1
|
Miserocchi G, Rezoagli E, Muñoz-Del-Carpio-Toia A, Paricahua-Yucra LP, Zubieta-DeUrioste N, Zubieta-Calleja G, Beretta E. Modelling lung diffusion-perfusion limitation in mechanically ventilated SARS-CoV-2 patients. Front Physiol 2024; 15:1408531. [PMID: 39072215 PMCID: PMC11272564 DOI: 10.3389/fphys.2024.1408531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/18/2024] [Indexed: 07/30/2024] Open
Abstract
This is the first study to describe the daytime evolution of respiratory parameters in mechanically ventilated COVID-19 patients. The data base refers to patients hospitalised in the intensive care unit (ICU) at Arequipa Hospital (Peru, 2335 m) in 2021. In both survivors (S) and non-survivors (NS) patients, a remarkable decrease in respiratory compliance was observed, revealing a proportional decrease in inflatable alveolar units. The S and NS patients were all hyperventilated and their SatO2 was maintained at >90%. However, while S remained normocapnic, NS developed progressive hypercapnia. We compared the efficiency of O2 uptake and CO2 removal in the air blood barrier relying on a model allowing to partition between diffusion and perfusion limitations to gas exchange. The decrease in O2 uptake was interpreted as diffusion limitation, while the impairment in CO2 removal was modelled by progressive perfusion limitation. The latter correlated with the increase in positive end-expiratory pressure (PEEP) and plateau pressure (Pplat), leading to capillary compression, increased blood velocity, and considerable shortening of the air-blood contact time.
Collapse
Affiliation(s)
- Giuseppe Miserocchi
- Dipartimento di Medicina e Chirurgia, Università Milano-Bicocca, Monza, Italy
| | - Emanuele Rezoagli
- Dipartimento di Medicina e Chirurgia, Università Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | | | | | | | | | - Egidio Beretta
- Dipartimento di Medicina e Chirurgia, Università Milano-Bicocca, Monza, Italy
| |
Collapse
|
2
|
Florio G, Valsecchi C, Vivona L, Battistin M, Colombo SM, Cattaneo E, Protti I, DI Feliciantonio M, Castelli G, Dondossola D, Biancolilli O, Carlin A, Gatti S, Pesenti AM, Zanella A, Grasselli G. Enhanced extracorporeal carbon dioxide removal by acidification and metabolic control. Minerva Anestesiol 2023; 89:773-782. [PMID: 36951601 DOI: 10.23736/s0375-9393.23.17142-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
BACKGROUND Extracorporeal carbon dioxide removal (ECCO2R) promotes protective ventilation in patients with acute respiratory failure, but devices with high CO2 extraction capacity are required for clinically relevant impact. This study evaluates three novel low-flow techniques based on dialysate acidification, also combined with renal replacement therapy, and metabolic control. METHODS Eight swine were connected to a low-flow (350 mL/min) extracorporeal circuit including a dialyzer with a closed-loop dialysate circuit, and two membrane lungs on blood (MLb) and dialysate (MLd), respectively. The following 2-hour steps were performed: 1) MLb-start (MLb ventilated); 2) MLbd-start (MLb and MLd ventilated); 3) HLac (lactic acid infusion before MLd); 4) HCl-NaLac (hydrochloric acid infusion before MLd combined with renal replacement therapy and reinfusion of sodium lactate); 5) HCl-βHB-NaLac (hydrochloric acid infusion before MLd combined with renal replacement therapy and reinfusion of sodium lactate and sodium 3-hydroxybutyrate). Caloric and fluid inputs, temperature, blood glucose and arterial carbon dioxide pressure were kept constant. RESULTS The total MLs CO2 removal in HLac (130±25 mL/min), HCl-NaLac (130±21 mL/min) and HCl-βHB-NaLac (124±18 mL/min) were higher compared with MLbd-start (81±15 mL/min, P<0.05) and MLb-start (55±7 mL/min, P<0.05). Minute ventilation in HLac (4.3±0.9 L/min), HCl-NaLac (3.6±0.8 L/min) and HCl-βHB-NaLac (3.6±0.8 L/min) were lower compared to MLb-start (6.2±1.1 L/min, P<0.05) and MLbd-start (5.8±2.1 L/min, P<0.05). Arterial pH was 7.40±0.03 at MLb-start and decreased only during HCl-βHB-NaLac (7.35±0.03, P<0.05). No relevant changes in electrolyte concentrations, hemodynamics and significant adverse events were detected. CONCLUSIONS The three techniques achieved a significant extracorporeal CO2 removal allowing a relevant reduction in minute ventilation with a sufficient safety profile.
Collapse
Affiliation(s)
- Gaetano Florio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Carlo Valsecchi
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Luigi Vivona
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Michele Battistin
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Sebastiano M Colombo
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Emanuele Cattaneo
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Ilaria Protti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | | | - Gloria Castelli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Daniele Dondossola
- Liver Transplant and General Surgery Unit, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Osvaldo Biancolilli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Carlin
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Gatti
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio M Pesenti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Zanella
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy -
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Grasselli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
3
|
Ferrada P, Cannon JW, Kozar RA, Bulger EM, Sugrue M, Napolitano LM, Tisherman SA, Coopersmith CM, Efron PA, Dries DJ, Dunn TB, Kaplan LJ. Surgical Science and the Evolution of Critical Care Medicine. Crit Care Med 2023; 51:182-211. [PMID: 36661448 DOI: 10.1097/ccm.0000000000005708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Surgical science has driven innovation and inquiry across adult and pediatric disciplines that provide critical care regardless of location. Surgically originated but broadly applicable knowledge has been globally shared within the pages Critical Care Medicine over the last 50 years.
