1
|
Zheng X, Sun R, Wei T. Immune microenvironment in papillary thyroid carcinoma: roles of immune cells and checkpoints in disease progression and therapeutic implications. Front Immunol 2024; 15:1438235. [PMID: 39290709 PMCID: PMC11405226 DOI: 10.3389/fimmu.2024.1438235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Papillary thyroid cancer (PTC) is the most common type of primary thyroid cancer. Despite the low malignancy and relatively good prognosis, some PTC cases are highly aggressive and even develop refractory cancer in the thyroid. Growing evidence suggested that microenvironment in tumor affected PTC biological behavior due to different immune states. Different interconnected components in the immune system influence and participate in tumor invasion, and are closely related to PTC metastasis. Immune cells and molecules are widely distributed in PTC tissues. Their quantity and proportion vary with the host's immune status, which suggests that immunotherapy may be a very promising therapeutic modality for PTC. In this paper, we review the role of immune cells and immune checkpoints in PTC immune microenvironment based on the characteristics of the PTC tumor microenvironment.
Collapse
Affiliation(s)
- Xun Zheng
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ruonan Sun
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Tao Wei
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Al-Ibraheem A, Abdlkadir AS, Juweid ME, Al-Rabi K, Ma’koseh M, Abdel-Razeq H, Mansour A. FDG-PET/CT in the Monitoring of Lymphoma Immunotherapy Response: Current Status and Future Prospects. Cancers (Basel) 2023; 15:1063. [PMID: 36831405 PMCID: PMC9954669 DOI: 10.3390/cancers15041063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Cancer immunotherapy has been extensively investigated in lymphoma over the last three decades. This new treatment modality is now established as a way to manage and maintain several stages and subtypes of lymphoma. The establishment of this novel therapy has necessitated the development of new imaging response criteria to evaluate and follow up with cancer patients. Several FDG PET/CT-based response criteria have emerged to address and encompass the various most commonly observed response patterns. Many of the proposed response criteria are currently being used to evaluate and predict responses. The purpose of this review is to address the efficacy and side effects of cancer immunotherapy and to correlate this with the proposed criteria and relevant patterns of FDG PET/CT in lymphoma immunotherapy as applicable. The latest updates and future prospects in lymphoma immunotherapy, as well as PET/CT potentials, will be discussed.
Collapse
Affiliation(s)
- Akram Al-Ibraheem
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center, Al-Jubeiha, Amman 11941, Jordan
- Department of Radiology and Nuclear Medicine, Division of Nuclear Medicine, University of Jordan, Amman 11942, Jordan
| | - Ahmed Saad Abdlkadir
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center, Al-Jubeiha, Amman 11941, Jordan
| | - Malik E. Juweid
- Department of Radiology and Nuclear Medicine, Division of Nuclear Medicine, University of Jordan, Amman 11942, Jordan
| | - Kamal Al-Rabi
- Department of Medical Oncology, King Hussein Cancer Center, Amman 11941, Jordan
| | - Mohammad Ma’koseh
- Department of Medical Oncology, King Hussein Cancer Center, Amman 11941, Jordan
| | - Hikmat Abdel-Razeq
- Department of Internal Medicine, King Hussein Cancer Center, Amman 11941, Jordan
- Department of Internal Medicine, School of Medicine, University of Jordan, Amman 11942, Jordan
| | - Asem Mansour
- Department of Diagnostic Radiology, King Hussein Cancer Center, Amman 11941, Jordan
| |
Collapse
|
3
|
Škubník J, Pavlíčková VS, Ruml T, Rimpelová S. Vincristine in Combination Therapy of Cancer: Emerging Trends in Clinics. BIOLOGY 2021; 10:849. [PMID: 34571726 PMCID: PMC8468923 DOI: 10.3390/biology10090849] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Treatment of blood malignancies and other cancer diseases has been mostly unfeasible, so far. Therefore, novel treatment regimens should be developed and the currently used ones should be further elaborated. A stable component in various cancer treatment regimens consists of vincristine, an antimitotic compound of natural origin. Despite its strong anticancer activity, mostly, it cannot be administered as monotherapy due to its unspecific action and severe side effects. However, vincristine is suitable for combination therapy. Multidrug treatment regimens including vincristine are standardly applied in the therapy of non-Hodgkin lymphoma and other malignancies, in which it is combined with drugs of different mechanisms of action, mainly with DNA-interacting compounds (for example cyclophosphamide), or drugs interfering with DNA synthesis (for example methotrexate). Besides, co-administration of vincristine with monoclonal antibodies has also emerged, the typical example of which is the anti-CD20 antibody rituximab. Although in some combination anticancer therapies, vincristine has been replaced with other drugs exhibiting lesser side effects, though, in most cases, it is still irreplaceable. This is strongly evidenced by the number of active clinical trials evaluating vincristine in combination cancer therapy. Therefore, in this article, we have reviewed the most common cancer treatment regimens employing vincristine and bring an overview of current trends in the clinical development of this compound.
