1
|
Ahrens E, Wachtendorf LJ, Hill KP, Schaefer MS. Considerations for Anesthesia in Older Adults with Cannabis Use. Drugs Aging 2024; 41:933-943. [PMID: 39617807 DOI: 10.1007/s40266-024-01161-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/12/2024]
Abstract
Over the past decade, legislative changes occurred in the USA and the western world that were followed by a substantial increase in reported use of cannabis among the general population. Among patients undergoing anesthesia for surgery or interventional procedures, older patients-often defined as adults over 65 years-are one of the fastest-growing populations. Within this group, the prevalence of cannabis use almost tripled over the past decade. In addition to habitual cannabis use, recommendations for treatment of chronic pain with cannabinoids have become increasingly more common. The clinical relevance of cannabis use in older adults is supported by recent studies linking it to increased anesthetic requirements as well as respiratory, cardiovascular, and psychiatric complications following surgery. Still, evidence remains equivocal, as these associations may largely depend on the type, frequency, and route of cannabis administration, and current research is mostly limited to retrospective cohort studies. Multisystemic effects of cannabis can become especially relevant in patients of advanced age undergoing anesthesia, characterized by physiological and pharmacodynamic alterations as well as a higher risks of drug-to-drug interactions. Best-practice guidelines emphasize the need for detailed, systematic preoperative screening for habits of cannabis use, including the history, type, and frequency, to guide perioperative management in these patients. This review discusses considerations for anesthesia in older patients with habitual cannabis use while highlighting strategies and recommendations to ensure safe and effective anesthesia care.
Collapse
Affiliation(s)
- Elena Ahrens
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Luca J Wachtendorf
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kevin P Hill
- Division of Addiction Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Maximilian S Schaefer
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Anesthesiology, Duesseldorf University Hospital, Duesseldorf, Germany.
| |
Collapse
|
2
|
Wachtendorf LJ, Ahrens E, Suleiman A, von Wedel D, Tartler TM, Rudolph MI, Redaelli S, Santer P, Munoz-Acuna R, Santarisi A, Calderon HN, Kiyatkin ME, Novack L, Talmor D, Eikermann M, Schaefer MS. The association between intraoperative low driving pressure ventilation and perioperative healthcare-associated costs: A retrospective multicenter cohort study. J Clin Anesth 2024; 98:111567. [PMID: 39191081 DOI: 10.1016/j.jclinane.2024.111567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024]
Abstract
STUDY OBJECTIVE A low dynamic driving pressure during mechanical ventilation for general anesthesia has been associated with a lower risk of postoperative respiratory complications (PRC), a key driver of healthcare costs. It is, however, unclear whether maintaining low driving pressure is clinically relevant to measure and contain costs. We hypothesized that a lower dynamic driving pressure is associated with lower costs. DESIGN Multicenter retrospective cohort study. SETTING Two academic healthcare networks in New York and Massachusetts, USA. PATIENTS 46,715 adult surgical patients undergoing general anesthesia for non-ambulatory (inpatient and same-day admission) surgery between 2016 and 2021. INTERVENTIONS The primary exposure was the median intraoperative dynamic driving pressure. MEASUREMENTS The primary outcome was direct perioperative healthcare-associated costs, which were matched with data from the Healthcare Cost and Utilization Project-National Inpatient Sample (HCUP-NIS) to report absolute differences in total costs in United States Dollars (US$). We assessed effect modification by patients' baseline risk of PRC (score for prediction of postoperative respiratory complications [SPORC] ≥ 7) and effect mediation by rates of PRC (including post-extubation saturation < 90%, re-intubation or non-invasive ventilation within 7 days) and other major complications. MAIN RESULTS The median intraoperative dynamic driving pressure was 17.2cmH2O (IQR 14.0-21.3cmH2O). In adjusted analyses, every 5cmH2O reduction in dynamic driving pressure was associated with a decrease of -0.7% in direct perioperative healthcare-associated costs (95%CI -1.3 to -0.1%; p = 0.020). When a dynamic driving pressure below 15cmH2O was maintained, -US$340 lower total perioperative healthcare-associated costs were observed (95%CI -US$546 to -US$132; p = 0.001). This association was limited to patients at high baseline risk of PRC (n = 4059; -US$1755;97.5%CI -US$2495 to -US$986; p < 0.001), where lower risks of PRC and other major complications mediated 10.7% and 7.2% of this association (p < 0.001 and p = 0.015, respectively). CONCLUSIONS Intraoperative mechanical ventilation targeting low dynamic driving pressures could be a relevant measure to reduce perioperative healthcare-associated costs in high-risk patients.
