1
|
Chappell MC, Schaich CL, Busse LW, Martin GS, Sevransky JE, Hinson JK, Khanna AK. Stronger association of intact angiotensinogen with mortality than lactate or renin in critical illness: post-hoc analysis from the VICTAS trial. Crit Care 2024; 28:333. [PMID: 39402593 PMCID: PMC11472595 DOI: 10.1186/s13054-024-05120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Sepsis and septic shock remain global healthcare problems associated with high mortality rates despite best therapy efforts. Circulating biomarkers may identify those patients at risk for poor outcomes, however, current biomarkers, most prominently lactate, are non-specific and have an inconsistent impact on prognosis and/or disease management. Activation of the renin-angiotensin- system (RAS) is an early event in sepsis patients and elevated levels of circulating renin are more predictive of worse outcomes than lactate. The precursor protein Angiotensinogen is another key component of the circulating RAS; it is the only known substrate for renin and the ultimate source of the vasopressor Angiotensin II (Ang II). We postulate that lower Angiotensinogen concentrations may reflect a dysfunctional RAS characterized by high renin concentrations but attenuated Ang II generation, which is disproportionate to the high renin response and may compromise adequate support of blood pressure and tissue perfusion in septic patients. The current study compared the association between serum Angiotensinogen with mortality to that of lactate and renin in the VICTAS cohort of sepsis patients at baseline (day 0) by receiver operating characteristic (ROC) and Kaplan-Meier curve analyses. Serum concentration of Angiotensinogen was more strongly associated with 30-day mortality than either the serum concentrations of renin or lactate in sepsis patients. Moreover, the clinical assessment of Angiotensinogen may have distinct advantages over the typical measures of renin. The assessment of intact Angiotensinogen may potentially facilitate more precise therapeutic approaches (including exogenous angiotensin II) to restore a dysfunctional RAS and improve patient outcomes. Additional prospective validation studies are clearly required for this biomarker in the future.
Collapse
Affiliation(s)
- Mark C Chappell
- Hypertension Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Christopher L Schaich
- Hypertension Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Laurence W Busse
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Greg S Martin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan E Sevransky
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Ashish K Khanna
- Hypertension Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Department of Anesthesiology, Section On Critical Care Medicine, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157-1009, USA.
- Outcomes Research Consortium, Houston, TX, USA.
| |
Collapse
|
2
|
Pi D, Zheng L, Gao C, Xiao C, Yu Z, Fu Y, Li J, Chen C, Liu C, Zou Z, Xu F. RENIN AND ANGIOTENSIN (1-7) OFFER PREDICTIVE VALUE IN PEDIATRIC SEPSIS: FINDINGS FROM PROSPECTIVE OBSERVATIONAL COHORTS. Shock 2024; 62:488-495. [PMID: 39012767 DOI: 10.1097/shk.0000000000002417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
ABSTRACT Background: Pediatric sepsis is a common and complex syndrome characterized by a dysregulated immune response to infection. Aberrations in the renin-angiotensin system (RAS) are factors in several infections of adults. However, the precise impact of RAS dysregulation in pediatric sepsis remains unclear. Methods: Serum samples were collected from a derivation cohort (58 patients with sepsis, 14 critically ill control subjects, and 37 healthy controls) and validation cohort (50 patients with sepsis, 37 critically ill control subjects, and 46 healthy controls). Serum RAS levels on day of pediatric intensive care unit admission were determined and compared with survival status and organ dysfunction. Results: In the derivation cohort, the serum renin concentration was significantly higher in patients with sepsis (3,678 ± 4,746) than that in healthy controls (635.6 ± 199.8) ( P < 0.0001). Meanwhile, the serum angiotensin (1-7) was significantly lower in patients with sepsis (89.7 ± 59.7) compared to that in healthy controls (131.4 ± 66.4) ( P < 0.01). These trends were confirmed in a validation cohort. Nonsurvivors had higher levels of renin (8,207 ± 7,903) compared to survivors (2,433 ± 3,193) ( P = 0.0001) and lower levels of angiotensin (1-7) (60.9 ± 51.1) compared to survivors (104.0 ± 85.1) ( P < 0.05). A combination of renin, angiotensin (1-7) and procalcitonin achieved a model for diagnosis with an area under the receiver operating curve of 0.87 (95% CI: 0.81-0.92). Conclusion: Circulating renin and angiotensin (1-7) have predictive value in pediatric sepsis.