Collapse
Affiliation(s)
| | | | | | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (J.Š.); (V.S.P.); (T.R.)
| |
Collapse
|
4
|
Lopci E, Meignan M. Current Evidence on PET Response Assessment to Immunotherapy in Lymphomas. PET Clin 2020; 15:23-34. [DOI: 10.1016/j.cpet.2019.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Venken K, Favreau M, Gaublomme D, Menu E, Vanderkerken K, Elewaut D. Checkpoint inhibition in the treatment of multiple myeloma: A way to boost innate-like T cell anti-tumor function? Mol Immunol 2018; 101:521-526. [PMID: 30153633 DOI: 10.1016/j.molimm.2018.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/22/2018] [Accepted: 08/18/2018] [Indexed: 01/18/2023]
Abstract
Multiple myeloma (MM) is a progressive monoclonal B cell malignancy, for which survival and progression largely relies on the crosstalk of tumor cells with the bone marrow (BM) microenvironment, inducing immune escape, angiogenesis, bone destruction and drug resistance. Despite great therapeutic advances, most of the MM patients still relapse and remain incurable. Over the past years, immunotherapy has emerged as a new field in cancer therapy. Here, the immune cells of the patients themselves are activated to target the tumor cells. In MM, several effector cells of the immune system are present in the BM microenvironment; unfortunately, they are mostly all functionally impaired. In this review, we focus on the role of innate-like T cells in MM, particularly CD1d- and MR1- restricted T cells such as respectively invariant natural killer T (iNKT) cells and mucosal associated invariant T (MAIT) cells. These cells have the capacity upon activation to rapidly release copious amounts of cytokines affecting a wide range of innate and adaptive immune responses, and could therefore play a key protective role in anti-tumor immunity. We describe recent observations with regard to functional exhaustion of iNKT and MAIT cells in MM pathology and discuss the potential application of checkpoint inhibition as an attractive target for prolonged activation of these immunomodulatory T cells in the treatment of MM.
Collapse
Affiliation(s)
- Koen Venken
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium; Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center, Ghent University, Ghent, Belgium.
| | - Mérédis Favreau
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium; Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center, Ghent University, Ghent, Belgium; Department of Haematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Djoere Gaublomme
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium; Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center, Ghent University, Ghent, Belgium
| | - Eline Menu
- Department of Haematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Department of Haematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Dirk Elewaut
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium; Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Gravelle P, Burroni B, Péricart S, Rossi C, Bezombes C, Tosolini M, Damotte D, Brousset P, Fournié JJ, Laurent C. Mechanisms of PD-1/PD-L1 expression and prognostic relevance in non-Hodgkin lymphoma: a summary of immunohistochemical studies. Oncotarget 2018; 8:44960-44975. [PMID: 28402953 PMCID: PMC5546533 DOI: 10.18632/oncotarget.16680] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/16/2017] [Indexed: 12/15/2022] Open
Abstract
Immune checkpoint blockade therapeutics, notably antibodies targeting the programmed death 1 (PD-1) receptor and its PD-L1 and PD-L2 ligands, are currently revolutionizing the treatment of cancer. For a sizeable fraction of patients with melanoma, lung, kidney and several other solid cancers, monoclonal antibodies that neutralize the interactions of the PD-1/PD-L1 complex allow the reconstitution of long-lasting antitumor immunity. In hematological malignancies this novel therapeutic strategy is far less documented, although promising clinical responses have been seen in refractory and relapsed Hodgkin lymphoma patients. This review describes our current knowledge of PD-1 and PD-L1 expression, as reported by immunohistochemical staining in both non-Hodgkin lymphoma cells and their surrounding immune cells. Here, we discuss the multiple intrinsic and extrinsic mechanisms by which both T and B cell lymphomas up-regulate the PD-1/PD-L1 axis, and review current knowledge about the prognostic significance of its immunohistochemical detection. This body of literature establishes the cell surface expression of PD-1/PD-L1 as a critical determinant for the identification of non-Hodgkin lymphoma patients eligible for immune checkpoint blockade therapies.
