; 132:1260-1273. [PMID: 38471987 DOI: 10.1016/j.bja.2024.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 03/14/2024] Open
Abstract
Cerebral blood flow (CBF) autoregulation is the physiologic process whereby blood supply to the brain is kept constant over a range of cerebral perfusion pressures ensuring a constant supply of metabolic substrate. Clinical methods for monitoring CBF autoregulation were first developed for neurocritically ill patients and have been extended to surgical patients. These methods are based on measuring the relationship between cerebral perfusion pressure and surrogates of CBF or cerebral blood volume (CBV) at low frequencies (<0.05 Hz) of autoregulation using time or frequency domain analyses. Initially intracranial pressure monitoring or transcranial Doppler assessment of CBF velocity was utilised relative to changes in cerebral perfusion pressure or mean arterial pressure. A more clinically practical approach utilising filtered signals from near infrared spectroscopy monitors as an estimate of CBF has been validated. In contrast to the traditional teaching that 50 mm Hg is the autoregulation threshold, these investigations have found wide interindividual variability of the lower limit of autoregulation ranging from 40 to 90 mm Hg in adults and 20-55 mm Hg in children. Observational data have linked impaired CBF autoregulation metrics to adverse outcomes in patients with traumatic brain injury, ischaemic stroke, subarachnoid haemorrhage, intracerebral haemorrhage, and in surgical patients. CBF autoregulation monitoring has been described in both cardiac and noncardiac surgery. Data from a single-centre randomised study in adults found that targeting arterial pressure during cardiopulmonary bypass to above the lower limit of autoregulation led to a reduction of postoperative delirium and improved memory 1 month after surgery compared with usual care. Together, the growing body of evidence suggests that monitoring CBF autoregulation provides prognostic information on eventual patient outcomes and offers potential for therapeutic intervention. For surgical patients, personalised blood pressure management based on CBF autoregulation data holds promise as a strategy to improve patient neurocognitive outcomes.
Collapse
Affiliation(s)
- Eric L Vu
- Department of Anesthesiology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA; The Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Charles H Brown
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth M Brady
- The Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Charles W Hogue
- The Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
5
|
Sarwal A, Robba C, Venegas C, Ziai W, Czosnyka M, Sharma D. Are We Ready for Clinical Therapy based on Cerebral Autoregulation? A Pro-con Debate. Neurocrit Care 2023; 39:269-283. [PMID: 37165296 DOI: 10.1007/s12028-023-01741-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 04/19/2023] [Indexed: 05/12/2023]
Abstract
Cerebral autoregulation (CA) is a physiological mechanism that maintains constant cerebral blood flow regardless of changes in cerebral perfusion pressure and prevents brain damage caused by hypoperfusion or hyperperfusion. In recent decades, researchers have investigated the range of systemic blood pressures and clinical management strategies over which cerebral vasculature modifies intracranial hemodynamics to maintain cerebral perfusion. However, proposed clinical interventions to optimize autoregulation status have not demonstrated clear clinical benefit. As future trials are designed, it is crucial to comprehend the underlying cause of our inability to produce robust clinical evidence supporting the concept of CA-targeted management. This article examines the technological advances in monitoring techniques and the accuracy of continuous assessment of autoregulation techniques used in intraoperative and intensive care settings today. It also examines how increasing knowledge of CA from recent clinical trials contributes to a greater understanding of secondary brain injury in many disease processes, despite the fact that the lack of robust evidence influencing outcomes has prevented the translation of CA-guided algorithms into clinical practice.
Collapse
Affiliation(s)
- Aarti Sarwal
- Atrium Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | | | - Carla Venegas
- Mayo Clinic School of Medicine, Jacksonville, FL, USA
| | - Wendy Ziai
- Johns Hopkins University School of Medicine and Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| | - Marek Czosnyka
- Division of Neurosurgery, Cambridge University Hospital, Cambridge, UK
| | | |
Collapse
|
6
|
Kastenholz N, Megjhani M, Conzen-Dilger C, Albanna W, Veldeman M, Nametz D, Kwon SB, Schulze-Steinen H, Ridwan H, Clusmann H, Schubert GA, Park S, Weiss M. The oxygen reactivity index indicates disturbed local perfusion regulation after aneurysmal subarachnoid hemorrhage: an observational cohort study. Crit Care 2023; 27:235. [PMID: 37312192 PMCID: PMC10265851 DOI: 10.1186/s13054-023-04452-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/19/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Cerebral autoregulation (CA) can be impaired in patients with delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (aSAH). The Pressure Reactivity Index (PRx, correlation of blood pressure and intracranial pressure) and Oxygen Reactivity Index (ORx, correlation of cerebral perfusion pressure and brain tissue oxygenation, PbtO2) are both believed to estimate CA. We hypothesized that CA could be poorer in hypoperfused territories during DCI and that ORx and PRx may not be equally effective in detecting such local variances. METHODS ORx and PRx were compared daily in 76 patients with aSAH with or without DCI until the time of DCI diagnosis. The ICP/PbtO2-probes of DCI patients were retrospectively stratified by being in or outside areas of hypoperfusion via CT perfusion image, resulting in three groups: DCI + /probe + (DCI patients, probe located inside the hypoperfused area), DCI + /probe- (probe outside the hypoperfused area), DCI- (no DCI). RESULTS PRx and ORx were not correlated (r = - 0.01, p = 0.56). Mean ORx but not PRx was highest when the probe was located in a hypoperfused area (ORx DCI + /probe + 0.28 ± 0.13 vs. DCI + /probe- 0.18 ± 0.15, p < 0.05; PRx DCI + /probe + 0.12 ± 0.17 vs. DCI + /probe- 0.06 ± 0.20, p = 0.35). PRx detected poorer autoregulation during the early phase with relatively higher ICP (days 1-3 after hemorrhage) but did not differentiate the three groups on the following days when ICP was lower on average. ORx was higher in the DCI + /probe + group than in the other two groups from day 3 onward. ORx and PRx did not differ between patients with DCI, whose probe was located elsewhere, and patients without DCI (ORx DCI + /probe- 0.18 ± 0.15 vs. DCI- 0.20 ± 0.14; p = 0.50; PRx DCI + /probe- 0.06 ± 0.20 vs. DCI- 0.08 ± 0.17, p = 0.35). CONCLUSIONS PRx and ORx are not interchangeable measures of autoregulation, as they likely measure different homeostatic mechanisms. PRx represents the classical cerebrovascular reactivity and might be better suited to detect disturbed autoregulation during phases with moderately elevated ICP. Autoregulation may be poorer in territories affected by DCI. These local perfusion disturbances leading up to DCI may be more readily detected by ORx than PRx. Further research should investigate their robustness to detect DCI and to serve as a basis for autoregulation-targeted treatment after aSAH.
Collapse
Affiliation(s)
- Nick Kastenholz
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
- Program for Hospital and Intensive Care Informatics, Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York City, NY, USA
- NewYork-Presbyterian Hospital, Columbia University Irving Medical Center, New York City, NY, USA
| | - Murad Megjhani
- Program for Hospital and Intensive Care Informatics, Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York City, NY, USA
- NewYork-Presbyterian Hospital, Columbia University Irving Medical Center, New York City, NY, USA
| | | | - Walid Albanna
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Michael Veldeman
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Daniel Nametz
- Program for Hospital and Intensive Care Informatics, Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York City, NY, USA
- NewYork-Presbyterian Hospital, Columbia University Irving Medical Center, New York City, NY, USA
| | - Soon Bin Kwon
- Program for Hospital and Intensive Care Informatics, Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York City, NY, USA
- NewYork-Presbyterian Hospital, Columbia University Irving Medical Center, New York City, NY, USA
| | - Henna Schulze-Steinen
- Department of Intensive Care Medicine and Perioperative Care, RWTH Aachen University, Aachen, Germany
| | - Hani Ridwan
- Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, Aachen, Germany
| | - Hans Clusmann
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Gerrit Alexander Schubert
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Cantonal Hospital Aarau, Tellstrasse 25, 5001, Aarau, Switzerland
| | - Soojin Park
- Program for Hospital and Intensive Care Informatics, Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York City, NY, USA
- NewYork-Presbyterian Hospital, Columbia University Irving Medical Center, New York City, NY, USA
- Department of Biomedical Informatics, Columbia University, New York City, NY, USA
| | - Miriam Weiss
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany.
- Department of Neurosurgery, Cantonal Hospital Aarau, Tellstrasse 25, 5001, Aarau, Switzerland.
| |
Collapse
|
7
|
Vitt JR, Loper NE, Mainali S. Multimodal and autoregulation monitoring in the neurointensive care unit. Front Neurol 2023; 14:1155986. [PMID: 37153655 PMCID: PMC10157267 DOI: 10.3389/fneur.2023.1155986] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/04/2023] [Indexed: 05/10/2023] Open
Abstract
Given the complexity of cerebral pathology in patients with acute brain injury, various neuromonitoring strategies have been developed to better appreciate physiologic relationships and potentially harmful derangements. There is ample evidence that bundling several neuromonitoring devices, termed "multimodal monitoring," is more beneficial compared to monitoring individual parameters as each may capture different and complementary aspects of cerebral physiology to provide a comprehensive picture that can help guide management. Furthermore, each modality has specific strengths and limitations that depend largely on spatiotemporal characteristics and complexity of the signal acquired. In this review we focus on the common clinical neuromonitoring techniques including intracranial pressure, brain tissue oxygenation, transcranial doppler and near-infrared spectroscopy with a focus on how each modality can also provide useful information about cerebral autoregulation capacity. Finally, we discuss the current evidence in using these modalities to support clinical decision making as well as potential insights into the future of advanced cerebral homeostatic assessments including neurovascular coupling.
Collapse
Affiliation(s)
- Jeffrey R. Vitt
- Department of Neurological Surgery, UC Davis Medical Center, Sacramento, CA, United States
- Department of Neurology, UC Davis Medical Center, Sacramento, CA, United States
| | - Nicholas E. Loper
- Department of Neurological Surgery, UC Davis Medical Center, Sacramento, CA, United States
| | - Shraddha Mainali
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
8
|
Dias C, de Castro A, Gaio R, Silva R, Pereira E, Monteiro E. Lung Injury Risk in Traumatic Brain Injury Managed With Optimal Cerebral Perfusion Pressure Guided-Therapy. J Crit Care Med (Targu Mures) 2023; 9:97-105. [PMID: 37593249 PMCID: PMC10429626 DOI: 10.2478/jccm-2023-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/31/2023] [Indexed: 08/19/2023] Open
Abstract
Introduction Management of traumatic brain injury (TBI) has to counterbalance prevention of secondary brain injury without systemic complications, namely lung injury. The potential risk of developing acute respiratory distress syndrome (ARDS) leads to therapeutic decisions such as fluid balance restriction, high PEEP and other lung protective measures, that may conflict with neurologic outcome. In fact, low cerebral perfusion pressure (CPP) may induce secondary ischemic injury and mortality, but disproportionate high CPP may also increase morbidity and worse lung compliance and hypoxia with the risk of developing ARDS and fatal outcome. The evaluation of cerebral autoregulation at bedside and individualized (optimal CPP) CPPopt-guided therapy, may not only be a relevant measure to protect the brain, but also a safe measure to avoid systemic complications. Aim of the study We aimed to study the safety of CPPopt-guided-therapy and the risk of secondary lung injury association with bad outcome. Methods and results Single-center retrospective analysis of 92 severe TBI patients admitted to the Neurocritical Care Unit managed with CPPopt-guided-therapy by PRx (pressure reactivity index). During the first 10 days, we collected data from blood gas, ventilation and brain variables. Evolution along time was analyzed using linear mixed-effects regression models. 86% were male with mean age 53±21 years. 49% presented multiple trauma and 21% thoracic trauma. At hospital admission, median GCS was 7 and after 3-months GOS was 3. Monitoring data was CPP 86±7mmHg, CPP-CPPopt -2.8±10.2mmHg and PRx 0.03±0.19. The average PFratio (PaO2/FiO2) was 305±88 and driving pressure 15.9±3.5cmH2O. PFratio exhibited a significant quadratic dependence across time and PRx and driving pressure presented significant negative association with PFRatio. CPP and CPPopt did not present significant effect on PFratio (p=0.533; p=0.556). A significant positive association between outcome and the difference CPP-CPPopt was found. Conclusion Management of TBI using CPPopt-guided-therapy was associated with better outcome and seems to be safe regarding the development of secondary lung injury.