Collapse
Affiliation(s)
- Dandan Pi
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Lijun Zheng
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Caixia Gao
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Changxue Xiao
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Zhicai Yu
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Yueqiang Fu
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Jing Li
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Chengjun Liu
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | | | - Feng Xu
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| |
Collapse
|
3
|
Fisler G, Murphy K, Mastroianni F, Schneider JB, Deutschman CS, Leisman DE, Taylor MD. Kidney Blood Flow and Renin-Angiotensin-Aldosterone System Measurements Associated With Kidney and Cardiovascular Dysfunction in Pediatric Shock. Crit Care Explor 2024; 6:e1134. [PMID: 39110074 PMCID: PMC11309640 DOI: 10.1097/cce.0000000000001134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
IMPORTANCE Pediatric acute kidney injury (AKI) is a prevalent and morbid complication of shock. Its pathogenesis and early identification remain elusive. OBJECTIVES We aim to determine whether renal blood flow (RBF) measurements by point-of-care ultrasound (POCUS) and renin-angiotensin-aldosterone system (RAAS) hormones in pediatric shock associate with vasoactive requirements and AKI. DESIGN, SETTING, AND PARTICIPANTS This is a single-center prospective, noninterventional observational cohort study in one tertiary PICU in North American from 2020 to 2022 that enrolled children younger than 18 years with shock without preexisting end-stage renal disease. MAIN OUTCOMES AND MEASURES RBF was measured by POCUS on hospital days 1 and 3 and plasma RAAS hormone levels were measured on day 1. The primary outcome was the presence of AKI by Kidney Disease Improving Global Outcomes criteria at first ultrasound with key secondary outcomes of creatinine, blood urea nitrogen (BUN), Vasoactive-Inotrope Score (VIS), and norepinephrine equivalent dosing (NED) 48 hours after first ultrasound. RESULTS Fifty patients were recruited (20 with AKI, mean age 10.5 yr, 48% female). POCUS RBF showed lower qualitative blood flow (power Doppler ultrasound [PDU] score) and higher regional vascular resistance (renal resistive index [RRI]) in children with AKI (p = 0.017 and p = 0.0007). Renin and aldosterone levels were higher in the AKI cohort (p = 0.003 and p = 0.007). Admission RRI and PDU associated with higher day 3 VIS and NED after adjusting for age, day 1 VIS, and RAAS hormones. Admission renin associated with higher day 3 creatinine and BUN after adjusting for age, day 1 VIS, and the ultrasound parameters. CONCLUSIONS AND RELEVANCE In pediatric shock, kidney blood flow was abnormal and renin and aldosterone were elevated in those with AKI. Kidney blood flow abnormalities are independently associated with future cardiovascular dysfunction; renin elevations are independently associated with future kidney dysfunction. Kidney blood flow by POCUS may identify children who will have persistent as opposed to resolving AKI. RAAS perturbations may drive AKI in pediatric shock.