Collapse
Affiliation(s)
- Pauline Gravelle
- Département de Pathologie, CHU Toulouse, Institut Universitaire du Cancer de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France.,Institut Universitaire du Cancer de Toulouse, Toulouse, France.,Centre de Recherches en Cancérologie de Toulouse, UMR1037 INSERM-Université Toulouse III, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,Institut Carnot CALYM, Toulouse, France.,Paul-Sabatier, ERL 5294 CNRS, Université de Toulouse, Toulouse, France
| | - Barbara Burroni
- Service de Pathologie Hôpitaux Universitaires Paris Centre, Hopital Cochin, Paris, France
| | - Sarah Péricart
- Département de Pathologie, CHU Toulouse, Institut Universitaire du Cancer de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France.,Institut Universitaire du Cancer de Toulouse, Toulouse, France.,Centre de Recherches en Cancérologie de Toulouse, UMR1037 INSERM-Université Toulouse III, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,Institut Carnot CALYM, Toulouse, France.,Paul-Sabatier, ERL 5294 CNRS, Université de Toulouse, Toulouse, France
| | - Cédric Rossi
- Institut Universitaire du Cancer de Toulouse, Toulouse, France.,Centre de Recherches en Cancérologie de Toulouse, UMR1037 INSERM-Université Toulouse III, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,Institut Carnot CALYM, Toulouse, France.,CHU le Bocage, Hématologie Clinique, Dijon, France.,Paul-Sabatier, ERL 5294 CNRS, Université de Toulouse, Toulouse, France
| | - Christine Bezombes
- Institut Universitaire du Cancer de Toulouse, Toulouse, France.,Centre de Recherches en Cancérologie de Toulouse, UMR1037 INSERM-Université Toulouse III, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,Institut Carnot CALYM, Toulouse, France.,Paul-Sabatier, ERL 5294 CNRS, Université de Toulouse, Toulouse, France
| | - Marie Tosolini
- Institut Universitaire du Cancer de Toulouse, Toulouse, France.,Centre de Recherches en Cancérologie de Toulouse, UMR1037 INSERM-Université Toulouse III, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,Institut Carnot CALYM, Toulouse, France.,Paul-Sabatier, ERL 5294 CNRS, Université de Toulouse, Toulouse, France
| | - Diane Damotte
- Service de Pathologie Hôpitaux Universitaires Paris Centre, Hopital Cochin, Paris, France.,Centre de Recherche des Cordeliers, INSERM U1138, Paris, France
| | - Pierre Brousset
- Département de Pathologie, CHU Toulouse, Institut Universitaire du Cancer de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France.,Institut Universitaire du Cancer de Toulouse, Toulouse, France.,Centre de Recherches en Cancérologie de Toulouse, UMR1037 INSERM-Université Toulouse III, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,Institut Carnot CALYM, Toulouse, France.,Paul-Sabatier, ERL 5294 CNRS, Université de Toulouse, Toulouse, France
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse, UMR1037 INSERM-Université Toulouse III, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,Institut Carnot CALYM, Toulouse, France.,Paul-Sabatier, ERL 5294 CNRS, Université de Toulouse, Toulouse, France
| | - Camille Laurent
- Département de Pathologie, CHU Toulouse, Institut Universitaire du Cancer de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France.,Institut Universitaire du Cancer de Toulouse, Toulouse, France.,Centre de Recherches en Cancérologie de Toulouse, UMR1037 INSERM-Université Toulouse III, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,Institut Carnot CALYM, Toulouse, France.,Paul-Sabatier, ERL 5294 CNRS, Université de Toulouse, Toulouse, France
| |
Collapse
|
7
|
Yearley JH, Gibson C, Yu N, Moon C, Murphy E, Juco J, Lunceford J, Cheng J, Chow LQM, Seiwert TY, Handa M, Tomassini JE, McClanahan T. PD-L2 Expression in Human Tumors: Relevance to Anti-PD-1 Therapy in Cancer. Clin Cancer Res 2018; 23:3158-3167. [PMID: 28619999 DOI: 10.1158/1078-0432.ccr-16-1761] [Citation(s) in RCA: 408] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/30/2016] [Accepted: 03/16/2017] [Indexed: 01/11/2023]
Abstract
Purpose: Tumor-associated PD-L1 expression is predictive of clinical response to PD-1-directed immunotherapy. However, PD-L1-negative patients may also respond to PD-1 checkpoint blockade, suggesting that other PD-1 ligands may be relevant to the clinical activity of these therapies. The prevalence of PD-L2, the other known ligand of PD-1, and its relationship to response to anti-PD-1 therapy were evaluated.Experimental Design: PD-L2 expression was assessed in archival tumor tissue from seven indications using a novel immunohistochemical assay. In addition, relationships between clinical response and PD-L2 status were evaluated in tumor tissues from patients with head and neck squamous cell carcinoma (HNSCC) with recurrent or metastatic disease, treated with pembrolizumab.Results: PD-L2 expression was observed in all tumor types and present in stromal, tumor, and endothelial cells. The prevalence and distribution of PD-L2 correlated significantly with PD-L1 (P = 0.0012-<0.0001); however, PD-L2 was detected in the absence of PD-L1 in some