1
|
Jávor P, Donka T, Solli HS, Sándor L, Baráth B, Perényi D, Mohácsi Á, Török L, Hartmann P. Could exhaled methane be used as a possible indicator for hemodynamic changes in trauma induced hemorrhagic shock? Scientific basis supported by a case study. Injury 2024; 55 Suppl 3:111456. [PMID: 39300623 DOI: 10.1016/j.injury.2024.111456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/14/2024] [Accepted: 02/25/2024] [Indexed: 09/22/2024]
Abstract
INTRODUCTION Identification of severe blood loss and hemorrhagic shock in polytrauma patients poses a key challenge for trauma teams across the world, as there are just a few objective parameters, on which clinicians can rely. We investigated the relationship between exhaled air methane (CH4) concentration and blood loss in a polytrauma patient. Decreased blood flow in the superior mesenteric artery (SMA) is one of the first compensatory responses to blood loss. Gases produced by the anaerobic flora of the intestinal segment supplied by the SMA are the primary source of exhaled CH4, which diffuses through the intestinal microvessels into the circulation and is finally eliminated through the lungs. We hypothesized that diminution of exhaled CH4 indicates blood loss and tested our theory in a severely injured patient. METHODS Exhaled CH4 concentrations of a severely injured patient were measured using a photoacoustic spectroscope (PAS) attached to the exhalation side of the breathing circuit. The primary objective was to investigate the relationship between exhaled CH4 and conventional indicators of hemorrhage including hemoglobin (Hb) levels, base deficit (BD) values and vital parameters (heart rate and systolic blood pressure) in the early phase of in-hospital care (first 4 h). RESULTS A severely injured patient was admitted with unstable hemodynamic parameters and incomplete left lower limb amputation, (Injury Severity Score: 38, 74/36 mmHg, 76 bpm). At the time of arrival, considerably lower CH4 levels were detected (22,800 PAU) in the exhaled air. During the first 4 h fluid and massive blood resuscitation, the exhaled CH4 levels were continuously rising in parallel with Htc and Hb values. Corresponding to these changes, BD values displayed a decreasing tendency. DISCUSSION Our study was conducted to characterize the changes in exhaled air CH4 concentration in response to hemorrhagic shock and to provide data on a viable clinical use of an experimental technique. According to our results, the real-time detection of exhaled air CH4 concentration is an applicable and promising technique for the early detection of bleeding and hemorrhagic shock in severely injured patients. Further research on large sample size and refinement of the PAS technique is required.
Collapse
Affiliation(s)
- Péter Jávor
- Department of Traumatology, University of Szeged, Szeged, Hungary, Semmelweis street 6., Szeged, 6725 Hungary
| | - Tibor Donka
- National Academy of Scientist Education, Pacsirta str 31., Szeged, 6724 Hungary
| | - Hanne Sofie Solli
- Department of Traumatology, University of Szeged, Szeged, Hungary, Semmelweis street 6., Szeged, 6725 Hungary
| | - Lilla Sándor
- Department of Traumatology, University of Szeged, Szeged, Hungary, Semmelweis street 6., Szeged, 6725 Hungary
| | - Bálint Baráth
- Department of Traumatology, University of Szeged, Szeged, Hungary, Semmelweis street 6., Szeged, 6725 Hungary; Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary, Dóm square 9., Szeged, 6720 Hungary
| | - Domonkos Perényi
- National Academy of Scientist Education, Pacsirta str 31., Szeged, 6724 Hungary
| | - Árpád Mohácsi
- MTA - SZTE Research Group on Photoacoustic Spectroscopy, University of Szeged, Szeged Hungary, Dóm tér 9., Szeged, 6720 Hungary
| | - László Török
- Department of Traumatology, University of Szeged, Szeged, Hungary, Semmelweis street 6., Szeged, 6725 Hungary; Department of Sports Medicine, University of Szeged, Szeged, Hungary, Semmelweis utca 6., Szeged, 6725 Hungary
| | - Petra Hartmann
- Department of Traumatology, University of Szeged, Szeged, Hungary, Semmelweis street 6., Szeged, 6725 Hungary.