Collapse
Affiliation(s)
- Grace Fisler
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Northwell, New Hyde Park, NY
- Feinstein Institutes for Medical Research, Northwell, New Hyde Park, NY
| | - Kristina Murphy
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Northwell, New Hyde Park, NY
| | - Fiore Mastroianni
- Division of Pulmonary and Critical Care Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY
| | - James B. Schneider
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Northwell, New Hyde Park, NY
| | - Clifford S. Deutschman
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Northwell, New Hyde Park, NY
- Feinstein Institutes for Medical Research, Northwell, New Hyde Park, NY
| | - Daniel E. Leisman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Matthew D. Taylor
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Northwell, New Hyde Park, NY
- Feinstein Institutes for Medical Research, Northwell, New Hyde Park, NY
| |
Collapse
|
4
|
See EJ, Chaba A, Spano S, Maeda A, Clapham C, Burrell LM, Liu J, Khasin M, Liskaser G, Eastwood G, Bellomo R. Renin Levels and Angiotensin II Responsiveness in Vasopressor-Dependent Hypotension. Crit Care Med 2024; 52:1218-1227. [PMID: 38511994 DOI: 10.1097/ccm.0000000000006273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
OBJECTIVES The relationship between renin levels, exposure to renin-angiotensin system (RAS) inhibitors, angiotensin II (ANGII) responsiveness, and outcome in patients with vasopressor-dependent vasodilatory hypotension is unknown. DESIGN We conducted a single-center prospective observational study to explore whether recent RAS inhibitor exposure affected baseline renin levels, whether baseline renin levels predicted ANGII responsiveness, and whether renin levels at 24 hours were associated with clinical outcomes. SETTING An academic ICU in Melbourne, VIC, Australia. PATIENTS Forty critically ill adults who received ANGII as the primary agent for vasopressor-dependent vasodilatory hypotension who were included in the Acute Renal effects of Angiotensin II Management in Shock study. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS After multivariable adjustment, recent exposure to a RAS inhibitor was independently associated with a relative increase in baseline renin levels by 198% (95% CI, 36-552%). The peak amount of ANGII required to achieve target mean arterial pressure was independently associated with baseline renin level (increase by 46% per ten-fold increase; 95% CI, 8-98%). Higher renin levels at 24 hours after ANGII initiation were independently associated with fewer days alive and free of continuous renal replacement therapy (CRRT) (-7 d per ten-fold increase; 95% CI, -12 to -1). CONCLUSIONS In patients with vasopressor-dependent vasodilatory hypotension, recent RAS inhibitor exposure was associated with higher baseline renin levels. Such higher renin levels were then associated with decreased ANGII responsiveness. Higher renin levels at 24 hours despite ANGII infusion were associated with fewer days alive and CRRT-free. These preliminary findings emphasize the importance of the RAS and the role of renin as a biomarker in patients with vasopressor-dependent vasodilatory hypotension.
Collapse
Affiliation(s)
- Emily J See
- Department of Intensive Care, Austin Hospital, Heidelberg, VIC, Australia
- Department of Critical Care, University of Melbourne, Parkville, VIC, Australia
- Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Intensive Care, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Nephrology, Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
- Institute of Breathing and Sleep, Austin Health, Melbourne, VIC, Australia
- Data Analytics Research and Evaluation Centre, The University of Melbourne and Austin Hospital, Melbourne, VIC, Australia
| | - Anis Chaba
- Department of Intensive Care, Austin Hospital, Heidelberg, VIC, Australia
| | - Sofia Spano
- Department of Intensive Care, Austin Hospital, Heidelberg, VIC, Australia
| | - Akinori Maeda
- Department of Intensive Care, Austin Hospital, Heidelberg, VIC, Australia
| | - Caroline Clapham
- Department of Intensive Care, Austin Hospital, Heidelberg, VIC, Australia
| | - Louise M Burrell
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
- Institute of Breathing and Sleep, Austin Health, Melbourne, VIC, Australia
| | - Jasmine Liu
- Department of Intensive Care, Austin Hospital, Heidelberg, VIC, Australia
| | - Monique Khasin
- Department of Intensive Care, Austin Hospital, Heidelberg, VIC, Australia
| | - Grace Liskaser
- Department of Intensive Care, Austin Hospital, Heidelberg, VIC, Australia
| | - Glenn Eastwood
- Department of Intensive Care, Austin Hospital, Heidelberg, VIC, Australia
| | - Rinaldo Bellomo
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
- Data Analytics Research and Evaluation Centre, The University of Melbourne and Austin Hospital, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Russell JA. Vasopressor Responsiveness 101: Prediction of Responsiveness to Angiotensin II Infusion. Crit Care Med 2024; 52:1310-1313. [PMID: 39008548 DOI: 10.1097/ccm.0000000000006320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Affiliation(s)