Collapse
Affiliation(s)
- Celeste Dias
- Faculty of Medicine, University of Porto, Porto, Portugal
- University Hospital Centre São João, PortoPortugal
| | | | - Rita Gaio
- Faculty of Mathematics, University of Porto, Porto, Portugal
- Centre of Mathematics of the University of Porto, Porto, Portugal
| | - Ricardo Silva
- Faculty of Mathematics, University of Porto, Porto, Portugal
| | | | - Elisabete Monteiro
- Faculty of Medicine, University of Porto, Porto, Portugal
- University Hospital Centre São João, PortoPortugal
| |
Collapse
|
9
|
Favilla CG, Mullen MT, Kahn F, Rasheed IYD, Messe SR, Parthasarathy AB, Yodh AG. Dynamic cerebral autoregulation measured by diffuse correlation spectroscopy. J Cereb Blood Flow Metab 2023:271678X231153728. [PMID: 36703572 PMCID: PMC10369149 DOI: 10.1177/0271678x231153728] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dynamic cerebral autoregulation (dCA) can be derived from spontaneous oscillations in arterial blood pressure (ABP) and cerebral blood flow (CBF). Transcranial Doppler (TCD) measures CBF-velocity and is commonly used to assess dCA. Diffuse correlation spectroscopy (DCS) is a promising optical technique for non-invasive CBF monitoring, so here we aimed to validate DCS as a tool for quantifying dCA. In 33 healthy adults and 17 acute ischemic stroke patients, resting-state hemodynamic were monitored simultaneously with high-speed (20 Hz) DCS and TCD. dCA parameters were calcaulated by a transfer function analysis using a Fourier decomposition of ABP and CBF (or CBF-velocity). Strong correlation was found between DCS and TCD measured gain (magnitude of regulation) in healthy volunteers (r = 0.73, p < 0.001) and stroke patients (r = 0.76, p = 0.003). DCS-gain retained strong test-retest reliability in both groups (ICC 0.87 and 0.82, respectively). DCS and TCD-derived phase (latency of regulation) did not significantly correlate in healthy volunteers (r = 0.12, p = 0.50) but moderately correlated in stroke patients (r = 0.65, p = 0.006). DCS-derived phase was reproducible in both groups (ICC 0.88 and 0.90, respectively). High-frequency DCS is a promising non-invasive bedside technique that can be leveraged to quantify dCA from resting-state data, but the discrepancy between TCD and DCS-derived phase requires further investigation.
Collapse
Affiliation(s)
| | - Michael T Mullen
- Department of Neurology, 6558Temple University, Philadelphia, USA
| | - Farhan Kahn
- Department of Neurology, 6572University of Pennsylvania, Philadelphia, USA
| | | | - Steven R Messe
- Department of Neurology, 6572University of Pennsylvania, Philadelphia, USA
| | | | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
10
|
The utility of therapeutic hypothermia on cerebral autoregulation. JOURNAL OF INTENSIVE MEDICINE 2022; 3:27-37. [PMID: 36789361 PMCID: PMC9924009 DOI: 10.1016/j.jointm.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/07/2022]
Abstract
Cerebral autoregulation (CA) dysfunction is a strong predictor of clinical outcome in patients with acute brain injury (ABI). CA dysfunction is a potential pathologic defect that may lead to secondary injury and worse functional outcomes. Early therapeutic hypothermia (TH) in patients with ABI is controversial. Many factors, including patient selection, timing, treatment depth, duration, and rewarming strategy, impact its clinical efficacy. Therefore, optimizing the benefit of TH is an important issue. This paper reviews the state of current research on the impact of TH on CA function, which may provide the basis and direction for CA-oriented target temperature management.
Collapse
|
11
|
Owen B, Vangala A, Fritch C, Alsarah AA, Jones T, Davis H, Shuttleworth CW, Carlson AP. Cerebral Autoregulation Correlation With Outcomes and Spreading Depolarization in Aneurysmal Subarachnoid Hemorrhage. Stroke 2022; 53:1975-1983. [PMID: 35196873 PMCID: PMC9133018 DOI: 10.1161/strokeaha.121.037184] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Delayed cerebral ischemia remains one of the principal therapeutic targets after aneurysmal subarachnoid hemorrhage. While large vessel vasospasm may contribute to ischemia, increasing evidence suggests that physiological impairment through disrupted impaired cerebral autoregulation (CA) and spreading depolarizations (SDs) also contribute to delayed cerebral ischemia and poor neurological outcome. This study seeks to explore the intermeasure correlation of different measures of CA, as well as correlation with SD and neurological outcome. METHODS Simultaneous measurement of 7 continuous indices of CA was calculated in 19 subjects entered in a prospective study of SD in aneurysmal subarachnoid hemorrhage undergoing surgical aneurysm clipping. Intermeasure agreement was assessed, and the association of each index with modified Rankin Scale score at 90 days and occurrence of SD was assessed. RESULTS There were 4102 hours of total monitoring time across the 19 subjects. In time-resolved assessment, no CA measures demonstrated significant correlation; however, most demonstrate significant correlation averaged over 1 hour. Pressure reactivity (PRx), oxygen reactivity, and oxygen saturation reactivity were significantly correlated with modified Rankin Scale score at 90 days. PRx and oxygen reactivity also were correlated with the occurrence of SD events. Across multiple CA measure reactivity indices, a threshold between 0.3 and 0.5 was most associated with intervals containing SD. CONCLUSIONS Different continuous CA indices do not correlate well with each other on a highly time-resolved basis, so should not be viewed as interchangeable. PRx and oxygen reactivity are the most reliable indices in identifying risk of worse outcome in patients with aneurysmal subarachnoid hemorrhage undergoing surgical treatment. SD occurrence is correlated with impaired CA across multiple CA measurement techniques and may represent the pathological mechanism of delayed cerebral ischemia in patients with impaired CA. Optimization of CA in patients with aneurysmal subarachnoid hemorrhage may lead to decreased incidence of SD and improved neurological outcomes. Future studies are needed to evaluate these hypotheses and approaches.
Collapse
Affiliation(s)
- Bryce Owen
- University of New Mexico, School of Medicine
| | - Adarsh Vangala
- University of Arizona College of Medicine, Department of Internal Medicine
| | - Chanju Fritch
- Penn State School of Medicine, Department of Neurosurgery
| | - Ali A. Alsarah
- University of New Mexico School of Medicine, Department of Neurology
| | - Tom Jones
- University of New Mexico School of Medicine, Department of Psychiatry
| | - Herbert Davis
- University of New Mexico School of Medicine, Department of Internal Medicine, Division of Epidemiology, Biostatistics, and Preventive Medicine
| | | | - Andrew P. Carlson
- University of New Mexico School of Medicine, Department of Neurosurgery
| |
Collapse
|
12
|
Casault C, Couillard P, Kromm J, Rosenthal E, Kramer A, Brindley P. Multimodal brain monitoring following traumatic brain injury: A primer for intensive care practitioners. J Intensive Care Soc 2022; 23:191-202. [PMID: 35615230 PMCID: PMC9125434 DOI: 10.1177/1751143720980273] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023] Open
Abstract
Traumatic brain injury (TBI) is common and potentially devastating. Traditional examination-based patient monitoring following TBI may be inadequate for frontline clinicians to reduce secondary brain injury through individualized therapy. Multimodal neurologic monitoring (MMM) offers great potential for detecting early injury and improving outcomes. By assessing cerebral oxygenation, autoregulation and metabolism, clinicians may be able to understand neurophysiology during acute brain injury, and offer therapies better suited to each patient and each stage of injury. Hence, we offer this primer on brain tissue oxygen monitoring, pressure reactivity index monitoring and cerebral microdialysis. This narrative review serves as an introductory guide to the latest clinically-relevant evidence regarding key neuromonitoring techniques.
Collapse
Affiliation(s)
- Colin Casault
- Department of Critical Care
Medicine, University of Calgary, Calgary, Canada
| | - Philippe Couillard
- Department of Critical Care
Medicine, University of Calgary, Calgary, Canada
- Department of Clinical
Neurosciences, University of Calgary, Calgary, Canada
| | - Julie Kromm
- Department of Critical Care
Medicine, University of Calgary, Calgary, Canada
- Department of Clinical
Neurosciences, University of Calgary, Calgary, Canada
| | - Eric Rosenthal
- Department of Critical Care
Medicine, University of Alberta, Edmonton, Canada
| | - Andreas Kramer
- Department of Critical Care
Medicine, University of Calgary, Calgary, Canada
- Department of Clinical
Neurosciences, University of Calgary, Calgary, Canada
| | - Peter Brindley
- Department of Neurology, Harvard
University, Boston, MA, USA
| |
Collapse
|
13
|
Al-Kawaz M, Cho SM, Gottesman RF, Suarez JI, Rivera-Lara L. Impact of Cerebral Autoregulation Monitoring in Cerebrovascular Disease: A Systematic Review. Neurocrit Care 2022; 36:1053-1070. [PMID: 35378665 DOI: 10.1007/s12028-022-01484-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 03/01/2022] [Indexed: 12/16/2022]
Abstract
Cerebral autoregulation (CA) prevents brain injury by maintaining a relatively constant cerebral blood flow despite fluctuations in cerebral perfusion pressure. This process is disrupted consequent to various neurologic pathologic processes, which may result in worsening neurologic outcomes. Herein, we aim to highlight evidence describing CA changes and the impact of CA monitoring in patients with cerebrovascular disease, including ischemic stroke, intracerebral hemorrhage (ICH), and aneurysmal subarachnoid hemorrhage (aSAH). The study was preformed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. English language publications were identified through a systematic literature conducted in Ovid Medline, PubMed, and Embase databases. The search spanned the dates of each database's inception through January 2021. We selected case-control studies, cohort observational studies, and randomized clinical trials for adult patients (≥ 18 years) who were monitored with continuous metrics using transcranial Doppler, near-infrared spectroscopy, and intracranial pressure monitors. Of 2799 records screened, 48 studies met the inclusion criteria. There were 23 studies on ischemic stroke, 18 studies on aSAH, 5 studies on ICH, and 2 studies on systemic hypertension. CA impairment was reported after ischemic stroke but generally improved after tissue plasminogen activator administration and successful mechanical thrombectomy. Persistent impairment in CA was associated with hemorrhagic transformation, malignant cerebral edema, and need for hemicraniectomy. Studies that investigated large ICHs described bilateral CA impairment up to 12 days from the ictus, especially in the presence of small vessel disease. In aSAH, impairment of CA was associated with angiographic vasospasm, delayed cerebral ischemia, and poor functional outcomes at 6 months. This systematic review highlights the available evidence for CA disruption during cerebrovascular diseases and its possible association with long-term neurological outcome. CA may be disrupted even before acute stroke in patients with untreated chronic hypertension. Monitoring CA may help in establishing individualized management targets in patients with cerebrovascular disease.
Collapse
Affiliation(s)
- Mais Al-Kawaz
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Sung-Min Cho
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rebecca F Gottesman
- Stroke Branch, National Institute of Neurological Disorders and Stroke Intramural Program, National Institutes of Health, Bethesda, MD, USA
| | - Jose I Suarez
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lucia Rivera-Lara
- Division of Stroke and Neurocritical Care, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
14
|
Mokhtari M, Amirdosara M, Goharani R, Zangi M, Tafrishinejad A, Nashibi M, Dabbagh A, Sadeghi H, Nateghinia S, Hajiesmaeili M, Yousefi-Banaem H, Sayehmiri F. The Predictive Power of Near-Infrared Spectroscopy in Improving Cognitive Problems in Patients Undergoing Brain Surgeries: A Systematic Review. Anesth Pain Med 2022; 12:e116637. [PMID: 35433374 PMCID: PMC8995777 DOI: 10.5812/aapm.116637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 12/17/2021] [Accepted: 01/07/2022] [Indexed: 12/03/2022] Open
Abstract
One of the main objectives in neurosurgical procedures is the prevention of cerebral ischemia and hypoxia leading to secondary brain injury. Different methods for early detection of intraoperative cerebral ischemia and hypoxia have been used. Near-infrared spectroscopy (NIRS) is a simple, non-invasive method for monitoring cerebral oxygenation increasingly used today. The aim of this study was to systematically review the brain monitoring with NIRS in neurosurgery. The search process resulted in the detection of 324 articles using valid keywords on the electronic databases, including Embase, PubMed, Scopus, Web of Science, and Cochrane Library. Subsequently, the full texts of 34 studies were reviewed, and finally 11 articles (seven prospective studies, three retrospective studies, and one randomized controlled trial) published from 2005 to 2020 were identified as eligible for systematic review. Meta-analysis was not possible due to high heterogeneity in neurological and neurosurgical conditions of patients, expression of different clinical outcomes, and different standard reference tests in the studies reviewed. The results showed that NIRS is a non-invasive cerebral oximetry that provides continuous and measurable cerebral oxygenation information and can be used in a variety of clinical settings.