Collapse
Affiliation(s)
- Paula Ferrada
- Division of Trauma and Acute Care Surgery, Department of Surgery, Inova Fairfax Hospital, Falls Church, VA
| | - Jeremy W Cannon
- Division of Trauma, Surgical Critical Care and Emergency Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Rosemary A Kozar
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Eileen M Bulger
- Division of Trauma, Burn and Critical Care Surgery, Department of Surgery, University of Washington at Seattle, Harborview, Seattle, WA
| | - Michael Sugrue
- Department of Surgery, Letterkenny University Hospital, County of Donegal, Ireland
| | - Lena M Napolitano
- Division of Acute Care Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Samuel A Tisherman
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Craig M Coopersmith
- Division of General Surgery, Department of Surgery, Emory University, Emory Critical Care Center, Atlanta, GA
| | - Phil A Efron
- Department of Surgery, Division of Critical Care, University of Florida, Gainesville, FL
| | - David J Dries
- Department of Surgery, University of Minnesota, Regions Healthcare, St. Paul, MN
| | - Ty B Dunn
- Division of Transplant Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Lewis J Kaplan
- Division of Trauma, Surgical Critical Care and Emergency Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Corporal Michael J. Crescenz VA Medical Center, Section of Surgical Critical Care, Surgical Services, Philadelphia, PA
| |
Collapse
|
4
|
Combes A, Brodie D, Aissaoui N, Bein T, Capellier G, Dalton HJ, Diehl JL, Kluge S, McAuley DF, Schmidt M, Slutsky AS, Jaber S. Extracorporeal carbon dioxide removal for acute respiratory failure: a review of potential indications, clinical practice and open research questions. Intensive Care Med 2022; 48:1308-1321. [PMID: 35943569 DOI: 10.1007/s00134-022-06796-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023]
Abstract
Extracorporeal carbon dioxide removal (ECCO2R) is a form of extracorporeal life support (ECLS) largely aimed at removing carbon dioxide in patients with acute hypoxemic or acute hypercapnic respiratory failure, so as to minimize respiratory acidosis, allowing more lung protective ventilatory settings which should decrease ventilator-induced lung injury. ECCO2R is increasingly being used despite the lack of high-quality evidence, while complications associated with the technique remain an issue of concern. This review explains the physiological basis underlying the use of ECCO2R, reviews the evidence regarding indications and contraindications, patient management and complications, and addresses organizational and ethical considerations. The indications and the risk-to-benefit ratio of this technique should now be carefully evaluated using structured national or international registries and large randomized trials.
Collapse
Affiliation(s)
- Alain Combes
- Sorbonne Université INSERM Unité Mixte de Recherche (UMRS) 1166, Institute of Cardiometabolism and Nutrition, Paris, France. .,Service de Médecine Intensive-Réanimation, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, 47, boulevard de l'Hôpital, 75013, Paris, France.
| | - Daniel Brodie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, NewYork-Presbyterian Hospital, New York, USA.,Center for Acute Respiratory Failure, NewYork-Presbyterian Hospital, New York, USA
| | - Nadia Aissaoui
- Assistance publique des hopitaux de Paris (APHP), Cochin Hospital, Intensive Care Medicine, Université de Paris and Paris Cardiovascular Research Center, INSERM U970, Paris, France
| | - Thomas Bein
- Faculty of Medicine, University of Regensburg, Regensburg, Germany
| | - Gilles Capellier
- CHU Besançon, Réanimation Médicale, 2500, Besançon, France.,Université de Franche Comte, EA, 3920, Besançon, France.,Department of Epidemiology and Preventive Medicine, Australian and New Zealand Intensive, Care Research Centre, Monash University, Melbourne, Australia
| | - Heidi J Dalton
- Heart and Vascular Institute and Department of Pediatrics, INOVA Fairfax Medical Center, Falls Church, VA, USA
| | - Jean-Luc Diehl
- Medical Intensive Care Unit and Biosurgical Research Lab (Carpentier Foundation), HEGP Hospital, Assistance Publique-Hôpitaux de Paris-Centre (APHP-Centre), Paris, France.,Université de Paris, INSERM, Innovative Therapies in Haemostasis, 75006, Paris, France
| | - Stefan Kluge
- Department of Intensive Care, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel F McAuley
- Belfast Health and Social Care Trust, Royal Victoria Hospital, Belfast, UK.,Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Matthieu Schmidt
- Sorbonne Université INSERM Unité Mixte de Recherche (UMRS) 1166, Institute of Cardiometabolism and Nutrition, Paris, France.,Service de Médecine Intensive-Réanimation, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, 47, boulevard de l'Hôpital, 75013, Paris, France
| | - Arthur S Slutsky
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.,Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Samir Jaber
- PhyMedExp, University of Montpellier, Institut National de La Santé Et de La Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Centre Hospitalier Universitaire (CHU) Montpellier, Montpellier, France.,Département d'Anesthésie-Réanimation, Hôpital Saint-Eloi, Montpellier Cedex, France
| |
Collapse
|