- James A Russell
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
- Division of Critical Care Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Picod A, Garcia B, Van Lier D, Pickkers P, Herpain A, Mebazaa A, Azibani F. Impaired angiotensin II signaling in septic shock. Ann Intensive Care 2024; 14:89. [PMID: 38877367 PMCID: PMC11178728 DOI: 10.1186/s13613-024-01325-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/29/2024] [Indexed: 06/16/2024] Open
Abstract
Recent years have seen a resurgence of interest for the renin-angiotensin-aldosterone system in critically ill patients. Emerging data suggest that this vital homeostatic system, which plays a crucial role in maintaining systemic and renal hemodynamics during stressful conditions, is altered in septic shock, ultimately leading to impaired angiotensin II-angiotensin II type 1 receptor signaling. Indeed, available evidence from both experimental models and human studies indicates that alterations in the renin-angiotensin-aldosterone system during septic shock can occur at three distinct levels: 1. Impaired generation of angiotensin II, possibly attributable to defects in angiotensin-converting enzyme activity; 2. Enhanced degradation of angiotensin II by peptidases; and/or 3. Unavailability of angiotensin II type 1 receptor due to internalization or reduced synthesis. These alterations can occur either independently or in combination, ultimately leading to an uncoupling between the renin-angiotensin-aldosterone system input and downstream angiotensin II type 1 receptor signaling. It remains unclear whether exogenous angiotensin II infusion can adequately address all these mechanisms, and additional interventions may be required. These observations open a new avenue of research and offer the potential for novel therapeutic strategies to improve patient prognosis. In the near future, a deeper understanding of renin-angiotensin-aldosterone system alterations in septic shock should help to decipher patients' phenotypes and to implement targeted interventions.
Collapse
Affiliation(s)
- Adrien Picod
- INSERM, UMR-S 942 MASCOT-Université Paris-Cité, Paris, France.
| | - Bruno Garcia
- Department of Intensive Care Medicine, Centre Hospitalier Universitaire de Lille, Lille, France
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
| | - Dirk Van Lier
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Antoine Herpain
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
- Department of Intensive Care Medicine, St. Pierre University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexandre Mebazaa
- INSERM, UMR-S 942 MASCOT-Université Paris-Cité, Paris, France
- Department of Anesthesiology, Burns and Critical Care, Hopitaux Saint-Louis-Lariboisière, AP-HP, Paris, France
| | - Feriel Azibani
- INSERM, UMR-S 942 MASCOT-Université Paris-Cité, Paris, France
| |
Collapse
|
7
|
Kotani Y, Chappell M, Landoni G, Zarbock A, Bellomo R, Khanna AK. Renin in critically ill patients. Ann Intensive Care 2024; 14:79. [PMID: 38775999 PMCID: PMC11111649 DOI: 10.1186/s13613-024-01304-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
The renin-angiotensin system (RAS) constitutes one of the principal mechanisms to maintain hemodynamic and fluid homeostasis. However, most research until now on RAS primarily focuses on its relationship with hypertension and its role in critically ill hypotensive populations is not well understood. With the approval of angiotensin II (Ang II) in the United States and Europe, following a phase 3 randomized controlled trial showing efficacy in catecholamine-resistant vasodilatory shock, there is growing interest in RAS in critically ill patients. Among the fundamental components of RAS, renin acts as the initial stimulus for the entire system. In the context of hypotension, its release increases in response to low blood pressure sensed by renal baroreceptors and attenuated negative Ang II feedback loop. Thus, elevated renin could reflect disease severity and predict poor outcomes. Studies investigating this hypothesis have validated the prognostic accuracy of renin in various critically ill populations, with several reports indicating its superiority to lactate for mortality prediction. Accordingly, renin reduction has been used to assess the effectiveness of Ang II administration. Furthermore, renin holds potential to identify patients who might benefit from Ang II treatment, potentially paving the way for personalized vasopressor management. Despite these promising data, most available evidence is derived from retrospective analysis and necessitates prospective confirmation. The absence of a rapid, point-of-care and reliable renin assay presents another hurdle to its integration into routine clinical practice. This narrative review aims to describe the current understanding and future directions of renin as a biomarker during resuscitation of critically ill patients.