Collapse
Affiliation(s)
- Majid Mokhtari
- Department of Internal Medicine, Pulmonary and Critical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Amirdosara
- Anesthesiology Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Goharani
- Department of Anesthesiology, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Masood Zangi
- Anesthesiology Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Tafrishinejad
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Nashibi
- Fellowship of Neuroanesthesia, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Dabbagh
- Fellowship in Cardiac Anesthesiology, Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Sadeghi
- Anesthesiology Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeedeh Nateghinia
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hajiesmaeili
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hossein Yousefi-Banaem
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayehmiri
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Alkhachroum A, Kromm J, De Georgia MA. Big data and predictive analytics in neurocritical care. Curr Neurol Neurosci Rep 2022; 22:19-32. [PMID: 35080751 DOI: 10.1007/s11910-022-01167-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To describe predictive data and workflow in the intensive care unit when managing neurologically ill patients. RECENT FINDINGS In the era of Big Data in medicine, intensive critical care units are data-rich environments. Neurocritical care adds another layer of data with advanced multimodal monitoring to prevent secondary brain injury from ischemia, tissue hypoxia, and a cascade of ongoing metabolic events. A step closer toward personalized medicine is the application of multimodal monitoring of cerebral hemodynamics, bran oxygenation, brain metabolism, and electrophysiologic indices, all of which have complex and dynamic interactions. These data are acquired and visualized using different tools and monitors facing multiple challenges toward the goal of the optimal decision support system. In this review, we highlight some of the predictive data used to diagnose, treat, and prognosticate the neurologically ill patients. We describe information management in neurocritical care units including data acquisition, wrangling, analysis, and visualization.
Collapse
Affiliation(s)
- Ayham Alkhachroum
- Miller School of Medicine, Neurocritical Care Division, Department of Neurology, University of Miami, Miami, FL, 33146, USA
| | - Julie Kromm
- Cumming School of Medicine, Department of Critical Care Medicine, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Michael A De Georgia
- Center for Neurocritical Care, Neurological Institute, University Hospital Cleveland Medical Center, 11100 Euclid Avenue, Cleveland, OH, 44106-5040, USA.
| |
Collapse
|
16
|
Olsen MH, Riberholt CG, Mehlsen J, Berg RM, Møller K. Reliability and validity of the mean flow index (Mx) for assessing cerebral autoregulation in humans: A systematic review of the methodology. J Cereb Blood Flow Metab 2022; 42:27-38. [PMID: 34617816 PMCID: PMC8721771 DOI: 10.1177/0271678x211052588] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cerebral autoregulation is a complex mechanism that serves to keep cerebral blood flow relatively constant within a wide range of cerebral perfusion pressures. The mean flow index (Mx) is one of several methods to assess dynamic cerebral autoregulation, but its reliability and validity have never been assessed systematically. The purpose of the present systematic review was to evaluate the methodology, reliability and validity of Mx.Based on 128 studies, we found inconsistency in the pre-processing of the recordings and the methods for calculation of Mx. The reliability in terms of repeatability and reproducibility ranged from poor to excellent, with optimal repeatability when comparing overlapping recordings. The discriminatory ability varied depending on the patient populations; in general, those with acute brain injury exhibited a higher Mx than healthy volunteers. The prognostic ability in terms of functional outcome and mortality ranged from chance result to moderate accuracy.Since the methodology was inconsistent between studies, resulting in varying reliability and validity estimates, the results were difficult to compare. The optimal method for deriving Mx is currently unknown.
Collapse
Affiliation(s)
- Markus Harboe Olsen
- Department of Neuroanaesthesiology, 53146Rigshospitalet, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Christian Gunge Riberholt
- Department of Neuroanaesthesiology, 53146Rigshospitalet, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Neurorehabilitation/Traumatic Brain Injury Unit, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Mehlsen
- Surgical Pathophysiology Unit, 53146Rigshospitalet, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ronan Mg Berg
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Kirsten Møller
- Department of Neuroanaesthesiology, 53146Rigshospitalet, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Yeh SJ, Lung CW, Jan YK, Kuo FC, Liau BY. Hypertension and Stroke Cardiovascular Control Evaluation by Analyzing Blood Pressure, Cerebral Blood Flow, Blood Vessel Resistance and Baroreflex. Front Bioeng Biotechnol 2021; 9:731882. [PMID: 34957062 PMCID: PMC8702833 DOI: 10.3389/fbioe.2021.731882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases have been the leading causes of mortality in Taiwan and the world at large for decades. The composition of cardiovascular and cerebrovascular systems is quite complicated. Therefore, it is difficult to detect or trace the related signs of cardiovascular and cerebrovascular diseases. The characteristics and changes in cardiopulmonary system disease can be used to track cardiovascular and cerebrovascular disease prevention and diagnosis. This can effectively reduce the occurrence of cardiovascular and cerebrovascular diseases. This study analyzes the variability in blood pressure, cerebral blood flow velocity and the interaction characteristics using linear and nonlinear approaches in stroke, hypertension and healthy groups to identify the differences in cardiovascular control in these groups. The results showed that the blood pressure and cerebral blood flow of stroke patients and hypertensive patients were significantly higher than those of healthy people (statistical differences (p < 0.05). The cerebrovascular resistance (CVR) shows that the CVR of hypertensive patients is higher than that of healthy people and stroke patients (p < 0.1), indicating that the cerebral vascular resistance of hypertensive patients is slightly higher. From the patient's blood flow and vascular characteristics, it can be observed that the cardiovascular system is different from those in healthy people. Baroreflex sensitivity (BRS) decreased in stroke patients (p < 0.05). Chaotic analysis revealed that the blood pressure disturbance in hypertensive patients has a higher chaotic behavior change and the difference in initial state sensitivity. Cross-correlation (CCF) analysis shows that as the course of healthy→hypertension→stroke progresses, the maximum CCF value decreases significantly (p < 0.05). That means that blood pressure and cerebral blood flow are gradually not well controlled by the self-regulation mechanism. In conclusion, cardiovascular control performance in hypertensive and stroke patients displays greater variation. This can be observed by the bio-signal analysis. This analysis could identify a measure for detecting and preventing the risk for hypertension and stroke in clinical practice. This is a pilot study to analyze cardiovascular control variation in healthy, hypertensive and stroke groups.
Collapse
Affiliation(s)
- Shoou-Jeng Yeh
- Section of Neurology and Neurophysiology, Cheng-Ching General Hospital, Taichung, Taiwan
| | - Chi-Wen Lung
- Department of Creative Product Design, Asia University, Taichung, Taiwan.,Rehabilitation Engineering Lab, Kinesiology and Community Health, Computational Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Yih-Kuen Jan
- Rehabilitation Engineering Lab, Kinesiology and Community Health, Computational Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Fang-Chuan Kuo
- Department of Physical Therapy, Hungkuang University, Taichung, Taiwan
| | - Ben-Yi Liau
- Department of Biomedical Engineering, Hungkuang University, Taichung, Taiwan
| |
Collapse
|
18
|
Zienkiewicz A, Favre M, Ferdinando H, Iring S, Serrador J, Myllylä T. Blood pressure wave propagation - a multisensor setup for cerebral autoregulation studies. Physiol Meas 2021; 42. [PMID: 34731844 DOI: 10.1088/1361-6579/ac3629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/03/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Cerebral autoregulation is critically important to maintain proper brain perfusion and supply the brain with oxygenated blood. Non-invasive measures of blood pressure (BP) are critical in assessing cerebral autoregulation. Wave propogation velocity may be a useful technique to estimate BP but the effect of the location of the sensors on the readings has not been thoroughly examined. In this paper, we were interested to study if propagation velocity of the pressure wave in the direction from the heart to the brain may differ compared with propagation from the heart to the periphery, as well as across different physiological tasks and/or health conditions. Using non-invasive sensors simultaneously placed on different locations of the human body allow for the study of how propagation velocity of the pressure wave, based on pulse transit time (PTT), varies across different directions. APPROACH We present multi-sensor BP wave propagation measurement setup aimed for cerebral autoregulation studies. The presented sensor setup consists of three sensors, one each placed on the neck, chest and finger, allowing simultaneous measurement of changes in BP propagation velocity towards the brain and to the periphery. We show how commonly tested physiological tasks affect the relative changes of PTT and correlations with BP. MAIN RESULTS We observed that during maximal blow, valsalva and breath hold breathing tasks, the relative changes of PTT were higher when PTT was measured in the direction from the heart to the brain than from the heart to the peripherals. In contrast, during a deep breathing task, the relative change in PTT from the heart to the brain was lower. In addition, we present a short literature review of PTT methods used in brain research. SIGNIFICANCE These preliminary data suggest that physiological task and direction of PTT measurement may affect relative PTT changes. Presented three-sensor setup provides an easy and neuroimaging compatible method for cerebral autoregulation studies by allowing to measure BP wave propagation velocity towards the brain vs. towards the periphery.
Collapse
Affiliation(s)
- Aleksandra Zienkiewicz
- Optoelectronics and Measurement Techniques Research Unit, University of Oulu, Oulu, FINLAND
| | - Michelle Favre
- Department of Pharmacology, Physiology & Neuroscience, Rutgers The State University of New Jersey, Newark, New Jersey, UNITED STATES
| | - Hany Ferdinando
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Pohjois-Pohjanmaa, FINLAND
| | - Stephanie Iring
- Department of Pharmacology, Physiology & Neuroscience, Rutgers The State University of New Jersey, Newark, New Jersey, UNITED STATES
| | - Jorge Serrador
- Department of Pharmacology, Physiology & Neuroscience, Rutgers The State University of New Jersey, Newark, New Jersey, UNITED STATES
| | - Teemu Myllylä
- Optoelectronics and Measurement Techniques Research Unit, University of Oulu, Oulu, FINLAND
| |
Collapse
|
19
|
Joram N, Beqiri E, Pezzato S, Andrea M, Robba C, Liet JM, Chenouard A, Bourgoin P, Czosnyka M, Léger PL, Smielewski P. Impact of Arterial Carbon Dioxide and Oxygen Content on Cerebral Autoregulation Monitoring Among Children Supported by ECMO. Neurocrit Care 2021; 35:480-490. [PMID: 33686559 DOI: 10.1007/s12028-021-01201-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/29/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Cerebral autoregulation (CA) impairment is associated with neurological complications among children supported by extracorporeal membrane oxygenation (ECMO). Severe variations of arterial CO2 (PaCO2) and O2 (PaO2) tension after ECMO onset are common and associate with mortality and poor neurological outcome. The impact of gas exchange on CA among critically ill patients is poorly studied. METHODS Retrospective analysis of data collected prospectively from 30 children treated with veno-arterial or veno-venous ECMO in the PICU of Nantes University Hospital, France. A correlation coefficient between the variations of regional cerebral oxygen saturation (rSO2) and the variations of mean arterial blood pressure (MAP) was calculated as an index of CA (cerebral oxygenation reactivity index, COx). Cox-MAP plots were investigated allowing determining lower limit of autoregulation (LLA) and upper limit of autoregulation (ULA) limits of autoregulation. Age-based normal blood pressure was used to adjust the MAP, LLA, and ULA data from each patient and then reported as percentage (nMAP, nLLA, and nULA, respectively). RSO2, COx, nMAP, nLLA, and nULA values were averaged over one hour before each arterial blood gas (ABG) sample during ECMO run. RESULTS Thirty children (median age 4.8 months [Interquartile range (IQR) 0.7-39.1], median weight 5 kg [IQR 4-15]) experiencing 31 ECMO runs were included in the study. Three hundred and ninety ABGs were analyzed. The highest values of COx were observed on day 1 (D1) of ECMO. The relationship between COx and PaCO2 was nonlinear, but COx values tended to be lower in case of hypercapnia compared to normocapnia. During the whole ECMO run, a weak but significant correlation between PaCO2 and nULA was observed (R = 0.432, p = 0.02). On D1 of ECMO, this correlation was stronger (R = 0.85, p = 0.03) and a positive correlation between nLLA and PaCO2 was also found (R = 0.726, p < 0.001). A very weak negative correlation between PaO2 and nULA was observed within the whole ECMO run and on D1 of ECMO (R = -0.07 p = 0.04 and R = -0.135 p = <0.001, respectively). The difference between nULA and nLLA representing the span of the autoregulation plateau was positively correlated with PaCO2 and negatively correlated with PaO2 (R = 0.224, p = 0.01 and R = -0.051, p = 0.004, respectively). CONCLUSIONS We observed a complex relationship between PaCO2 and CA, influenced by the level of blood pressure. Hypercapnia seems to be globally protective in normotensive or hypertensive condition, while, in case of very low MAP, hypercapnia may disturb CA as it increases LLA. These data add additional arguments for very cautiously lower PaCO2, especially after ECMO start.