tumor types. Both PD-L1 and PD-L2 positivity significantly predicted clinical response to pembrolizumab on combined tumor, stromal and immune cells, with PD-L2 predictive independent of PD-L1. Response was greater in patients positive for both PD-L1 and PD-L2 (27.5%) than those positive only for PD-L1 (11.4%). PD-L2 status was also a significant predictor of progression-free survival (PFS) with pembrolizumab independent of PD-L1 status. Longer median times for PFS and overall survival were observed for PD-L2-positive than PD-L2-negative patients.Conclusions: Clinical response to pembrolizumab in patients with HNSCC may be related partly to blockade of PD-1/PD-L2 interactions. Therapy targeting both PD-1 ligands may provide clinical benefit in these patients. Clin Cancer Res; 23(12); 3158-67. ©2017 AACR.
Collapse
Affiliation(s)
| | | | - Ni Yu
- Merck & Co., Inc., Kenilworth, New Jersey
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ghobrial IM, Detappe A, Anderson KC, Steensma DP. The bone-marrow niche in MDS and MGUS: implications for AML and MM. Nat Rev Clin Oncol 2018; 15:219-233. [PMID: 29311715 DOI: 10.1038/nrclinonc.2017.197] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Several haematological malignancies, including multiple myeloma (MM) and acute myeloid leukaemia (AML), have well-defined precursor states that precede the development of overt cancer. MM is almost always preceded by monoclonal gammopathy of undetermined significance (MGUS), and at least a quarter of all patients with myelodysplastic syndromes (MDS) have disease that evolves into AML. In turn, MDS are frequently anteceded by clonal haematopoiesis of indeterminate potential (CHIP). The acquisition of additional genetic and epigenetic alterations over time clearly influences the increasingly unstable and aggressive behaviour of neoplastic haematopoietic clones; however, perturbations in the bone-marrow microenvironment are increasingly recognized to have key roles in initiating and supporting oncogenesis. In this Review, we focus on the concept that the haematopoietic neoplasia-microenvironment relationship is an intimate rapport between two partners, provide an overview of the evidence supporting a role for the bone-marrow niche in promoting neoplasia, and discuss the potential for niche-specific therapeutic targets.
Collapse
Affiliation(s)
- Irene M Ghobrial
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Alexandre Detappe
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Kenneth C Anderson
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - David P Steensma
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
9
|
Chowdhury S, Veyhl J, Jessa F, Polyakova O, Alenzi A, MacMillan C, Ralhan R, Walfish PG. Programmed death-ligand 1 overexpression is a prognostic marker for aggressive papillary thyroid cancer and its variants. Oncotarget 2017; 7:32318-28. [PMID: 27086918 PMCID: PMC5078015 DOI: 10.18632/oncotarget.8698] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 03/26/2016] [Indexed: 01/05/2023] Open
Abstract
Programmed death-ligand 1(PD-L1) expression on tumor cells is emerging as a potential predictive biomarker in anti-PD-L1 directed cancer immunotherapy. We analyzed PD-L1 expression in papillary thyroid carcinoma (PTC) and its variants and determined its prognostic potential to predict clinical outcome in these patients. This study was conducted at an academic oncology hospital which is a prime referral centre for thyroid diseases. Immunohistochemical subcellular localization (IHC) analyses of PD-L1 protein was retrospectively performed on 251 archived formalin fixed and paraffin embedded (FFPE) surgical tissues (66 benign thyroid nodules and 185 PTCs) using a rabbit monoclonal anti-PD-L1 antibody (E1L3N, Cell Signaling Technology) and detected using VECTASTAIN rapid protocol with diaminobenzidine (DAB) as the chromogen. The clinical-pathological factors and disease outcome over 190 months were assessed; immunohistochemical subcellular localization of PD-L1 was correlated with disease free survival (DFS) using Kaplan Meier survival and Cox multivariate regression analysis. Increased PD-L1 immunostaining was predominantly localized in cytoplasm and occasionally in plasma membrane of tumor cells. Among all combined stages of PTC, patients with increased PD-L1 membrane or cytoplasmic positivity had significantly shorter median DFS (36 months and 49 months respectively) as compared to those with PD-L1 negative tumors (DFS, both 186 months with p < 0.001 and p < 0.01 respectively). Comparison of PD-L1+ and PD-L1− patients with matched staging showed increased cytoplasmic positivity in all four stages of PTC that correlated with a greater risk of recurrence and a poor prognosis, but increased membrane positivity significantly correlated with a greater risk of metastasis or death only in Stage IV patients. In conclusion, PD-L1 positive expression in PTC correlates with a greater risk of recurrence and shortened disease free survival supporting its potential application as a prognostic marker for PTC.