Collapse
Affiliation(s)
- Yuki Kotani
- Department of Intensive Care Medicine, Kameda Medical Center, Kamogawa, Japan
| | - Mark Chappell
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Giovanni Landoni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Muenster, Muenster, Germany
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Hospital, Melbourne, Australia
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
- Department of Critical Care, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| | - Ashish K Khanna
- Section On Critical Care Medicine, Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
- Perioperative Outcomes and Informatics Collaborative, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
- Outcomes Research Consortium, Cleveland, OH, 44195, USA.
| |
Collapse
|
8
|
Leisman DE, Handisides DR, Busse LW, Chappell MC, Chawla LS, Filbin MR, Goldberg MB, Ham KR, Khanna AK, Ostermann M, McCurdy MT, Adams CD, Hodges TN, Bellomo R. ACE inhibitors and angiotensin receptor blockers differentially alter the response to angiotensin II treatment in vasodilatory shock. Crit Care 2024; 28:130. [PMID: 38637829 PMCID: PMC11027368 DOI: 10.1186/s13054-024-04910-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Angiotensin-converting enzyme inhibitor (ACEi) and angiotensin receptor blockers (ARB) medications are widely prescribed. We sought to assess how pre-admission use of these medications might impact the response to angiotensin-II treatment during vasodilatory shock. METHODS In a post-hoc subgroup analysis of the randomized, placebo-controlled, Angiotensin Therapy for High Output Shock (ATHOS-3) trial, we compared patients with chronic angiotensin-converting enzyme inhibitor (ACEi) use, and patients with angiotensin receptor blocker (ARB) use, to patients without exposure to either ACEi or ARB. The primary outcome was mean arterial pressure after 1-h of treatment. Additional clinical outcomes included mean arterial pressure and norepinephrine equivalent dose requirements over time, and study-drug dose over time. Biological outcomes included baseline RAS biomarkers (renin, angiotensin-I, angiotensin-II, and angiotensin-I/angiotensin-II ratio), and the change in renin from 0 to 3 h. RESULTS We included n = 321 patients, of whom, 270 were ACEi and ARB-unexposed, 29 were ACEi-exposed and 22 ARB-exposed. In ACEi/ARB-unexposed patients, angiotensin-treated patients, compared to placebo, had higher hour-1 mean arterial pressure (9.1 mmHg [95% CI 7.6-10.1], p < 0.0001), lower norepinephrine equivalent dose over 48-h (p = 0.0037), and lower study-drug dose over 48-h (p < 0.0001). ACEi-exposed patients treated with angiotensin-II showed similarly higher hour-1 mean arterial pressure compared to ACEi/ARB-unexposed (difference in treatment-effect: - 2.2 mmHg [95% CI - 7.0-2.6], pinteraction = 0.38), but a greater reduction in norepinephrine equivalent dose (pinteraction = 0.0031) and study-drug dose (pinteraction < 0.0001) over 48-h. In contrast, ARB-exposed patients showed an attenuated effect of angiotensin-II on hour-1 mean arterial pressure versus ACEi/ARB-unexposed (difference in treatment-effect: - 6.0 mmHg [95% CI - 11.5 to - 0.6], pinteraction = 0.0299), norepinephrine equivalent dose (pinteraction < 0.0001), and study-drug dose (pinteraction = 0.0008). Baseline renin levels and angiotensin-I/angiotensin-II ratios were highest in ACEi-exposed patients. Finally, angiotensin-II treatment reduced hour-3 renin in ACEi/ARB-unexposed and ACEi-exposed patients but not in ARB-exposed patients. CONCLUSIONS In vasodilatory shock patients, the cardiovascular and biological RAS response to angiotensin-II differed based upon prior exposure to ACEi and ARB medications. ACEi-exposure was associated with increased angiotensin II responsiveness, whereas ARB-exposure was associated with decreased responsiveness. These findings have clinical implications for patient selection and dosage of angiotensin II in vasodilatory shock. Trial Registration ClinicalTrials.Gov Identifier: NCT02338843 (Registered January 14th 2015).