Collapse
Affiliation(s)
- Nicolas Joram
- Pediatric Intensive Care Unit, University Hospital of Nantes, Nantes, France. .,Clinical Investigation Center (CIC) 1413, University Hospital of Nantes, Nantes, France. .,INSERM U955-ENVA, University Paris 12, Paris, France.
| | - Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Department of Physiology and Transplantation, Milan University, Milan, Italy
| | - Stefano Pezzato
- Pediatric Intensive Care Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Moscatelli Andrea
- Pediatric Intensive Care Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Chiara Robba
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Policlinico San Martino IRCCS for Oncology and Neuroscience, Genova, Italy
| | - Jean-Michel Liet
- Pediatric Intensive Care Unit, University Hospital of Nantes, Nantes, France.,Clinical Investigation Center (CIC) 1413, University Hospital of Nantes, Nantes, France
| | - Alexis Chenouard
- Pediatric Intensive Care Unit, University Hospital of Nantes, Nantes, France.,Clinical Investigation Center (CIC) 1413, University Hospital of Nantes, Nantes, France
| | - Pierre Bourgoin
- Pediatric Intensive Care Unit, University Hospital of Nantes, Nantes, France.,Clinical Investigation Center (CIC) 1413, University Hospital of Nantes, Nantes, France
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Pierre-Louis Léger
- INSERM U955-ENVA, University Paris 12, Paris, France.,Pediatric Intensive Care Unit, Trousseau University Hospital, Paris, France
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
Claassen JAHR, Thijssen DHJ, Panerai RB, Faraci FM. Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev 2021; 101:1487-1559. [PMID: 33769101 PMCID: PMC8576366 DOI: 10.1152/physrev.00022.2020] [Citation(s) in RCA: 339] [Impact Index Per Article: 113.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Brain function critically depends on a close matching between metabolic demands, appropriate delivery of oxygen and nutrients, and removal of cellular waste. This matching requires continuous regulation of cerebral blood flow (CBF), which can be categorized into four broad topics: 1) autoregulation, which describes the response of the cerebrovasculature to changes in perfusion pressure; 2) vascular reactivity to vasoactive stimuli [including carbon dioxide (CO2)]; 3) neurovascular coupling (NVC), i.e., the CBF response to local changes in neural activity (often standardized cognitive stimuli in humans); and 4) endothelium-dependent responses. This review focuses primarily on autoregulation and its clinical implications. To place autoregulation in a more precise context, and to better understand integrated approaches in the cerebral circulation, we also briefly address reactivity to CO2 and NVC. In addition to our focus on effects of perfusion pressure (or blood pressure), we describe the impact of select stimuli on regulation of CBF (i.e., arterial blood gases, cerebral metabolism, neural mechanisms, and specific vascular cells), the interrelationships between these stimuli, and implications for regulation of CBF at the level of large arteries and the microcirculation. We review clinical implications of autoregulation in aging, hypertension, stroke, mild cognitive impairment, anesthesia, and dementias. Finally, we discuss autoregulation in the context of common daily physiological challenges, including changes in posture (e.g., orthostatic hypotension, syncope) and physical activity.
Collapse
Affiliation(s)
- Jurgen A H R Claassen
- Department of Geriatrics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- >National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Frank M Faraci
- Departments of Internal Medicine, Neuroscience, and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
21
|
Panerai RB, Haunton VJ, Llwyd O, Minhas JS, Katsogridakis E, Salinet ASM, Maggio P, Robinson TG. Cerebral critical closing pressure and resistance-area product: the influence of dynamic cerebral autoregulation, age and sex. J Cereb Blood Flow Metab 2021; 41:2456-2469. [PMID: 33818187 PMCID: PMC8392773 DOI: 10.1177/0271678x211004131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/19/2021] [Accepted: 02/16/2021] [Indexed: 11/21/2022]
Abstract
Instantaneous arterial pressure-flow (or velocity) relationships indicate the existence of a cerebral critical closing pressure (CrCP), with the slope of the relationship expressed by the resistance-area product (RAP). In 194 healthy subjects (20-82 years, 90 female), cerebral blood flow velocity (CBFV, transcranial Doppler), arterial blood pressure (BP, Finapres) and end-tidal CO2 (EtCO2, capnography) were measured continuously for five minutes during spontaneous fluctuations of BP at rest. The dynamic cerebral autoregulation (CA) index (ARI) was extracted with transfer function analysis from the CBFV step response to the BP input and step responses were also obtained for the BP-CrCP and BP-RAP relationships. ARI was shown to decrease with age at a rate of -0.025 units/year in men (p = 0.022), but not in women (p = 0.40). The temporal patterns of the BP-CBFV, BP-CrCP and BP-RAP step responses were strongly influenced by the ARI (p < 0.0001), but not by sex. Age was also a significant determinant of the peak of the CBFV step response and the tail of the RAP response. Whilst the RAP step response pattern is consistent with a myogenic mechanism controlling dynamic CA, further work is needed to explore the potential association of the CrCP step response with the flow-mediated component of autoregulation.
Collapse
Affiliation(s)
- Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Victoria J Haunton
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Osian Llwyd
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Emmanuel Katsogridakis
- Department of Vascular Surgery, Wythenshawe Hospital, Manchester Foundation Trust, Manchester, UK
| | - Angela SM Salinet
- Neurology Department, Hospital das Clinicas, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Paola Maggio
- Neurology Department, ASST Bergamo EST (BG), Italy
| | - Thompson G Robinson
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
22
|
Wu M, Zhang W, Guo Z, Song J, Zeng Y, Huang Y, Yang Y, Zhang P, Liu J. Separation of normal and impaired dynamic cerebral autoregulation using deep embedded clustering: a proof-of-concept study. Physiol Meas 2021; 42. [PMID: 34167102 DOI: 10.1088/1361-6579/ac0e81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/24/2021] [Indexed: 11/11/2022]
Abstract
Objective. A previous study has shown that a data-driven approach can significantly improve the discriminative power of transfer function analysis (TFA) used to differentiate between normal and impaired cerebral autoregulation (CA) in two groups of data. The data was collected from both healthy subjects (assumed to have normal CA) and symptomatic patients with severe stenosis (assumed to have impaired CA). However, the sample size of the labeled data was relatively small, owing to the difficulty in data collection. Therefore, in this proof-of-concept study, we investigate the feasibility of using an unsupervised learning model to differentiate between normal and impaired CA on TFA variables without requiring labeled data for learning.Approach. Continuous arterial blood pressure (ABP) and cerebral blood flow velocity (CBFV), which were recorded simultaneously for approximately 10 min, were included from 148 subjects (41 healthy subjects, 31 with mild stenosis, 13 with moderate stenosis, 22 asymptomatic patients with severe stenosis, and 41 symptomatic patients with severe stenosis). Tiecks' model was used to generate surrogate data with normal and impaired CA. A recently proposed unsupervised learning model was optimized and applied to separate the normal and impaired CA for both the surrogate data and real data.Main results. It achieved 98.9% and 74.1% accuracy for the surrogate and real data, respectively.Significance. To our knowledge, this is the first attempt to employ an unsupervised data-driven approach to assess CA using TFA. This method enables the development of a classifier to determine the status of CA, which is currently lacking.
Collapse
Affiliation(s)
- Menglu Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China.,Shenzhen Key Laboratory for Exascale Engineering and Scientific Computing, Shenzhen, People's Republic of China
| | - Wei Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China.,Shenzhen Key Laboratory for Exascale Engineering and Scientific Computing, Shenzhen, People's Republic of China
| | - Zhenni Guo
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Jianing Song
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China.,Shenzhen Key Laboratory for Exascale Engineering and Scientific Computing, Shenzhen, People's Republic of China
| | - Yuhong Zeng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China.,Shenzhen Key Laboratory for Exascale Engineering and Scientific Computing, Shenzhen, People's Republic of China
| | - Yuyu Huang
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Pandeng Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.,Shenzhen Key Laboratory for Exascale Engineering and Scientific Computing, Shenzhen, People's Republic of China
| | - Jia Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.,Shenzhen Key Laboratory for Exascale Engineering and Scientific Computing, Shenzhen, People's Republic of China
| |
Collapse
|
23
|
Trans-Ocular Brain Impedance Indices Predict Pressure Reactivity Index Changes in a Porcine Model of Hypotension and Cerebral Autoregulation Perturbation. Neurocrit Care 2021; 36:139-147. [PMID: 34244920 DOI: 10.1007/s12028-021-01272-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/06/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Cerebrovascular autoregulation (CA) is a protective mechanism that enables the cerebral vasculature to automodulate tone in response to changes in cerebral perfusion pressure to ensure constant levels of cerebral blood flow (CBF) and oxygen delivery. CA can be impaired after neurological injury and contributes to secondary brain injury. In this study, we report novel impedance indices using trans-ocular brain impedance (TOBI) during controlled systemic hemorrhage and hypotension to assess CA in comparison with pressure reactivity index (PRx). METHODS Yorkshire swine were instrumented to record intracranial pressure (ICP), mean arterial pressure (MAP), and CBF. TOBI was recorded using electrocardiographic electrodes placed on the closed eyelids. Impedance changes (dz) were recorded in response to introducing an alternating current (0.4 mA) through the electrodes. MAP, ICP, and CBF were also measured. Animals were subjected to a controlled hemorrhage to remove 30-40% of each animal's total blood volume over 25-35 min. Hemorrhage was titrated to reach an MAP of approximately 35 mm Hg and end-tidal carbon dioxide above 28 mm Hg. PRx was calculated as a moving Pearson correlation between MAP and ICP. TOBI indices were calculated as the amplitude of the respiratory-induced changes in dz. DZx was calculated as a moving Pearson correlation between dz and MAP. TOBI indices (dz and DZx) were compared with hemodynamic indicators and PRx. RESULTS dz was shown to be highly correlated with MAP, ICP, cerebral perfusion pressure, and CBF (r = - 0.823, - 0.723, - 0.813, and - 0.726), respectively (p < 0.0001). During hemorrhage, cerebral perfusion pressure and CBF had a mean percent decrease (standard deviation) from baseline of - 54.2% (12.5%) and - 28.3% (14.7%), respectively, whereas dz increased by 277% (268%). Receiver operator characteristics and precision-recall curves demonstrated high predictive performance of DZx when compared with PRx with an area under the curve above 0.82 and 0.89 for receiver operator characteristic and precision-recall curves, respectively, with high sensitivity and positive predictive power. CONCLUSIONS TOBI indices appear to track changes in PRx and hemodynamics that affect CA during hemorrhage-induced hypotension. TOBI may offer a suitable, less invasive surrogate to PRx for monitoring and assessing CA.
Collapse
|
24
|
Lilja-Cyron A, Zeiler FA, Beqiri E, Cabeleira M, Smielewski P, Czosnyka M. Optimal Cerebral Perfusion Pressure Based on Intracranial Pressure-Derived Indices of Cerebrovascular Reactivity: Which One Is Better for Outcome Prediction in Moderate/Severe Traumatic Brain Injury? ACTA NEUROCHIRURGICA. SUPPLEMENT 2021; 131:173-179. [PMID: 33839841 DOI: 10.1007/978-3-030-59436-7_35] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Intracranial pressure (ICP)-derived indices of cerebrovascular reactivity (e.g., PRx, PAx, and RAC) have been developed to improve understanding of brain status from available neuromonitoring variables. These indices are moving correlation coefficients between slow-wave vasogenic fluctuations in ICP and arterial blood pressure. In this retrospective analysis of neuromonitoring data from 200 patients admitted with moderate/severe traumatic brain injury (TBI), we evaluate the predictive value of CPPopt based on these ICP-derived indices of cerebrovascular reactivity. Valid CPPopt values were obtained in 92.3% (PRx), 86.7% (PAX), and 84.6% (RAC) of the monitoring periods, respectively. In multivariate logistic analysis, a baseline model that includes age, sex, and admission Glasgow Coma Score had an area under the receiver operating curve of 0.762 (P < 0.0001) for dichotomous outcome prediction (dead vs. good recovery). When adding time/dose of CPP below CPPopt, all multivariate models (based on PRx, PAx, and RAC) predicted the dichotomous outcome measure, but additional value of the prediction was only significantly added by the PRx-based calculations of time spent with CPP below CPPopt and dose of CPP below CPPopt.