| |
Collapse
|
2
|
Yao Z, Chen Y, Li D, Li Y, Liu Y, Fan H. HEMORRHAGIC SHOCK ASSESSED BY TISSUE MICROCIRCULATORY MONITORING: A NARRATIVE REVIEW. Shock 2024; 61:509-519. [PMID: 37878487 DOI: 10.1097/shk.0000000000002242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
ABSTRACT Hemorrhagic shock (HS) is a common complication after traumatic injury. Early identification of HS can reduce patients' risk of death. Currently, the identification of HS relies on macrocirculation indicators such as systolic blood pressure and heart rate, which are easily affected by the body's compensatory functions. Recently, the independence of the body's overall macrocirculation from microcirculation has been demonstrated, and microcirculation indicators have been widely used in the evaluation of HS. In this study, we reviewed the progress of research in the literature on the use of microcirculation metrics to monitor shock. We analyzed the strengths and weaknesses of each metric and found that microcirculation monitoring could not only indicate changes in tissue perfusion before changes in macrocirculation occurred but also correct tissue perfusion and cell oxygenation after the macrocirculation index returned to normal following fluid resuscitation, which is conducive to the early prediction and prognosis of HS. However, microcirculation monitoring is greatly affected by individual differences and environmental factors. Therefore, the current limitations of microcirculation assessments mean that they should be incorporated as part of an overall assessment of HS patients. Future research should explore how to better combine microcirculation and macrocirculation monitoring for the early identification and prognosis of HS patients.
Collapse
Affiliation(s)
| | | | | | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | | | | |
Collapse
|
3
|
Tanaka Y, Matsumura Y, Aoki M, Hayashi Y, Izawa Y, Endo K, Mato T. Establishment of a swine experimental model of non-occlusive mesenteric ischemia: Combining induced hemorrhagic shock and vasopressor administration. Acute Med Surg 2024; 11:e982. [PMID: 39045518 PMCID: PMC11263749 DOI: 10.1002/ams2.982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024] Open
Abstract
Aim Non-occlusive mesenteric ischemia (NOMI) is associated with high mortality rates, but definitive treatments have not yet been established. Although experimental animal models are worthwhile, reproducible models that reflect the pathophysiology of NOMI have not been developed. Methods We combined risk factors for NOMI, comprising hemorrhagic shock, systemic vasopressor infusion, and local vasopressor infusion from the superior mesenteric artery (SMA) in swine under maintained anesthesia. Experiment 1 involved full-intensity (40%) phlebotomy and systemic vasopressor (norepinephrine and epinephrine). Experiment 2 involved full-intensity (40%) phlebotomy, systemic norepinephrine, and local vasopressor infusion into the SMA. Experiment 3 involved moderate (27%) phlebotomy, systemic norepinephrine infusion, and local epinephrine infusion. We evaluated serum lactate levels, intestinal serosa color, computed tomography (CT) angiography, and pathological findings. Results After inducing hemorrhage, systemic vasopressor alone and in combination with local vasopressin or norepinephrine infusion did not induce ischemic color changes in the intestine. The combination of systemic norepinephrine and local epinephrine (0.5 μg/kg/min) after moderate (27% blood loss) hemorrhage induced gross color change, pathological destruction, and elevation of serum lactate. Patent flow in the SMA was confirmed on CT angiography. Conclusion We established a swine NOMI model with systemic norepinephrine infusion and local epinephrine with moderate hemorrhagic shock.