Collapse
Affiliation(s)
- Daniel E Leisman
- Department of Medicine, Massachusetts General Hospital, 55 Fruit St., GRB 7-730, Boston, MA, 02114, USA.
| | - Damian R Handisides
- Innoviva Specialty Therapeutics, Inc - an Affiliate of La Jolla Pharmaceutical Company, Waltham, MA, USA
| | - Laurence W Busse
- Department of Medicine, Emory University, Atlanta, GA, USA
- Emory Critical Care Center, Emory Healthcare, Atlanta, GA, USA
| | - Mark C Chappell
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Lakhmir S Chawla
- Department of Medicine, Veterans Affairs Medical Center, San Diego, CA, USA
| | - Michael R Filbin
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Emergency Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Marcia B Goldberg
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Division of Infectious Diseases, Department of Medicine, Center for Bacterial Pathogenesis, Massachusetts General Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Kealy R Ham
- Department of Critical Care, Mayo Clinic, Phoenix, AZ, USA
| | - Ashish K Khanna
- Section on Critical Care Medicine, Department of Anesthesiology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
- Perioperative Outcomes and Informatics Collaborative (POIC), Winston-Salem, NC, USA
- Outcomes Research Consortium, Cleveland, OH, USA
| | - Marlies Ostermann
- Department of Critical Care, King's College London, Guy's & St Thomas' Hospital, London, UK
| | - Michael T McCurdy
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher D Adams
- Innoviva Specialty Therapeutics, Inc - an Affiliate of La Jolla Pharmaceutical Company, Waltham, MA, USA
| | - Tony N Hodges
- Innoviva Specialty Therapeutics, Inc - an Affiliate of La Jolla Pharmaceutical Company, Waltham, MA, USA
| | - Rinaldo Bellomo
- Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Austin Hospital, Melbourne, Australia
- Data Analytics Research and Evaluation (DARE) Centre, Austin Hospital, Melbourne, Australia
- Department of Intensive Care Medicine, Austin Hospital, Melbourne, Australia
- The Australian and New Zealand Intensive Care Society (ANZICS) Centre for Outcome and Resource Evaluation (CORE), Melbourne, Australia
- Intensive Care Unit, Royal Melbourne Hospital, Melbourne, VIC, Australia
| |
Collapse
|
9
|
See EJ, Russell JA, Bellomo R, Lawler PR. Renin as a Prognostic and Predictive Biomarker in Sepsis: More Questions Than Answers? Crit Care Med 2024; 52:509-512. [PMID: 38381014 DOI: 10.1097/ccm.0000000000006133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Affiliation(s)
- Emily J See
- Department of Intensive Care, Royal Melbourne Hospital, Parkville, NSW, Australia
- Department of Critical Care, University of Melbourne, Parkville, NSW, Australia
- Department of Intensive Care, Austin Hospital, Heidelberg, VIC, Australia
- Department of Critical Care, Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
- Department of Medicine, Centre for Heart Lung Innovation, University of British Columbia and St Paul's Hospital, Vancouver, BC, Canada
- Department of Medicine, McGill University Health Centre and McGill University, Montreal, QC, Canada
- Division of Cardiology and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - James A Russell
- Department of Medicine, Centre for Heart Lung Innovation, University of British Columbia and St Paul's Hospital, Vancouver, BC, Canada
| | - Rinaldo Bellomo
- Department of Intensive Care, Royal Melbourne Hospital, Parkville, NSW, Australia
- Department of Critical Care, University of Melbourne, Parkville, NSW, Australia
- Department of Intensive Care, Austin Hospital, Heidelberg, VIC, Australia
- Department of Critical Care, Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
- Department of Medicine, Centre for Heart Lung Innovation, University of British Columbia and St Paul's Hospital, Vancouver, BC, Canada
- Department of Medicine, McGill University Health Centre and McGill University, Montreal, QC, Canada
- Division of Cardiology and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Patrick R Lawler
- Department of Medicine, McGill University Health Centre and McGill University, Montreal, QC, Canada
- Division of Cardiology and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|