Collapse
Affiliation(s)
- Alexander Lilja-Cyron
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK. .,Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark.
| | - Frederick A Zeiler
- Division of Anaesthesia, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.,Rady Faculty of Health Sciences, Department of Surgery, University of Manitoba, Winnipeg, Canada.,Clinician Investigator Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.,Department of Pathophysiology and Transplantation, University of Milan, Milano, Italy
| | - Manuel Cabeleira
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.,Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
25
|
Abstract
OBJECTIVES Lateral displacement and impaired cerebral autoregulation are associated with worse outcomes following acute brain injury, but their effect on long-term clinical outcomes remains unclear. We assessed the relationship between lateral displacement, disturbances to cerebral autoregulation, and clinical outcomes in acutely comatose patients. DESIGN Retrospective analysis of prospectively collected data. SETTING Neurocritical care unit of the Johns Hopkins Hospital. PATIENTS Acutely comatose patients (Glasgow Coma Score ≤ 8). INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Cerebral oximetry index, derived from near-infrared spectroscopy multimodal monitoring, was used to evaluate cerebral autoregulation. Associations between lateral brain displacement, global cerebral autoregulation, and interhemispheric cerebral autoregulation asymmetry were assessed using mixed random effects models with random intercept. Patients were grouped by functional outcome, determined by the modified Rankin Scale. Associations between outcome group, lateral displacement, and cerebral oximetry index were assessed using multivariate linear regression. Increasing lateral brain displacement was associated with worsening global cerebral autoregulation (p = 0.01 septum; p = 0.05 pineal) and cerebral autoregulation asymmetry (both p < 0.001). Maximum lateral displacement during the first 3 days of coma was significantly different between functional outcome groups at hospital discharge (p = 0.019 pineal; p = 0.008 septum), 3 months (p = 0.026; p = 0.007), 6 months (p = 0.018; p = 0.010), and 12 months (p = 0.022; p = 0.012). Global cerebral oximetry index was associated with functional outcomes at 3 months (p = 0.019) and 6 months (p = 0.013). CONCLUSIONS During the first 3 days of acute coma, increasing lateral brain displacement is associated with worsening global cerebral autoregulation and cerebral autoregulation asymmetry, and poor long-term clinical outcomes in acutely comatose patients. The impact of acute interventions on outcome needs to be explored.
Collapse
|
26
|
Kahl U, Yu Y, Nierhaus A, Frings D, Sensen B, Daubmann A, Kluge S, Fischer M. Cerebrovascular autoregulation and arterial carbon dioxide in patients with acute respiratory distress syndrome: a prospective observational cohort study. Ann Intensive Care 2021; 11:47. [PMID: 33725209 PMCID: PMC7962086 DOI: 10.1186/s13613-021-00831-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/01/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Early hypercapnia is common in patients with acute respiratory distress syndrome (ARDS) and is associated with increased mortality. Fluctuations of carbon dioxide have been associated with adverse neurological outcome in patients with severe respiratory failure requiring extracorporeal organ support. The aim of this study was to investigate whether early hypercapnia is associated with impaired cerebrovascular autoregulation during the acute phase of ARDS. METHODS Between December 2018 and November 2019, patients who fulfilled the Berlin criteria for ARDS, were enrolled. Patients with a history of central nervous system disorders, cerebrovascular disease, chronic hypercapnia, or a life expectancy of less than 24 h were excluded from study participation. During the acute phase of ARDS, cerebrovascular autoregulation was measured over two time periods for at least 60 min. Based on the values of mean arterial blood pressure and near-infrared spectroscopy, a cerebral autoregulation index (COx) was calculated. The time with impaired cerebral autoregulation was calculated for each measurement and was compared between patients with and without early hypercapnia [defined as an arterial partial pressure of carbon dioxide (PaCO2) ≥ 50 mmHg with a corresponding arterial pH < 7.35 within the first 24 h of ARDS diagnosis]. RESULTS Of 66 patients included, 117 monitoring episodes were available. The mean age of the study population was 58.5 ± 16 years. 10 patients (15.2%) had mild, 28 (42.4%) moderate, and 28 (42.4%) severe ARDS. Nineteen patients (28.8%) required extracorporeal membrane oxygenation. Early hypercapnia was present in 39 patients (59.1%). Multivariable analysis did not show a significant association between early hypercapnia and impaired cerebrovascular autoregulation (B = 0.023 [95% CI - 0.054; 0.100], p = 0.556). Hypocapnia during the monitoring period was significantly associated with impaired cerebrovascular autoregulation [B = 0.155 (95% CI 0.014; 0.296), p = 0.032]. CONCLUSION Our results suggest that moderate permissive hypercapnia during the acute phase of ARDS has no adverse effect on cerebrovascular autoregulation and may be tolerated to a certain extent to achieve low tidal volumes. In contrast, episodes of hypocapnia may compromise cerebral blood flow regulation. Trial registration ClinicalTrials.gov; registration number: NCT03949738; date of registration: May 14, 2019.
Collapse
Affiliation(s)
- Ursula Kahl
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Yuanyuan Yu
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Axel Nierhaus
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Frings
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Barbara Sensen
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Daubmann
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlene Fischer
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
27
|
Gomez A, Zeiler FA. Non-Invasive Continuous Cerebrovascular Monitoring for Subacute Bedside and Outpatient Settings: An Important Advancement. Neurotrauma Rep 2021; 2:25-26. [PMID: 34223545 PMCID: PMC8240829 DOI: 10.1089/neur.2020.0064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frederick A Zeiler
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada.,Centre on Aging, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
28
|
Heckelmann M, Shivapathasundram G, Cardim D, Smielewski P, Czosnyka M, Gaio R, Sheridan MMP, Jaeger M. Transcranial Doppler-derived indices of cerebrovascular haemodynamics are independent of depth and angle of insonation. J Clin Neurosci 2020; 82:115-121. [PMID: 33317718 DOI: 10.1016/j.jocn.2020.10.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/23/2020] [Accepted: 10/18/2020] [Indexed: 11/27/2022]
Abstract
Continuous measurement of cerebral blood flow velocity (CBFV) of the middle cerebral artery (MCA) using transcranial Doppler (TCD) and arterial blood pressure (ABP) monitoring enables assessment of cerebrovascular haemodynamics. Further indices describing cerebrovascular function can be calculated from ABP and CBFV, such as the mean index (Mxa) of cerebrovascular autoregulation, the 'time constant of the cerebral arterial bed' (tau), the 'critical closing pressure' (CrCP) and a 'non-invasive estimator of ICP' (nICP). However, TCD is operator-dependent and changes in angle and depth of MCA insonation result in different readings of CBFV. The effect of differing CBFV readings on the calculated secondary indices remains unknown. The aim of this study was to investigate variation in angle and depth of MCA insonation on these secondary indices. In eight patients continuous ABP and ipsilateral CBFV monitoring was performed using two different TCD probes, resulting in four simultaneous CBFV readings at different angles and depths per patient. From all individual recordings, the K-means clustering algorithm was applied to the four simultaneous longitudinal measurements. The average ratios of the between-clusters, sum-of-squares and total sum-of-squares were significantly higher for CBFV than for the indices Mxa, tau and CrCP (p < 0.001, p = 0.007 and p = 0.016) but not for nICP (p = 0.175). The results indicate that Mxa, tau and CrCP seemed to be not affected by depth and angle of TCD insonation, whereas nICP was.
Collapse
Affiliation(s)
- Michael Heckelmann
- Department of Neurosurgery, Liverpool Hospital, Liverpool, NSW, Australia.
| | | | - Danilo Cardim
- Department of Clinical Neurosciences, Neurosurgical Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Peter Smielewski
- Department of Clinical Neurosciences, Neurosurgical Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Marek Czosnyka
- Department of Clinical Neurosciences, Neurosurgical Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Rita Gaio
- Department of Mathematics, Faculty of Sciences, University of Porto and Centre of Mathematics of the University of Porto, Porto, Portugal
| | - Mark M P Sheridan
- Department of Neurosurgery, Liverpool Hospital, Liverpool, NSW, Australia; University of New South Wales, South Western Sydney Clinical School, Liverpool, NSW, Australia
| | - Matthias Jaeger
- University of New South Wales, South Western Sydney Clinical School, Liverpool, NSW, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Department of Neurosurgery, Wollongong Hospital, Wollongong, NSW, Australia
| |
Collapse
|
29
|
Visočnik D, Žvan B, Zaletel M, Zupan M. αCGRP-Induced Changes in Cerebral and Systemic Circulation; A TCD Study. Front Neurol 2020; 11:578103. [PMID: 33240203 PMCID: PMC7677566 DOI: 10.3389/fneur.2020.578103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/03/2020] [Indexed: 11/16/2022] Open
Abstract
It is known that perivascular application of CGRP induces cerebral vasodilatation. However, it is unclear whether intravenous alfa CGRP (αCGRP) induces changes in cerebral and systemic hemodynamics. Therefore, we studied the influence of an αCGRP intravenous infusion at a rate of 1.5 mcg/min in 20 min on mean arterial velocity in the middle cerebral artery (vm MCA) and in the posterior cerebral artery (vm PCA) in twenty healthy subjects using transcranial Doppler (TCD). We found out that αCGRP decreased vm MCA (p < 0.001), vm PCA (p < 0.001), mean arterial pressure (MAP) (p < 0.001) and end-tidal CO2 (Et-CO2) (p = 0.030). The heart rate (HR) increased during αCGRP infusion (p < 0.001). In addition, we found a positive relationship between Et-CO2 and vm MCA (p = 0.001) as well as vm PCA (p = 0.043). In our view, αCGRP induces changes in cerebral and systemic circulation in healthy volunteers. It might cause vasodilatation of MCA and PCA and a compensatory decrease of Et-CO2 to αCGRP related hemodynamic changes.
Collapse
Affiliation(s)
- Darja Visočnik
- Department of Neurology, University Medical Center Ljubljana, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
30
|
Continuous Monitoring of Cerebral Autoregulation in Children Supported by Extracorporeal Membrane Oxygenation: A Pilot Study. Neurocrit Care 2020; 34:935-945. [PMID: 33029743 DOI: 10.1007/s12028-020-01111-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Cerebral autoregulation (CA) impairment may pose a risk factor for neurological complications among children supported by extracorporeal membrane oxygenation (ECMO). Our first objective was to investigate the feasibility of CA continuous monitoring during ECMO treatment and to describe its evolution over time. The second objective was to analyze the association between CA impairment and neurological outcome. DESIGN Observational prospective study. PATIENTS AND SETTING Twenty-nine children treated with veno-arterial or veno-venous ECMO in the PICU of Nantes University Hospital, France, and the PICU of the IRCCS Giannina Gaslini Institute in Genoa, Italy. MEASUREMENTS A correlation coefficient between the variations of regional cerebral oxygen saturation and the variations of mean arterial blood pressure (MAP) was calculated as an index of CA (cerebral oxygenation reactivity index, COx). A COx > 0.3 was considered as indicative of autoregulation impairment. COx-MAP plots were investigated allowing determining optimal MAP (MAPopt) and limits of autoregulation: lower (LLA) and upper (ULA). Neurological outcome was assessed by the onset of an acute neurological event (ANE) after ECMO start. RESULTS We included 29 children (median age 84 days, weight 4.8 kg). MAPopt, LLA, and ULA were detected in 90.8% (84.3-93.3) of monitoring time. Mean COx was significantly higher during day 1 of ECMO compared to day 2 [0.1 (0.02-0.15) vs. 0.01 (- 0.05 to 0.1), p = 0.002]. Twelve children experienced ANE (34.5%). The mean COx and the percentage of time spent with a COx > 0.3 were significantly higher among ANE+ compared to ANE- patients [0.09 (0.01-0.23) vs. 0.04 (- 0.02 to 0.06), p = 0.04 and 33.3% (24.8-62.1) vs. 20.8% (17.3-23.7) p = 0.001]. ANE+ patients spent significantly more time with MAP below LLA [17.2% (6.5-32.9) vs. 5.6% (3.6-9.9), p = 0.02] and above ULA [13% (5.3-38.4) vs. 4.2% (2.7-7.4), p = 0.004], respectively. CONCLUSION CA assessment is feasible in pediatric ECMO. The first 24 h following ECMO represents the most critical period regarding CA. Impaired autoregulation is significantly more severe among patients who experience ANE.
Collapse
|
31
|
Comparison of Pressure Reactivity Index and Mean Velocity Index to Evaluate Cerebrovascular Reactivity During Induced Arterial Blood Pressure Variations in Severe Brain Injury. Neurocrit Care 2020; 34:974-982. [PMID: 33006033 DOI: 10.1007/s12028-020-01092-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To compare the assessment of cerebral autoregulation by cerebrovascular reactivity indices based on intracranial pressure (Pressure Reactivity Index, PRx) and on transcranial Doppler (Mean Velocity Index, Mx) during controlled variations of arterial blood pressure in severe brain injury. Primary outcome was the agreement between both cerebrovascular reactivity indices measured by the Bland-and-Altman method. Secondary outcomes were the association of cerebrovascular reactivity indices with arterial blood pressure variation, and the comparison of optimal cerebral perfusion pressures determined by both indices. METHODS All consecutive comatose (Glasgow Coma Scale < 8) patients from the surgical intensive care unit of Bicetre Hospital who had an acute brain injury on computerized tomography and needed vasopressor support were prospectively included. Step-by-step arterial pressure variations using vasopressors were performed to compare PRx and Mx and to calculate optimal cerebral perfusion pressure (CPPopt). MEASUREMENTS AND MAIN RESULTS 15 patients were included. Mean difference between both indices measured by Bland-and-Altman plot was - 0.07 (IC 95% [- 1.02 to 0.87]). Mx was significantly associated with arterial pressure variation (one-way ANOVA test, p = 0.007), whereas PRx was not (p = 0.44). Optimal cerebral perfusion pressure calculated with PRx and Mx was respectively 11 and 15mmHg higher than the mean perfusion pressure prescribed. Optimal cerebral perfusion pressure calculation was possible in all cases. CONCLUSIONS Cerebral vasoreactivity indices calculated with intracranial pressure or transcranial Doppler show only moderate agreement. Both indices nonetheless suggest substantially higher optimal cerebral perfusion pressure than those currently provided by international guidelines.