Collapse
Affiliation(s)
- Luca J Wachtendorf
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States of America; Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, 375 Longwood Avenue, Boston, MA 02215, United States of America.
| | - Elena Ahrens
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States of America; Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, 375 Longwood Avenue, Boston, MA 02215, United States of America.
| | - Aiman Suleiman
- Department of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, University of Jordan, Queen Rania St, Amman, 11942, Jordan; Department of Anesthesiology, Montefiore Medical Center and Albert Einstein College of Medicine, 111 East 210(th) Street, Bronx, New York 10467, United States of America.
| | - Dario von Wedel
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States of America; Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, 375 Longwood Avenue, Boston, MA 02215, United States of America.
| | - Tim M Tartler
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States of America; Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, 375 Longwood Avenue, Boston, MA 02215, United States of America
| | - Maíra I Rudolph
- Department of Anesthesiology, Montefiore Medical Center and Albert Einstein College of Medicine, 111 East 210(th) Street, Bronx, New York 10467, United States of America; Department of Anesthesiology and Intensive Care Medicine, University Hospital of Cologne, Kerpener Strasse 62, Cologne 50937, Germany.
| | - Simone Redaelli
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States of America; Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, 375 Longwood Avenue, Boston, MA 02215, United States of America; School of Medicine and Surgery, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1, 20126 Milan, Italy.
| | - Peter Santer
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States of America; Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, 375 Longwood Avenue, Boston, MA 02215, United States of America.
| | - Ricardo Munoz-Acuna
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States of America; Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, 375 Longwood Avenue, Boston, MA 02215, United States of America.
| | - Abeer Santarisi
- Department of Anesthesiology, Montefiore Medical Center and Albert Einstein College of Medicine, 111 East 210(th) Street, Bronx, New York 10467, United States of America; Department of Accident and Emergency Medicine, Jordan University Hospital, Queen Rania St, Amman 11942, Jordan.
| | - Harold N Calderon
- Department of Finance, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, United States of America.
| | - Michael E Kiyatkin
- Department of Anesthesiology, Montefiore Medical Center and Albert Einstein College of Medicine, 111 East 210(th) Street, Bronx, New York 10467, United States of America.
| | - Lena Novack
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States of America; Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, 375 Longwood Avenue, Boston, MA 02215, United States of America.
| | - Daniel Talmor
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States of America.
| | - Matthias Eikermann
- Department of Anesthesiology, Montefiore Medical Center and Albert Einstein College of Medicine, 111 East 210(th) Street, Bronx, New York 10467, United States of America; Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen, Hufelandstraße 55, Essen 45147, Germany.
| | - Maximilian S Schaefer
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States of America; Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, 375 Longwood Avenue, Boston, MA 02215, United States of America; Department of Anesthesiology, Duesseldorf University Hospital, Moorenstraße 5, Duesseldorf 40225, Germany.
| |
Collapse
|
3
|
Traynor M. Lung-protective ventilation in the management of congenital diaphragmatic hernia. WORLD JOURNAL OF PEDIATRIC SURGERY 2024; 7:e000789. [PMID: 39119150 PMCID: PMC11308893 DOI: 10.1136/wjps-2024-000789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Prioritizing lung-protective ventilation has produced a clear mortality benefit in neonates with congenital diaphragmatic hernia (CDH). While there is a paucity of CDH-specific evidence to support any particular approach to lung-protective ventilation, a growing body of data in adults is beginning to clarify the mechanisms behind ventilator-induced lung injury and inform safer management of mechanical ventilation in general. This review summarizes the adult data and attempts to relate the findings, conceptually, to the CDH population. Critical lessons from the adult studies are that much of the damage done during conventional mechanical ventilation affects normal lung tissue and that most of this damage occurs at the low-volume and high-volume extremes of the respiratory cycle. Consequently, it is important to prevent atelectasis by using sufficient positive end-expiratory pressure while also avoiding overdistention by scaling tidal volume to the amount of functional lung tissue rather than body weight. Paralysis early in acute respiratory distress syndrome improves outcomes, possibly because consistent respiratory mechanics facilitate avoidance of both atelectasis and overdistention-a mechanism that may also apply to the CDH population. Volume-targeted conventional modes may be advantageous in CDH, but determining optimal tidal volume is challenging. Both high-frequency oscillatory ventilation and high-frequency jet ventilation have been used successfully as 'rescue modes' to avoid extracorporeal membrane oxygenation, and a prospective trial comparing the two high-frequency modalities as the primary ventilation strategy for CDH is underway.