Collapse
Affiliation(s)
- Subrata Chowdhury
- Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Joe Veyhl
- Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Fatima Jessa
- Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Olena Polyakova
- Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Medicine, Endocrine Division, Mount Sinai Hospital and University of Toronto Medical School, Toronto, Ontario, Canada
| | - Ahmed Alenzi
- Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Medicine, Endocrine Division, Mount Sinai Hospital and University of Toronto Medical School, Toronto, Ontario, Canada
| | - Christina MacMillan
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ranju Ralhan
- Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Mount Sinai Hospital, Toronto, Ontario, Canada.,Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Department of Otolaryngology-Head and Neck Surgery Program, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Otolaryngology-Head and Neck Surgery, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Paul G Walfish
- Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Mount Sinai Hospital, Toronto, Ontario, Canada.,Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Department of Otolaryngology-Head and Neck Surgery Program, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Medicine, Endocrine Division, Mount Sinai Hospital and University of Toronto Medical School, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Sujobert P, Salles G, Bachy E. Molecular Classification of Diffuse Large B-cell Lymphoma: What Is Clinically Relevant? Hematol Oncol Clin North Am 2017; 30:1163-1177. [PMID: 27888873 DOI: 10.1016/j.hoc.2016.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Major progress in the understanding of diffuse large B-cell lymphoma (DLBCL) biology has been made in the last decade. Many specific compounds have now entered early phase clinical trials. However, further efforts are needed to find an accurate, fast, reproducible, and affordable technique to translate DLBCL subtype determination by gene expression profiles into clinical application. This article discusses the advantages and drawbacks of the currently available techniques of DLBCL subtype determination as well as important prognostic implications related to the cell of origin. Furthermore, the article provides a schematic description of how molecularly defined DLBCL subtypes could guide tailored therapy.
Collapse
Affiliation(s)
- Pierre Sujobert
- Laboratory of Hematology, Hospices Civils de Lyon, Hôpital Lyon Sud, 165 Chemin du Grand Revoyet, Pierre-Bénite 69310, France; Université Claude Bernard Lyon1, Université de Lyon, Lyon, France; Centre de Recherche en Cancérologie de Lyon, INSERM 1052 CNRS 5286, Lyon, France
| | - Gilles Salles
- Université Claude Bernard Lyon1, Université de Lyon, Lyon, France; Centre de Recherche en Cancérologie de Lyon, INSERM 1052 CNRS 5286, Lyon, France; Department of Hematology, Hospices Civils de Lyon, Hôpital Lyon Sud, 165 Chemin du Grand Revoyet, Pierre-Bénite 69310, France.
| | - Emmanuel Bachy
- Université Claude Bernard Lyon1, Université de Lyon, Lyon, France; Centre de Recherche en Cancérologie de Lyon, INSERM 1052 CNRS 5286, Lyon, France; Department of Hematology, Hospices Civils de Lyon, Hôpital Lyon Sud, 165 Chemin du Grand Revoyet, Pierre-Bénite 69310, France
| |
Collapse
|
11
|
Coy J, Caldwell A, Chow L, Guth A, Dow S. PD-1 expression by canine T cells and functional effects of PD-1 blockade. Vet Comp Oncol 2017; 15:1487-1502. [PMID: 28120417 DOI: 10.1111/vco.12294] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 12/20/2022]
Abstract
The co-inhibitory checkpoint molecule programmed death receptor 1 (PD-1) can trigger T cell functional exhaustion upon binding to its ligand PD-L1 expressed on tumour cells or macrophages. PD-1 blocking antibodies have generated remarkable results in human cancer patients, including inducing durable responses in a number of advanced cancers. Therefore, monoclonal antibodies specific for canine PD-1 were assessed for T cell binding and induction of functional activation. A total of 5-10% of CD4 T cells and 20-25% of CD8 T cells from healthy dogs expressed PD-1, and PD-1 expression was upregulated on T cells from dogs with cancer. Functionally, PD-1 antibodies significantly enhanced T-cell activation, as assessed by proliferation and interferon-gamma (IFN-γ) production. PD-1 antibodies also reversed T-cell suppression induced by canine soluble PD-L1 and by tumour cells and tumour explant fragments. These findings indicate that PD-1 antibodies have potential for use in cancer immunotherapy in dogs.