Collapse
Affiliation(s)
- Yasutaka Tanaka
- Department of Emergency and Critical Care MedicineJichi Medical UniversityShimotsukeJapan
| | - Yosuke Matsumura
- Department of Intensive CareChiba Emergency Medical CenterChibaJapan
- Department of Emergency and Critical Care MedicineChiba UniversityChibaJapan
| | - Makoto Aoki
- Division of TraumatologyNational Defense Medical College Research InstituteTokorozawaJapan
| | - Yosuke Hayashi
- Department of Emergency and Critical Care MedicineChiba UniversityChibaJapan
| | - Yoshimitsu Izawa
- Department of Emergency and Critical Care MedicineJichi Medical UniversityShimotsukeJapan
| | - Kazuhiro Endo
- Center for Development of Advanced Medical TechnologyJichi Medical UniversityShimotsukeJapan
| | - Takashi Mato
- Department of Emergency and Critical Care MedicineJichi Medical UniversityShimotsukeJapan
| |
Collapse
|
4
|
Hintzen KF, Eussen MM, Neutel C, Bouvy ND, van Schooten FJ, Hooijmans CR, Lubbers T. A systematic review on the detection of volatile organic compounds in exhaled breath in experimental animals in the context of gastrointestinal and hepatic diseases. PLoS One 2023; 18:e0291636. [PMID: 37733754 PMCID: PMC10513283 DOI: 10.1371/journal.pone.0291636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/02/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Analysis of volatile organic compounds (VOCs) in exhaled breath has the potential to serve as an accurate diagnostic tool for gastro-intestinal diseases. Animal studies could be instrumental as a preclinical base and subsequent clinical translation to humans, as they are easier to standardize and better equipped to relate specific VOCs to metabolic and pathological processes. This review provides an overview of the study design, characteristics and methodological quality of previously published animal studies on analysis of exhaled breath in gastrointestinal and hepatic diseases. Guidelines are provided for standardization in study design and breath collection methods to improve comparability, avoid duplication of research and reduce discomfort of animals in future studies. METHODS PubMed and Embase database were searched for animal studies using exhaled breath analysis to detect gastro-intestinal diseases. Risk of bias was assessed using the SYRCLE's risk of bias tool for animal studies. Information on study design, standardization methods, animal models, breath collection methods and identified VOCs were extracted from the included studies. RESULTS 10 studies were included (acute liver failure n = 1, non-alcoholic steatohepatitis n = 1, hepatic ischemia n = 2, mesenteric ischemia n = 2, sepsis and peritonitis n = 3, colitis n = 1). Rats were used in most of the studies. Exhaled breath was mostly collected using invasive procedures as tracheal cannulation or tracheostomy. Poor reporting on standardization, breath collection methods, analytical techniques, as well as heterogeneity of the studies, complicate comparison of the different studies. CONCLUSION Poor reporting of essential methodological details impaired comprehensive summarizing the various studies on exhaled breath in gastrointestinal and hepatic diseases. Potential pitfalls in study design, and suggestions for improvement of study design are discussed which, when applied, lead to consistent and generalizable results and a reduction in the use of laboratory animals. Refining the methodological quality of animal studies has the potential to improve subsequent clinical trial design.