Collapse
Affiliation(s)
- Mike Traynor
- Department of Anesthesia, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Ghiani A, Walcher S, Lutfi A, Paderewska J, Jaeger SU, Kneidinger N, Stecher SS, Trudzinski FC, Neurohr C. Mechanical power density, spontaneous breathing indexes, and prolonged weaning failure: a prospective cohort study. Sci Rep 2024; 14:16297. [PMID: 39009821 PMCID: PMC11251183 DOI: 10.1038/s41598-024-67237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
A prospective observational study comparing mechanical power density (MP normalized to dynamic compliance) with traditional spontaneous breathing indexes (e.g., predicted body weight normalized tidal volume [VT/PBW], rapid shallow breathing index [RSBI], or the integrative weaning index [IWI]) for predicting prolonged weaning failure in 140 tracheotomized patients. We assessed the diagnostic accuracy of these indexes at the start and end of the weaning procedure using ROC curve analysis, expressed as the area under the receiver operating characteristic curve (AUROC). Weaning failure occurred in 41 out of 140 patients (29%), demonstrating significantly higher MP density (6156 cmH2O2/min [4402-7910] vs. 3004 cmH2O2/min [2153-3917], P < 0.01), lower spontaneous VT/PBW (5.8 mL*kg-1 [4.8-6.8] vs. 6.6 mL*kg-1 [5.7-7.9], P < 0.01) higher RSBI (68 min-1*L-1 [44-91] vs. 55 min-1*L-1 [41-76], P < 0.01) and lower IWI (41 L2/cmH2O*%*min*10-3 [25-72] vs. 71 L2/cmH2O*%*min*10-3 [50-106], P < 0.01) and at the end of weaning. MP density was more accurate at predicting weaning failures (AUROC 0.91 [95%CI 0.84-0.95]) than VT/PBW (0.67 [0.58-0.74]), RSBI (0.62 [0.53-0.70]), or IWI (0.73 [0.65-0.80]), and may help clinicians in identifying patients at high risk for long-term ventilator dependency.
Collapse
Affiliation(s)
- Alessandro Ghiani
- Department of Pulmonology and Respiratory Medicine, Lung Center Stuttgart - Schillerhoehe Lung Clinic, affiliated to the Robert-Bosch-Hospital GmbH, Auerbachstrasse 110, 70376, Stuttgart, Germany.
| | - Swenja Walcher
- Department of Pulmonology and Respiratory Medicine, Lung Center Stuttgart - Schillerhoehe Lung Clinic, affiliated to the Robert-Bosch-Hospital GmbH, Auerbachstrasse 110, 70376, Stuttgart, Germany
| | - Azal Lutfi
- Department of Pulmonology and Respiratory Medicine, Lung Center Stuttgart - Schillerhoehe Lung Clinic, affiliated to the Robert-Bosch-Hospital GmbH, Auerbachstrasse 110, 70376, Stuttgart, Germany
| | - Joanna Paderewska
- Department of Pulmonology and Respiratory Medicine, Lung Center Stuttgart - Schillerhoehe Lung Clinic, affiliated to the Robert-Bosch-Hospital GmbH, Auerbachstrasse 110, 70376, Stuttgart, Germany
| | - Simon Ulrich Jaeger
- Department of Pulmonology and Respiratory Medicine, Lung Center Stuttgart - Schillerhoehe Lung Clinic, affiliated to the Robert-Bosch-Hospital GmbH, Auerbachstrasse 110, 70376, Stuttgart, Germany
| | - Nikolaus Kneidinger
- Department of Medicine V, LMU University Hospital, LMU Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Franziska Christina Trudzinski
- Department of Pneumology and Critical Care Medicine, Thoraxklinik, Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Claus Neurohr
- Department of Pulmonology and Respiratory Medicine, Lung Center Stuttgart - Schillerhoehe Lung Clinic, affiliated to the Robert-Bosch-Hospital GmbH, Auerbachstrasse 110, 70376, Stuttgart, Germany
- Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
5
|
Misseri G, Frassanito L, Simonte R, Rosà T, Grieco DL, Piersanti A, De Robertis E, Gregoretti C. Personalized Noninvasive Respiratory Support in the Perioperative Setting: State of the Art and Future Perspectives. J Pers Med 2023; 14:56. [PMID: 38248757 PMCID: PMC10817439 DOI: 10.3390/jpm14010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Background: Noninvasive respiratory support (NRS), including high-flow nasal oxygen therapy (HFNOT), noninvasive ventilation (NIV) and continuous positive airway pressure (CPAP), are routinely used in the perioperative period. Objectives: This narrative review provides an overview on the perioperative use of NRS. Preoperative, intraoperative, and postoperative respiratory support is discussed, along with potential future areas of research. Results: During induction of anesthesia, in selected patients at high risk of difficult intubation, NIV is associated with improved gas exchange and reduced risk of postoperative respiratory complications. HFNOT demonstrated an improvement in oxygenation. Evidence on the intraoperative use of NRS is limited. Compared with conventional oxygenation, HFNOT is associated with a reduced risk of hypoxemia during procedural sedation, and recent data indicate a possible role for HFNOT for intraoperative apneic oxygenation in specific surgical contexts. After extubation, "preemptive" NIV and HFNOT in unselected cohorts do not affect clinical outcome. Postoperative "curative" NIV in high-risk patients and among those exhibiting signs of respiratory failure can reduce reintubation rate, especially after abdominal surgery. Data on postoperative "curative" HFNOT are limited. Conclusions: There is increasing evidence on the perioperative use of NRS. Use of NRS should be tailored based on the patient's specific characteristics and type of surgery, aimed at a personalized cost-effective approach.