Collapse
|
32
|
Panerai RB, Intharakham K, Minhas JS, Llwyd O, Salinet ASM, Katsogridakis E, Maggio P, Robinson TG. COHmax: an algorithm to maximise coherence in estimates of dynamic cerebral autoregulation. Physiol Meas 2020; 41:085003. [PMID: 32668416 DOI: 10.1088/1361-6579/aba67e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The reliability of dynamic cerebral autoregulation (dCA) parameters, obtained with transfer function analysis (TFA) of spontaneous fluctuations in arterial blood pressure (BP), require statistically significant values of the coherence function. A new algorithm (COHmax) is proposed to increase values of coherence by means of the automated, selective removal of sub-segments of data. APPROACH Healthy subjects were studied at baseline (normocapnia) and during 5% breathing of CO2 (hypercapnia). BP (Finapres), cerebral blood flow velocity (CBFV, transcranial Doppler), end-tidal CO2 (EtCO2, capnography) and heart rate (ECG) were recorded continuously during 5 min in each condition. TFA was performed with sub-segments of data of duration (SEGD) 100 s, 50 s or 25 s and the autoregulation index (ARI) was obtained from the CBFV response to a step change in BP. The area-under-the curve (AUC) was obtained from the receiver-operating characteristic (ROC) curve for the detection of changes in dCA resulting from hypercapnia. MAIN RESULTS In 120 healthy subjects (69 male, age range 20-77 years), CO2 breathing was effective in changing mean EtCO2 and CBFV (p < 0.001). For SEGD = 100 s, ARI changed from 5.8 ± 1.4 (normocapnia) to 4.0 ± 1.7 (hypercapnia, p < 0.0001), with similar differences for SEGD = 50 s or 25 s. Depending on the value of SEGD, in normocapnia, 15.8% to 18.3% of ARI estimates were rejected due to poor coherence, with corresponding rates of 8.3% to 13.3% in hypercapnia. With increasing coherence, 36.4% to 63.2% of these could be recovered in normocapnia (p < 0.001) and 50.0% to 83.0% in hypercapnia (p < 0.005). For SEGD = 100 s, ROC AUC was not influenced by the algorithm, but it was superior to corresponding values for SEGD = 50 s or 25 s. SIGNIFICANCE COHmax has the potential to improve the yield of TFA estimates of dCA parameters, without introducing a bias or deterioration of their ability to detect impairment of autoregulation. Further studies are needed to assess the behaviour of the algorithm in patients with different cerebrovascular conditions.
Collapse
Affiliation(s)
- Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom. NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Trans-ocular brain impedance index for assessment of cerebral autoregulation in a porcine model of cerebral hemodynamic perturbation. J Clin Monit Comput 2020; 35:1007-1014. [PMID: 32666400 DOI: 10.1007/s10877-020-00556-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022]
Abstract
Cerebrovascular autoregulation (CA) is often impaired following traumatic brain injury. Established technologies and metrics used to assess CA are invasive and conducive for measurement, but not for continuous monitoring. We developed a trans-ocular brain impedance (TOBI) method that may provide non-invasive and continuous indices to assess CA. In this study, we monitored impedance metrics such as respiratory-induced impedance amplitude changes (dz) as well as a novel impedance index (DZx), which is a moving Pearson correlation between mean arterial pressure (MAP) and dz. Yorkshire swine were instrumented to continuously record ICP, MAP, and cerebral blood flow (CBF). TOBI was recorded by placement of standard ECG electrodes on closed eyelids and connected to a data acquisition system. MAP, ICP and CBF were manipulated utilizing an intravenous vasopressor challenge. TOBI indices (dz and DZx) were compared to the hemodynamic indicators as well as pressure reactivity index (PRx). During the vasopressor challenge, dz was highly correlated with ICP, CPP, and CBF (r = < - 0.49, p < 0.0001). ICP, CPP, and CBF had a mean percent increase (standard deviation) from baseline of 29(23.2)%, 70(25)%, and 37(72.6)% respectively while dz decreased by 31(15.6)%. Receiver operator curve test showed high predictive performance of DZx when compared to PRx with area under the curve above 0.86, with high sensitivity and specificity. Impedance indices appear to track changes in PRx and hemodynamics that affect cerebral autoregulation. TOBI may be a suitable less invasive surrogate to PRx and capable of tracking cerebral autoregulation.
Collapse
|
34
|
Early Transcranial Doppler Evaluation of Cerebral Autoregulation Independently Predicts Functional Outcome After Aneurysmal Subarachnoid Hemorrhage. Neurocrit Care 2020; 31:253-262. [PMID: 31102237 DOI: 10.1007/s12028-019-00732-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Cerebral autoregulation (CA) impairment after aneurysmal subarachnoid hemorrhage (SAH) has been associated with delayed cerebral ischemia and an unfavorable outcome. We investigated whether the early transient hyperemic response test (THRT), a transcranial Doppler (TCD)-based CA evaluation method, can predict functional outcome 6 months after aneurysmal SAH. METHODS This is a prospective observational study of all aneurysmal SAH patients consecutively admitted to a single center between January 2016 and February 2017. CA was evaluated within 72 h of hemorrhage by THRT, which describes the changes in cerebral blood flow velocity after a brief compression of the ipsilateral common carotid artery. CA was considered to be preserved when an increase ≥ 9% of baseline systolic velocity was present. According to the modified Rankin Scale (mRS: 4-6), the primary outcome was unfavorable 6 months after hemorrhage. Secondary outcomes included cerebral infarction, vasospasm on TCD, and an unfavorable outcome at hospital discharge. RESULTS Forty patients were included (mean age = 54 ± 12 years, 70% females). CA was impaired in 19 patients (47.5%) and preserved in 21 (52.5%). Impaired CA patients were older (59 ± 13 vs. 50 ± 9, p = 0.012), showed worse neurological conditions (Hunt&Hess 4 or 5-47.4% vs. 9.5%, p = 0.012), and clinical initial condition (APACHE II physiological score-12 [5.57-13] vs. 3.5 [3-5], p = 0.001). Fourteen patients in the impaired CA group and one patient in the preserved CA group progressed to an unfavorable outcome (73.7% vs. 4.7%, p = 0.0001). The impaired CA group more frequently developed cerebral infarction than the preserved CA group (36.8% vs. 0%, p = 0.003, respectively). After multivariate analysis, impaired CA (OR 5.15 95% CI 1.43-51.99, p = 0.033) and the APACHE II physiological score (OR 1.67, 95% CI 1.01-2.76, p = 0.046) were independently associated with an unfavorable outcome. CONCLUSIONS Early CA impairment detected by TCD and admission APACHE II physiological score independently predicted an unfavorable outcome after SAH.
Collapse
|
35
|
Mathieu F, Zeiler FA, Ercole A, Monteiro M, Kamnitsas K, Glocker B, Whitehouse DP, Das T, Smielewski P, Czosnyka M, Hutchinson PJ, Newcombe VF, Menon DK. Relationship between Measures of Cerebrovascular Reactivity and Intracranial Lesion Progression in Acute Traumatic Brain Injury Patients: A CENTER-TBI Study. J Neurotrauma 2020; 37:1556-1565. [PMID: 31928143 PMCID: PMC7307675 DOI: 10.1089/neu.2019.6814] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Failure of cerebral autoregulation has been linked to unfavorable outcome after traumatic brain injury (TBI). Preliminary evidence from a small, retrospective, single-center analysis suggests that autoregulatory dysfunction may be associated with traumatic lesion expansion, particularly for pericontusional edema. The goal of this study was to further explore these associations using prospective, multi-center data from the Collaborative European Neurotrauma Effectiveness Research in TBI (CENTER-TBI) and to further explore the relationship between autoregulatory failure, lesion progression, and patient outcome. A total of 88 subjects from the CENTER-TBI High Resolution ICU Sub-Study cohort were included. All patients had an admission computed tomography (CT) scan and early repeat scan available, as well as high-frequency neurophysiological recordings covering the between-scan interval. Using a novel, semiautomated approach at lesion segmentation, we calculated absolute changes in volume of contusion core, pericontusional edema, and extra-axial hemorrhage between the imaging studies. We then evaluated associations between cerebrovascular reactivity metrics and radiological lesion progression using mixed-model regression. Analyses were adjusted for baseline covariates and non-neurophysiological factors associated with lesion growth using multi-variate methods. Impairment in cerebrovascular reactivity was significantly associated with progression of pericontusional edema and, to a lesser degree, intraparenchymal hemorrhage. In contrast, there were no significant associations with extra-axial hemorrhage. The strongest relationships were observed between RAC-based metrics and edema formation. Pulse amplitude index showed weaker, but consistent, associations with contusion growth. Cerebrovascular reactivity metrics remained strongly associated with lesion progression after taking into account contributions from non-neurophysiological factors and mean cerebral perfusion pressure. Total hemorrhagic core and edema volumes on repeat CT were significantly larger in patients who were deceased at 6 months, and the amount of edema was greater in patients with an unfavourable outcome (Glasgow Outcome Scale-Extended 1-4). Our study suggests associations between autoregulatory failure, traumatic edema progression, and poor outcome. This is in keeping with findings from a single-center retrospective analysis, providing multi-center prospective data to support those results.
Collapse
Affiliation(s)
- François Mathieu
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
- Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Frederick A. Zeiler
- Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnibeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnibeg, Manitoba, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnibeg, Manitoba, Canada
| | - Ari Ercole
- Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom
| | - Miguel Monteiro
- Biomedical Image Analysis Group, Imperial College London, London, United Kingdom
| | | | - Ben Glocker
- Biomedical Image Analysis Group, Imperial College London, London, United Kingdom
| | | | - Tilak Das
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, Cambridge, United Kingdom
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, Cambridge, United Kingdom
- Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, Cambridge, United Kingdom
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, Cambridge, United Kingdom
- Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - Peter J. Hutchinson
- Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, Cambridge, United Kingdom
| | | | - David K. Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
36
|
Gaasch M, Putzer G, Schiefecker AJ, Martini J, Strapazzon G, Ianosi B, Thome C, Paal P, Brugger H, Mair P, Helbok R. Cerebral Autoregulation Is Impaired During Deep Hypothermia—A Porcine Multimodal Neuromonitoring Study. Ther Hypothermia Temp Manag 2020; 10:122-127. [DOI: 10.1089/ther.2019.0009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Max Gaasch
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriel Putzer
- Department of Anesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Alois J. Schiefecker
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Judith Martini
- Department of Anesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, European Academy (EURAC) Research, Bolzano, Italy
| | - Bogdan Ianosi
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudius Thome
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Paal
- Department of Anaesthesiology and Intensive Care Medicine, Hospital of the Brothers of St. John of God Salzburg, Salzburg, Austria
| | - Hermann Brugger
- Department of Anesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Mountain Emergency Medicine, European Academy (EURAC) Research, Bolzano, Italy
| | - Peter Mair
- Department of Anesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Raimund Helbok
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
37
|
Alkhachroum A, Megjhani M, Terilli K, Rubinos C, Ford J, Wallace BK, Roh DJ, Agarwal S, Connolly ES, Boehme AK, Claassen J, Park S. Hyperemia in subarachnoid hemorrhage patients is associated with an increased risk of seizures. J Cereb Blood Flow Metab 2020; 40:1290-1299. [PMID: 31296131 PMCID: PMC7238374 DOI: 10.1177/0271678x19863028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The association between impaired brain perfusion, cerebrovascular reactivity status and the risk of ictal events in patients with subarachnoid hemorrhage is unknown. We identified 13 subarachnoid hemorrhage (SAH) patients with seizures and 22 with ictal-interictal continuum (IIC), and compared multimodality physiological recordings to 38 similarly poor-grade SAH patients without ictal activity. We analyzed 10,179 cumulative minutes of seizure and 12,762 cumulative minutes of IIC. Cerebrovascular reactivity (PRx) was not different between subjects with seizures, IIC, or controls. Cerebral perfusion pressure (CPP) was higher in patients with seizures [99 ± 6.5, p = .005] and IIC [97 ± 8.5, p = .007] when compared to controls [89 ± 12.3]. DeltaCPP, defined as actual CPP minus optimal CPP (CPPopt), was also higher in the seizure group [8.3 ± 7.9, p = .0003] and IIC [8.1 ± 10.3, p = .0006] when compared to controls [-0.1 ± 5]. Time spent with supra-optimal CPP was higher in the seizure group [342 ± 213 min/day, p = .002] when compared to controls [154 ± 120 min/day]. In a temporal examination, a supra-optimal CPP preceded increased seizures and IIC in SAH patients, an hour before and continued to increase during the events [p < .0001].