Collapse
Affiliation(s)
- Kim F.H. Hintzen
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| | - Myrthe M.M. Eussen
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Céline Neutel
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Nicole D. Bouvy
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| | - Carlijn R. Hooijmans
- Department of Anesthesiology, Pain and Palliative Care (Meta Research Team), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Tim Lubbers
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
5
|
Duivenvoorden AAM, Clarysse M, Ceulemans LJ, Geelkerken RH, Derikx JPM, de Vries JPPM, Buscher HCJL, Olde Damink SWM, van Schooten FJ, Lubbers T, Lenaerts K. Diagnostic potential of plasma biomarkers and exhaled volatile organic compounds in predicting the different stages of acute mesenteric ischaemia: protocol for a multicentre prospective observational study (TACTIC study). BMJ Open 2023; 13:e072875. [PMID: 37643848 PMCID: PMC10465895 DOI: 10.1136/bmjopen-2023-072875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/05/2023] [Indexed: 08/31/2023] Open
Abstract
INTRODUCTION Acute mesenteric ischaemia (AMI) is a life-threatening condition with short-term mortality of up to 80%. The diagnosis of AMI has remained troublesome due to the non-specific clinical presentation, symptoms and laboratory findings. Early unambiguous diagnosis of AMI is critical to prevent progression from reversible to irreversible transmural intestinal damage, thereby decreasing morbidity and improving survival. The present study aims to validate a panel of plasma biomarkers and investigate volatile organic compound (VOC) profiles in exhaled air as a tool to timely and accurately diagnose AMI. METHODS AND ANALYSIS In this international multicentre prospective observational study, 120 patients (>18 years of age) will be recruited with clinical suspicion of AMI. Clinical suspicion is based on: (1) clinical manifestation, (2) physical examination, (3) laboratory measurements and (4) the physician's consideration to perform a CT scan. The patient's characteristics, repetitive blood samples and exhaled air will be prospectively collected. Plasma levels of mucosal damage markers intestinal fatty acid-binding protein and villin-1, as well as transmural damage marker smooth muscle protein 22-alpha, will be assessed by ELISA. Analysis of VOCs in exhaled air will be performed by gas chromatography time-of-flight mass spectrometry. Diagnosis of AMI will be based on CT, endovascular and surgical reports, clinical findings, and (if applicable) verified by histopathological examination. ETHICS AND DISSEMINATION The study protocol was approved by the Medical Research Ethics Committee (METC) of Maastricht University Medical Centre+ and Maastricht University (METC azM/UM), the Netherlands (METC19-010) and the Ethics Committee Research UZ/KU Leuven, Belgium (S63500). Executive boards and local METCs of other Dutch participating centres Gelre Ziekenhuizen (Apeldoorn), Medisch Spectrum Twente (Enschede), and University Medical Centre Groningen have granted permission to carry out this study. Study results will be disseminated via open-access peer-reviewed scientific journals and national/international conferences. TRIAL REGISTRATION NUMBER NCT05194527.
Collapse
Affiliation(s)
- Annet A M Duivenvoorden
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Mathias Clarysse
- Abdominal Transplant Laboratory, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplant Surgery and Transplant Coordination, University Hospitals Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Leuven Intestinal Failure and Transplantation Center (LIFT), University Hospitals Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Robert H Geelkerken
- Department of Vascular Surgery, Medisch Spectrum Twente, Enschede, The Netherlands
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Joep P M Derikx
- Department of Pediatric Surgery, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Jean-Paul P M de Vries
- Department of Surgery, Division of Vascular Surgery, University of Groningen, Groningen, The Netherlands
| | | | - Steven W M Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Frederik Jan van Schooten
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Tim Lubbers
- Department of Surgery, GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Kaatje Lenaerts
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
6
|
Jávor P, Donka T, Horváth T, Sándor L, Török L, Szabó A, Hartmann P. Impairment of Mesenteric Perfusion as a Marker of Major Bleeding in Trauma Patients. J Clin Med 2023; 12:jcm12103571. [PMID: 37240677 DOI: 10.3390/jcm12103571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The majority of potentially preventable mortality in trauma patients is related to bleeding; therefore, early recognition and effective treatment of hemorrhagic shock impose a cardinal challenge for trauma teams worldwide. The reduction in mesenteric perfusion (MP) is among the first compensatory responses to blood loss; however, there is no adequate tool for splanchnic hemodynamic monitoring in emergency patient care. In this narrative review, (i) methods based on flowmetry, CT imaging, video microscopy (VM), measurement of laboratory markers, spectroscopy, and tissue capnometry were critically analyzed with respect to their accessibility, and applicability, sensitivity, and specificity. (ii) Then, we demonstrated that derangement of MP is a promising diagnostic indicator of blood loss. (iii) Finally, we discussed a new diagnostic method for the evaluation of hemorrhage based on exhaled methane (CH4) measurement. Conclusions: Monitoring the MP is a feasible option for the evaluation of blood loss. There are a wide range of experimentally used methodologies; however, due to their practical limitations, only a fraction of them could be integrated into routine emergency trauma care. According to our comprehensive review, breath analysis, including exhaled CH4 measurement, would provide the possibility for continuous, non-invasive monitoring of blood loss.