Collapse
Affiliation(s)
- Giovanni Misseri
- Fondazione Istituto “G. Giglio” Cefalù, 90015 Palermo, Italy; (G.M.); (C.G.)
| | - Luciano Frassanito
- Department of Emergency, Intensive Care Medicine and Anaesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00165 Rome, Italy; (L.F.); (T.R.); (D.L.G.); (A.P.)
| | - Rachele Simonte
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy;
| | - Tommaso Rosà
- Department of Emergency, Intensive Care Medicine and Anaesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00165 Rome, Italy; (L.F.); (T.R.); (D.L.G.); (A.P.)
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, 00165 Rome, Italy
| | - Domenico Luca Grieco
- Department of Emergency, Intensive Care Medicine and Anaesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00165 Rome, Italy; (L.F.); (T.R.); (D.L.G.); (A.P.)
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, 00165 Rome, Italy
| | - Alessandra Piersanti
- Department of Emergency, Intensive Care Medicine and Anaesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00165 Rome, Italy; (L.F.); (T.R.); (D.L.G.); (A.P.)
| | - Edoardo De Robertis
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy;
| | - Cesare Gregoretti
- Fondazione Istituto “G. Giglio” Cefalù, 90015 Palermo, Italy; (G.M.); (C.G.)
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.), University of Palermo, 90133 Palermo, Italy
| |
Collapse
|
6
|
Chen H, Chen ZZ, Gong SR, Yu RG. Visualizing the dynamic mechanical power and time burden of mechanical ventilation patients: an analysis of the MIMIC-IV database. J Intensive Care 2023; 11:58. [PMID: 38031184 PMCID: PMC10685677 DOI: 10.1186/s40560-023-00709-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Limiting driving pressure and mechanical power is associated with reduced mortality risk in both patients with and without acute respiratory distress syndrome. However, it is still poorly understood how the intensity of mechanical ventilation and its corresponding duration impact the risk of mortality. METHODS Critically ill patients who received mechanical ventilation were identified from the Medical Information Mart for Intensive Care (MIMIC)-IV database. A visualization method was developed by calculating the odds ratio of survival for all combinations of ventilation duration and intensity to assess the relationship between the intensity and duration of mechanical ventilation and the mortality risk. RESULTS A total of 6251 patients were included. The color-coded plot demonstrates the intuitive concept that episodes of higher dynamic mechanical power can only be tolerated for shorter durations. The three fitting contour lines represent 0%, 10%, and 20% increments in the mortality risk, respectively, and exhibit an exponential pattern: higher dynamic mechanical power is associated with an increased mortality risk with shorter exposure durations. CONCLUSIONS Cumulative exposure to higher intensities and/or longer duration of mechanical ventilation is associated with worse outcomes. Considering both the intensity and duration of mechanical ventilation may help evaluate patient outcomes and guide adjustments in mechanical ventilation to minimize harmful exposure.
Collapse
Affiliation(s)
- Han Chen
- The Third Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Dongjie 134, Gulou District, Fuzhou, Fujian, China
| | - Zhi-Zhong Chen
- General Product Center, Fujian Foxit Software Development, Joint Stock Co. Ltd., Building 5, Area G, Fuzhou Software Park, No. 89 Software Avenue, Gulou District, Fuzhou, Fujian, China
| | - Shu-Rong Gong
- The Third Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Dongjie 134, Gulou District, Fuzhou, Fujian, China
| | - Rong-Guo Yu
- The Third Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Dongjie 134, Gulou District, Fuzhou, Fujian, China.
| |
Collapse
|