Collapse
Affiliation(s)
- Ayham Alkhachroum
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Murad Megjhani
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Kalijah Terilli
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Clio Rubinos
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Jenna Ford
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Brendan K Wallace
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - David J Roh
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Sachin Agarwal
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - E Sander Connolly
- Department of Neurosurgery, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Amelia K Boehme
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA.,Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Jan Claassen
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Soojin Park
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
38
|
Chi NF, Hu HH, Chan L, Wang CY, Chao SP, Huang LK, Ku HL, Hu CJ. Impaired cerebral autoregulation is associated with poststroke cognitive impairment. Ann Clin Transl Neurol 2020; 7:1092-1102. [PMID: 32468721 PMCID: PMC7359112 DOI: 10.1002/acn3.51075] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/25/2020] [Accepted: 05/10/2020] [Indexed: 01/11/2023] Open
Abstract
Objective To investigate whether dynamic cerebral autoregulation (CA) and neuroimaging characteristics are determinants of poststroke cognitive impairment (PSCI). Methods Eighty patients within 7 days of acute ischemic stroke and 35 age‐ and sex‐matched controls were enrolled. In the patients with stroke, brain magnetic resonance imaging and dynamic CA were obtained at baseline, and dynamic CA was followed up at 3 months and 1 year. Montreal Cognitive Assessment (MoCA) was performed at 3 months and 1 year. Patients with a MoCA score <23 at 1 year were defined as having PSCI, and those with a MoCA score that decreased by 2 points or more between the 3‐month and 1‐year assessments were defined as having progressive cognitive decline. Results In total, 65 patients completed the study and 16 developed PSCI. The patients with PSCI exhibited poorer results for all cognitive domains than did those without PSCI. The patients with PSCI also had poorer CA (lower phase shift between cerebral blood flow and blood pressure waveforms in the very low frequency band) compared with that of the patients without PSCI and controls at baseline and 1 year. CA was not different between the patients without PSCI and controls. In the multivariate analysis, low education level, lobar microbleeds, and impaired CA (very low frequency phase shift [≤46°] within 7 days of stroke), were independently associated with PSCI. In addition, impaired CA was associated with progressive cognitive decline. Interpretation Low education level, lobar microbleeds, and impaired CA are involved in the pathogenesis of PSCI.
Collapse
Affiliation(s)
- Nai-Fang Chi
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Hwa Hu
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Lung Chan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Yen Wang
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Shu-Ping Chao
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Li-Kai Huang
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Hsiao-Lun Ku
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Deaparmtent of Psychiatry, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Brain and Consciousness Research Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.,The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
39
|
Optimizing Mean Arterial Pressure in Acutely Comatose Patients Using Cerebral Autoregulation Multimodal Monitoring With Near-Infrared Spectroscopy. Crit Care Med 2020; 47:1409-1415. [PMID: 31356469 DOI: 10.1097/ccm.0000000000003908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study investigated whether comatose patients with greater duration and magnitude of clinically observed mean arterial pressure outside optimal mean arterial blood pressure have worse outcomes than those with mean arterial blood pressure closer to optimal mean arterial blood pressure calculated by bedside multimodal cerebral autoregulation monitoring using near-infrared spectroscopy. DESIGN Prospective observational study. SETTING Neurocritical Care Unit of the Johns Hopkins Hospital. SUBJECTS Acutely comatose patients secondary to brain injury. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS The cerebral oximetry index was continuously monitored with near-infrared spectroscopy for up to 3 days. Optimal mean arterial blood pressure was defined as that mean arterial blood pressure at the lowest cerebral oximetry index (nadir index) for each 24-hour period of monitoring. Kaplan-Meier analysis and proportional hazard regression models were used to determine if survival at 3 months was associated with a shorter duration of mean arterial blood pressure outside optimal mean arterial blood pressure and the absolute difference between clinically observed mean arterial blood pressure and optimal mean arterial blood pressure. A total 91 comatose patients were enrolled in the study. The most common etiology was intracerebral hemorrhage. Optimal mean arterial blood pressure could be calculated in 89 patients (97%), and the median optimal mean arterial blood pressure was 89.7 mm Hg (84.6-100 mm Hg). In multivariate proportional hazard analysis, duration outside optimal mean arterial blood pressure of greater than 80% of monitoring time (adjusted hazard ratio, 2.13; 95% CI, 1.04-4.41; p = 0.04) and absolute difference between clinically observed mean arterial blood pressure and optimal mean arterial blood pressure of more than 10 mm Hg (adjusted hazard ratio, 2.44; 95% CI, 1.21-4.92; p = 0.013) were independently associated with mortality at 3 months, after adjusting for brain herniation, admission Glasgow Coma Scale, duration on vasopressors and midline shift at septum. CONCLUSIONS Comatose neurocritically ill adults with an absolute difference between clinically observed mean arterial blood pressure and optimal mean arterial blood pressure greater than 10 mm Hg and duration outside optimal mean arterial blood pressure greater than 80% had increased mortality at 3 months. Noninvasive near-infrared spectroscopy-based bedside calculation of optimal mean arterial blood pressure is feasible and might be a promising tool for cerebral autoregulation oriented-therapy in neurocritical care patients.
Collapse
|
40
|
|
41
|
Foreman B. Neurocritical Care: Bench to Bedside (Eds. Claude Hemphill, Michael James) Integrating and Using Big Data in Neurocritical Care. Neurotherapeutics 2020; 17:593-605. [PMID: 32152955 PMCID: PMC7283405 DOI: 10.1007/s13311-020-00846-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The critical care environment drives huge volumes of data, and clinicians are tasked with quickly processing this data and responding to it urgently. The neurocritical care environment increasingly involves EEG, multimodal intracranial monitoring, and complex imaging which preclude comprehensive human synthesis, and requires new concepts to integrate data into clinical care. By definition, Big Data is data that cannot be handled using traditional infrastructures and is characterized by the volume, variety, velocity, and variability of the data being produced. Big Data in the neurocritical care unit requires rethinking of data storage infrastructures and the development of tools and analytics to drive advancements in the field. Preprocessing, feature extraction, statistical inference, and analytic tools are required in order to achieve the primary goals of Big Data for clinical use: description, prediction, and prescription. Barriers to its use at bedside include a lack of infrastructure development within the healthcare industry, lack of standardization of data inputs, and ultimately existential and scientific concerns about the outputs that result from the use of tools such as artificial intelligence. However, as implied by the fundamental theorem of biomedical informatics, physicians remain central to the development and utility of Big Data to improve patient care.
Collapse
Affiliation(s)
- Brandon Foreman
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH, 45267-0517, USA.
- Collaborative for Research on Acute Neurological Injuries (CRANI), University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
42
|
Mathieu F, Zeiler FA, Whitehouse DP, Das T, Ercole A, Smielewski P, Hutchinson PJ, Czosnyka M, Newcombe VFJ, Menon DK. Relationship Between Measures of Cerebrovascular Reactivity and Intracranial Lesion Progression in Acute TBI Patients: an Exploratory Analysis. Neurocrit Care 2020; 32:373-382. [PMID: 31797278 PMCID: PMC7082305 DOI: 10.1007/s12028-019-00885-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Failure of cerebral autoregulation and progression of intracranial lesion have both been shown to contribute to poor outcome in patients with acute traumatic brain injury (TBI), but the interplay between the two phenomena has not been investigated. Preliminary evidence leads us to hypothesize that brain tissue adjacent to primary injury foci may be more vulnerable to large fluctuations in blood flow in the absence of intact autoregulatory mechanisms. The goal of this study was therefore to assess the influence of cerebrovascular reactivity measures on radiological lesion expansion in a cohort of patients with acute TBI. METHODS We conducted a retrospective cohort analysis on 50 TBI patients who had undergone high-frequency multimodal intracranial monitoring and for which at least two brain computed tomography (CT) scans had been performed in the acute phase of injury. We first performed univariate analyses on the full cohort to identify non-neurophysiological factors (i.e., initial lesion volume, timing of scan, coagulopathy) associated with traumatic lesion growth in this population. In a subset analysis of 23 patients who had intracranial recording data covering the period between the initial and repeat CT scan, we then correlated changes in serial volumetric lesion measurements with cerebrovascular reactivity metrics derived from the pressure reactivity index (PRx), pulse amplitude index (PAx), and RAC (correlation coefficient between the pulse amplitude of intracranial pressure and cerebral perfusion pressure). Using multivariate methods, these results were subsequently adjusted for the non-neurophysiological confounders identified in the univariate analyses. RESULTS We observed significant positive linear associations between the degree of cerebrovascular reactivity impairment and progression of pericontusional edema. The strongest correlations were observed between edema progression and the following indices of cerebrovascular reactivity between sequential scans: % time PRx > 0.25 (r = 0.69, p = 0.002) and % time PAx > 0.25 (r = 0.64, p = 0.006). These associations remained significant after adjusting for initial lesion volume and mean cerebral perfusion pressure. In contrast, progression of the hemorrhagic core and extra-axial hemorrhage volume did not appear to be strongly influenced by autoregulatory status. CONCLUSIONS Our preliminary findings suggest a possible link between autoregulatory failure and traumatic edema progression, which warrants re-evaluation in larger-scale prospective studies.
Collapse
Affiliation(s)
- François Mathieu
- Division of Neurosurgery, University of Toronto, Toronto, Canada.
- Division of Anaesthesia, Addenbrooke's Hospital, University of Cambridge, Hills Road, Box 93, Cambridge, CB2 0QQ, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Frederick A Zeiler
- Division of Anaesthesia, Addenbrooke's Hospital, University of Cambridge, Hills Road, Box 93, Cambridge, CB2 0QQ, UK
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Department of Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Daniel P Whitehouse
- Division of Anaesthesia, Addenbrooke's Hospital, University of Cambridge, Hills Road, Box 93, Cambridge, CB2 0QQ, UK
| | - Tilak Das
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospital NHS Foundation Trust, Addenbrooke's Hospital, Hills Road, Box 218, Cambridge, CB2 0QQ, UK
| | - Ari Ercole
- Division of Anaesthesia, Addenbrooke's Hospital, University of Cambridge, Hills Road, Box 93, Cambridge, CB2 0QQ, UK
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Addenbrooke's Hospital, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Peter J Hutchinson
- Brain Physics LaboratoryDivision of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Hills Road, Box 167, Cambridge, CB2 0QQ, UK
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Addenbrooke's Hospital, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
- Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - Virginia F J Newcombe
- Division of Anaesthesia, Addenbrooke's Hospital, University of Cambridge, Hills Road, Box 93, Cambridge, CB2 0QQ, UK
| | - David K Menon
- Division of Anaesthesia, Addenbrooke's Hospital, University of Cambridge, Hills Road, Box 93, Cambridge, CB2 0QQ, UK
| |
Collapse
|
43
|
Müller M, Österreich M. Cerebrovascular Dynamics During Continuous Motor Task. Physiol Res 2019; 68:997-1004. [PMID: 31647292 DOI: 10.33549/physiolres.934147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We investigated the cerebral autoregulation (CA) dynamics parameter phase and gain change when exposed to a longlasting motor task. 25 healthy subjects (mean age ± SE, 38±2.6 years, 13 females) underwent simultaneous recordings of spontaneous fluctuations in blood pressure (BP), cerebral blood flow velocity (CBFV), and end-tidal CO(2) (ETCO(2)) over 5 min of rest followed by 5 min of left elbow flexion at a frequency of 1 Hz. Tansfer function gain and phase between BP and CBFV were assessed in the frequency ranges of very low frequencies (VLF, 0.02-0.07 Hz), low frequencies (LF, 0.07-0.15), and high frequencies (HF, >0.15). CBFV increased on both sides rapidly to maintain an elevated steady state until movement stopped. Cerebrovascular resistance fell on the right side (rest 1.35±0.06, movement 1.28±0.06, p<0.01), LF gain decreased from baseline (right side 0.97±0.07 %/mm Hg, left 1.01±0.09) to movement epoch (right 0.73±0.08, left 0.76±0.06, p</=0.01). VLF phase decreased from baseline (right 1.03±0.05 radians, left 1.10±0.06) to the movement epoch (right 0.81±0.07, left 0.82±0.10, p?0.05). CA regulates continuous motor efforts by changes in resistance, gain and phase.