Collapse
Affiliation(s)
- Péter Jávor
- Department of Traumatology, University of Szeged, H-6725 Szeged, Hungary
| | - Tibor Donka
- Department of Traumatology, University of Szeged, H-6725 Szeged, Hungary
| | - Tamara Horváth
- Institute of Surgical Research, University of Szeged, H-6724 Szeged, Hungary
| | - Lilla Sándor
- Department of Traumatology, University of Szeged, H-6725 Szeged, Hungary
| | - László Török
- Department of Traumatology, University of Szeged, H-6725 Szeged, Hungary
- Department of Sports Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - Andrea Szabó
- Institute of Surgical Research, University of Szeged, H-6724 Szeged, Hungary
| | - Petra Hartmann
- Department of Traumatology, University of Szeged, H-6725 Szeged, Hungary
| |
Collapse
|
7
|
Bársony A, Vida N, Gajda Á, Rutai A, Mohácsi Á, Szabó A, Boros M, Varga G, Érces D. Methane Exhalation Can Monitor the Microcirculatory Changes of the Intestinal Mucosa in a Large Animal Model of Hemorrhage and Fluid Resuscitation. Front Med (Lausanne) 2020; 7:567260. [PMID: 33195312 PMCID: PMC7642453 DOI: 10.3389/fmed.2020.567260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/11/2020] [Indexed: 12/02/2022] Open
Abstract
Background: Internal hemorrhage is a medical emergency, which requires immediate causal therapy, but the recognition may be difficult. The reactive changes of the mesenteric circulation may be part of the earliest hemodynamic responses to bleeding. Methane is present in the luminal atmosphere; thus, we hypothesized that it can track the intestinal circulatory changes, induced by hemorrhage, non-invasively. Our goal was to validate and compare the sensitivity of this method with an established technique using sublingual microcirculatory monitoring in a large animal model of controlled, graded hemorrhage and the early phase of following fluid resuscitation. Materials and Methods: The experiments were performed on anesthetized, ventilated Vietnamese minipigs (approval number: V/148/2013; n = 6). The animals were gradually bled seven times consecutively of 5% of their estimated blood volume (BV) each, followed by gradual fluid resuscitation with colloid (hydroxyethyl starch; 5% of the estimated BV/dose) until 80 mmHg mean arterial pressure was achieved. After each step, macrohemodynamic parameters were recorded, and exhaled methane level was monitored continuously with a custom-built photoacoustic laser-spectroscopy unit. The microcirculation of the sublingual area, ileal serosa, and mucosa was examined by intravital videomicroscopy (Cytocam-IDF, Braedius). Results: Mesenteric perfusion was significantly reduced by a 5% blood loss, whereas microperfusion in the oral cavity deteriorated after a 25% loss. A statistically significant correlation was found between exhaled methane levels, superior mesenteric artery flow (r = 0.93), or microcirculatory changes in the ileal serosa (ρ = 0.78) and mucosa (r = 0.77). After resuscitation, the ileal mucosal microcirculation increased rapidly [De Backer score (DBS): 2.36 ± 0.42 vs. 8.6 ± 2.1 mm−1], whereas serosal perfusion changed gradually and with a lower amplitude (DBS: 2.51 ± 0.48 vs. 5.73 ± 0.75). Sublingual perfusion correlated with mucosal (r = 0.74) and serosal (r = 0.66) mesenteric microperfusion during the hemorrhage phase but not during the resuscitation phase. Conclusion: Detection of exhaled methane levels is of diagnostic significance during experimental hemorrhage as it indicates blood loss earlier than sublingual microcirculatory changes and in the early phase of fluid resuscitation, the exhaled methane values change in association with the mesenteric perfusion and the microcirculation of the ileum.