Collapse
Affiliation(s)
- M Müller
- Neurocenter, Neurovascular Laboratory, Lucerne Kantonsspital, Lucerne, Switzerland.
| | | |
Collapse
|
44
|
Glasgow Coma Scale Score Fluctuations are Inversely Associated With a NIRS-based Index of Cerebral Autoregulation in Acutely Comatose Patients. J Neurosurg Anesthesiol 2019; 31:306-310. [PMID: 29782388 DOI: 10.1097/ana.0000000000000513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND The Glasgow Coma Scale (GCS) is an essential coma scale in critical care for determining the neurological status of patients and for estimating their long-term prognosis. Similarly, cerebral autoregulation (CA) monitoring has shown to be an accurate technique for predicting clinical outcomes. However, little is known about the relationship between CA measurements and GCS scores among neurological critically ill patients. This study aimed to explore the association between noninvasive CA multimodal monitoring measurements and GCS scores. METHODS Acutely comatose patients with a variety of neurological injuries admitted to a neurocritical care unit were monitored using near-infrared spectroscopy-based multimodal monitoring for up to 72 hours. Regional cerebral oxygen saturation (rScO2), cerebral oximetry index (COx), GCS, and GCS motor data were measured hourly. COx was calculated as a Pearson correlation coefficient between low-frequency changes in rScO2 and mean arterial pressure. Mixed random effects models with random intercept was used to determine the relationship between hourly near-infrared spectroscopy-based measurements and GCS or GCS motor scores. RESULTS A total of 871 observations (h) were analyzed from 57 patients with a variety of neurological conditions. Mean age was 58.7±14.2 years and the male to female ratio was 1:1.3. After adjusting for hemoglobin and partial pressure of carbon dioxide in arterial blood, COx was inversely associated with GCS (β=-1.12, 95% confidence interval [CI], -1.94 to -0.31, P=0.007) and GCS motor score (β=-1.06, 95% CI, -2.10 to -0.04, P=0.04). In contrast rScO2 was not associated with GCS (β=-0.002, 95% CI, -0.01 to 0.01, P=0.76) or GCS motor score (β=-0.001, 95% CI, -0.01 to 0.01, P=0.84). CONCLUSIONS This study showed that fluctuations in GCS scores are inversely associated with fluctuations in COx; as COx increases (impaired autoregulation), more severe neurological impairment is observed. However, the difference in COx between high and low GCS is small and warrants further studies investigating this association. CA multimodal monitoring with COx may have the potential to be used as a surrogate of neurological status when the neurological examination is not reliable (ie, sedation and paralytic drug administration).
Collapse
|
45
|
Lee KF, Wood MD, Maslove DM, Muscedere JG, Boyd JG. Dysfunctional cerebral autoregulation is associated with delirium in critically ill adults. J Cereb Blood Flow Metab 2019; 39:2512-2520. [PMID: 30295556 PMCID: PMC6893984 DOI: 10.1177/0271678x18803081] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Delirium is common during critical illness and is associated with morbidity and mortality, but its pathophysiology is unknown. We tested whether dysfunctional cerebral autoregulation (CA) contributes to the development of delirium. Adult patients (n = 40) with respiratory failure and/or shock were prospectively enrolled. Continuous recordings of regional cerebral oxygen saturation (rSO2) were obtained by near-infrared spectroscopy (NIRS) during the first 72 h of intensive care unit (ICU) admission. CA function was estimated by the cerebral oximetry index (COx), which is the time-varying correlation between rSO2 and mean arterial pressure (MAP). Delirium was assessed daily. The median ICU stay was seven days (IQR 4-13). Twenty-four patients (60%) screened positive for delirium on at least one day during their stay. Taking positive COx values to reflect periods of CA dysfunction, we found that the cumulative duration of CA dysfunction during the first one to three days in the ICU was significantly associated with the subsequent development of delirium. Additionally, we assessed two alternative methods for estimating optimal MAP targets in individual patients. In summary, early disturbances in CA may contribute to delirium, and NIRS-derived rSO2 may be used to identify individual perfusion targets in critically ill patients.
Collapse
Affiliation(s)
- Kevin Fh Lee
- School of Medicine, Queen's University, Kingston, ON, Canada
| | - Michael D Wood
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - David M Maslove
- Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada.,Department of Medicine, Queen's University, Kingston, ON, Canada
| | - John G Muscedere
- Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada
| | - J Gordon Boyd
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada.,Department of Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
46
|
Scheeren TWL, Kuizenga MH, Maurer H, Struys MMRF, Heringlake M. Electroencephalography and Brain Oxygenation Monitoring in the Perioperative Period. Anesth Analg 2019; 128:265-277. [PMID: 29369096 DOI: 10.1213/ane.0000000000002812] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Maintaining brain function and integrity is a pivotal part of anesthesiological practice. The present overview aims to describe the current role of the 2 most frequently used monitoring methods for evaluation brain function in the perioperative period, ie, electroencephalography (EEG) and brain oxygenation monitoring. Available evidence suggests that EEG-derived parameters give additional information about depth of anesthesia for optimizing anesthetic titration. The effects on reduction of drug consumption or recovery time are heterogeneous, but most studies show a reduction of recovery times if anesthesia is titrated along processed EEG. It has been hypothesized that future EEG-derived indices will allow a better understanding of the neurophysiological principles of anesthetic-induced alteration of consciousness instead of the probabilistic approach most often used nowadays.Brain oxygenation can be either measured directly in brain parenchyma via a surgical burr hole, estimated from the venous outflow of the brain via a catheter in the jugular bulb, or assessed noninvasively by near-infrared spectroscopy. The latter method has increasingly been accepted clinically due to its ease of use and increasing evidence that near-infrared spectroscopy-derived cerebral oxygen saturation levels are associated with neurological and/or general perioperative complications and increased mortality. Furthermore, a goal-directed strategy aiming to avoid cerebral desaturations might help to reduce these complications. Recent evidence points out that this technology may additionally be used to assess autoregulation of cerebral blood flow and thereby help to titrate arterial blood pressure to the individual needs and for bedside diagnosis of disturbed autoregulation.
Collapse
Affiliation(s)
- Thomas W L Scheeren
- From the Department of Anaesthesiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Merel H Kuizenga
- From the Department of Anaesthesiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Holger Maurer
- Department of Anesthesiology and Intensive Care Medicine, University of Lübeck, Lübeck, Germany
| | - Michel M R F Struys
- From the Department of Anaesthesiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Matthias Heringlake
- Department of Anesthesiology and Intensive Care Medicine, University of Lübeck, Lübeck, Germany
| |
Collapse
|
47
|
Optimización del manejo del paciente neuroquirúrgico en Medicina Intensiva. Med Intensiva 2019; 43:489-496. [DOI: 10.1016/j.medin.2019.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 01/26/2023]
|
48
|
Can Cerebral Near-infrared Spectroscopy Predict Cerebral Ischemic Events in Neurosurgical Patients? A Narrative Review of the Literature. J Neurosurg Anesthesiol 2019; 31:378-384. [DOI: 10.1097/ana.0000000000000522] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
49
|
Al‐Khazraji BK, Badrov MB, Kadem M, Lingum NR, Birmingham TB, Shoemaker JK. Exploring Cerebrovascular Function in Osteoarthritis: "Heads-up". Physiol Rep 2019; 7:e14212. [PMID: 31660705 PMCID: PMC6817995 DOI: 10.14814/phy2.14212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 11/24/2022] Open
Abstract
Individuals with osteoarthritis (OA) are at greater risk of cardiovascular and cerebrovascular incidents; yet, cerebrovascular control remains uncharacterized. Our primary outcome was to acquire cerebrovascular control metrics in patients with OA and compare measures to healthy control adults (CTL) without OA or cardiovascular complications. Our primary covariate was a 10-year risk factor for cardiovascular and stroke incidents, and secondary covariates were other cardiovascular disease risk factors (i.e., body mass index, carotid intima media thickness, and brachial flow-mediated dilation). Our secondary outcomes were to assess anatomical and functional changes that may be related to cerebrovascular reactivity were also acquired such as white matter lesion volume and brief cognitive assessments. In 25 adults (n = 13 CTL, n = 12 OA), under hypercapnia, magnetic resonance imaging (3T) was used to acquire a "Global Cerebrovascular Reactivity" index across the larger intracranial cerebral arteries and white matter lesions, and transcranial Doppler was used for both middle cerebral artery hemodynamic responses to hypercapnia and to assess autoregulation via a sit-to-stand task. Compared to CTL, OA had lower "Global Cerebrovascular Reactivity" index responses to hypercapnia, autoregulatory responses, and greater white matter lesions (P < 0.05). These differences persisted after covarying for the outlined primary and secondary covariates. Patients with OA, in the absence of known cardiovascular disease, can exhibit pre-clinical and impaired (compared to CTL) peripheral and cerebrovascular control metrics.
Collapse
Affiliation(s)
- Baraa K. Al‐Khazraji
- School of Kinesiology, Faculty of Health SciencesWestern UniversityLondonOntarioCanada
- Bone and Joint InstituteWestern UniversityLondonOntarioCanada
| | - Mark B. Badrov
- School of Kinesiology, Faculty of Health SciencesWestern UniversityLondonOntarioCanada
| | - Mason Kadem
- Brain and Mind InstituteWestern UniversityLondonOntarioCanada
| | - Navena R. Lingum
- School of Kinesiology, Faculty of Health SciencesWestern UniversityLondonOntarioCanada
| | - Trevor B. Birmingham
- School of Physical TherapyFaculty of Health SciencesWestern OntarioLondon, OntarioCanada
- Bone and Joint InstituteWestern UniversityLondonOntarioCanada
| | - Joel Kevin Shoemaker
- School of Kinesiology, Faculty of Health SciencesWestern UniversityLondonOntarioCanada
- Bone and Joint InstituteWestern UniversityLondonOntarioCanada
- Department of Physiology and Pharmacology, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada
| |
Collapse
|
50
|
Silverman A, Kodali S, Strander S, Gilmore EJ, Kimmel A, Wang A, Cord B, Falcone G, Hebert R, Matouk C, Sheth KN, Petersen NH. Deviation From Personalized Blood Pressure Targets Is Associated With Worse Outcome After Subarachnoid Hemorrhage. Stroke 2019; 50:2729-2737. [PMID: 31495332 PMCID: PMC6756936 DOI: 10.1161/strokeaha.119.026282] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/31/2019] [Indexed: 11/16/2022]
Abstract
Background and Purpose- Optimal blood pressure (BP) management during the early stages of aneurysmal subarachnoid hemorrhage remains uncertain. Observational studies have found worse outcomes in patients with increased hemodynamic variability, suggesting BP optimization as a potential neuroprotective strategy. In this study, we calculated personalized BP targets at which cerebral autoregulation was best preserved. We analyzed how deviation from these limits correlates with functional outcome. Methods- We prospectively enrolled 31 patients with aneurysmal subarachnoid hemorrhage. Autoregulatory function was continuously measured by interrogating changes in near-infrared spectroscopy (NIRS)-derived tissue oxygenation-a surrogate for cerebral blood flow-as well as intracranial pressure (ICP) in response to changes in mean arterial pressure using time-correlation analysis. The resulting autoregulatory indices were used to identify the upper and lower limit of autoregulation. Percent time that mean arterial pressure exceeded limits of autoregulation was calculated for each patient. Functional outcome was assessed using the modified Rankin Scale at discharge and 90 days. Associations with outcome were analyzed using ordinal multivariate logistic regression. Results- Personalized limits of autoregulation were computed in all patients (age 57.5±13.4, 23F, mean World Federation of Neurological Surgeons 2±1, monitoring time 67.8±50.8 hours). Optimal BP and limits of autoregulation were calculated on average for 89.5±6.7% of the total monitoring period. ICP- and NIRS-derived optimal pressures strongly correlated with one another (P<0.0001). Percent time that mean arterial pressure deviated from limits of autoregulation significantly associated with worse functional outcome at discharge (NIRS, P=0.001; ICP, P=0.004) and 90 days (NIRS, P=0.002; ICP, P=0.003), adjusting separately for age, World Federation of Neurological Surgeons, vasospasm, and delayed cerebral ischemia. Conclusions- Both invasive (ICP) and noninvasive (NIRS) determination of personalized BP targets after aneurysmal subarachnoid hemorrhage is feasible, and these 2 approaches revealed significant collinearity. Furthermore, exceeding individualized limits of autoregulation was associated with poor functional outcomes.
Collapse
Affiliation(s)
| | - Sreeja Kodali
- Department of Neurology, Yale Medical School, New Haven, CT
| | | | | | | | - Anson Wang
- Department of Neurology, Yale Medical School, New Haven, CT
| | - Branden Cord
- Department of Neurosurgery, Yale Medical School, New Haven, CT
| | - Guido Falcone
- Department of Neurology, Yale Medical School, New Haven, CT
| | - Ryan Hebert
- Department of Neurosurgery, Yale Medical School, New Haven, CT
| | - Charles Matouk
- Department of Neurosurgery, Yale Medical School, New Haven, CT
| | - Kevin N. Sheth
- Department of Neurology, Yale Medical School, New Haven, CT
| | | |
Collapse
|