Collapse
Affiliation(s)
- Anett Bársony
- Department of Surgery, University of Szeged, Szeged, Hungary
| | - Noémi Vida
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Ámos Gajda
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Attila Rutai
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Árpád Mohácsi
- MTA-SZTE Research Group on Photoacoustic Spectroscopy, Szeged, Hungary
| | - Anna Szabó
- Department of Optics and Quantum Electronics, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Mihály Boros
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Gabriella Varga
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Dániel Érces
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| |
Collapse
|
8
|
Poles MZ, Juhász L, Boros M. Methane and Inflammation - A Review (Fight Fire with Fire). Intensive Care Med Exp 2019; 7:68. [PMID: 31807906 PMCID: PMC6895343 DOI: 10.1186/s40635-019-0278-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/24/2019] [Indexed: 12/23/2022] Open
Abstract
Mammalian methanogenesis is regarded as an indicator of carbohydrate fermentation by anaerobic gastrointestinal flora. Once generated by microbes or released by a non-bacterial process, methane is generally considered to be biologically inactive. However, recent studies have provided evidence for methane bioactivity in various in vivo settings. The administration of methane either in gas form or solutions has been shown to have anti-inflammatory and neuroprotective effects in an array of experimental conditions, such as ischemia/reperfusion, endotoxemia and sepsis. It has also been demonstrated that exogenous methane influences the key regulatory mechanisms and cellular signalling pathways involved in oxidative and nitrosative stress responses. This review offers an insight into the latest findings on the multi-faceted organ protective activity of exogenous methane treatments with special emphasis on its versatile effects demonstrated in sepsis models.
Collapse
Affiliation(s)
- Marietta Zita Poles
- Institute of Surgical Research, University of Szeged, Pulz u. 1., Szeged, H-6724, Hungary
| | - László Juhász
- Institute of Surgical Research, University of Szeged, Pulz u. 1., Szeged, H-6724, Hungary
| | - Mihály Boros
- Institute of Surgical Research, University of Szeged, Pulz u. 1., Szeged, H-6724, Hungary.
| |
Collapse
|
9
|
Boros M, Keppler F. Methane Production and Bioactivity-A Link to Oxido-Reductive Stress. Front Physiol 2019; 10:1244. [PMID: 31611816 PMCID: PMC6776796 DOI: 10.3389/fphys.2019.01244] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022] Open
Abstract
Biological methane formation is associated with anoxic environments and the activity of anaerobic prokaryotes (Archaea). However, recent studies have confirmed methane release from eukaryotes, including plants, fungi, and animals, even in the absence of microbes and in the presence of oxygen. Furthermore, it was found that aerobic methane emission in plants is stimulated by a variety of environmental stress factors, leading to reactive oxygen species (ROS) generation. Further research presented evidence that molecules with sulfur and nitrogen bonded methyl groups such as methionine or choline are carbon precursors of aerobic methane formation. Once generated, methane is widely considered to be physiologically inert in eukaryotes, but several studies have found association between mammalian methanogenesis and gastrointestinal (GI) motility changes. In addition, a number of recent reports demonstrated anti-inflammatory potential for exogenous methane-based approaches in model anoxia-reoxygenation experiments. It has also been convincingly demonstrated that methane can influence the downstream effectors of transiently increased ROS levels, including mitochondria-related pro-apoptotic pathways during ischemia-reperfusion (IR) conditions. Besides, exogenous methane can modify the outcome of gasotransmitter-mediated events in plants, and it appears that similar mechanism might be active in mammals as well. This review summarizes the relevant literature on methane-producing processes in eukaryotes, and the available results that underscore its bioactivity. The current evidences suggest that methane liberation and biological effectiveness are both linked to cellular redox regulation. The data collectively imply that exogenous methane influences the regulatory mechanisms and signaling pathways involved in oxidative and nitrosative stress responses, which suggests a modulator role for methane in hypoxia-linked pathologies.
Collapse
Affiliation(s)
- Mihály Boros
- Institute of Surgical Research, Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Frank Keppler
- Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|