Collapse
Affiliation(s)
- J Coy
- Flint Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO, USA
| | - A Caldwell
- Flint Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO, USA
| | - L Chow
- Flint Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO, USA
| | - A Guth
- Flint Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO, USA
| | - S Dow
- Flint Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO, USA
| |
Collapse
|
12
|
Menter T, Bodmer-Haecki A, Dirnhofer S, Tzankov A. Evaluation of the diagnostic and prognostic value of PDL1 expression in Hodgkin and B-cell lymphomas. Hum Pathol 2016; 54:17-24. [DOI: 10.1016/j.humpath.2016.03.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/23/2016] [Accepted: 03/01/2016] [Indexed: 12/20/2022]
|
13
|
Laurent C, Fabiani B, Do C, Tchernonog E, Cartron G, Gravelle P, Amara N, Malot S, Palisoc MM, Copie-Bergman C, Glehen AT, Copin MC, Brousset P, Pittaluga S, Jaffe ES, Coppo P. Immune-checkpoint expression in Epstein-Barr virus positive and negative plasmablastic lymphoma: a clinical and pathological study in 82 patients. Haematologica 2016; 101:976-84. [PMID: 27175027 PMCID: PMC4967577 DOI: 10.3324/haematol.2016.141978] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/03/2016] [Indexed: 12/14/2022] Open
Abstract
Plasmablastic lymphoma is a rare and aggressive diffuse large B-cell lymphoma commonly associated with Epstein-Barr virus co-infection that most often occurs in the context of human immunodeficiency virus infection. Therefore, its immune escape strategy may involve the upregulation of immune-checkpoint proteins allowing the tumor immune evasion. However, the expression of these molecules was poorly studied in this lymphoma. We have investigated 82 plasmablastic lymphoma cases of whom half were Epstein-Barr virus positive. Although they harbored similar pathological features, Epstein-Barr virus positive plasmablastic lymphomas showed a significant increase in MYC gene rearrangement and had a better 2-year event-free survival than Epstein-Barr virus negative cases (P=0.049). Immunostains for programmed cell death-1, programmed cell death-ligand 1, indole 2,3-dioxygenase and dendritic cell specific C-type lectin showed a high or moderate expression by the microenvironment cells in 60%-72% of cases, whereas CD163 was expressed in almost all cases. Tumor cells also expressed programmed cell death-1 and its ligand in 22.5% and 5% of cases, respectively. Both Epstein-Barr virus positive and negative plasmablastic lymphomas exhibited a high immune-checkpoint score showing that it involves several pathways of immune escape. However, Epstein-Barr virus positive lymphomas exhibited a higher expression of programmed cell death-1 and its ligand in both malignant cells and microenvironment as compared to Epstein-Barr virus negative cases. In conclusion, plasmablastic lymphoma expresses immune-checkpoint proteins through both malignant cells and the tumor microenvironment. The expression of programmed cell death-1 and its ligand constitutes a strong rationale for testing monoclonal antibodies in this often chemoresistant disease.
Collapse
Affiliation(s)
- Camille Laurent
- Département de Pathologie, Institut Universitaire du Cancer-Oncopole, Toulouse, France INSERM, U.1037, Centre de Recherche en Cancérologie de Toulouse-Purpan, Toulouse, France
| | - Bettina Fabiani
- Département de Pathologie, AP-HP, Hôpital Saint-Antoine, Paris, France
| | - Catherine Do
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | | | - Guillaume Cartron
- Service d'Hematologie, Hôpital Gui de Chauliac-Saint Eloi, Montpellier, France
| | - Pauline Gravelle
- Département de Pathologie, Institut Universitaire du Cancer-Oncopole, Toulouse, France INSERM, U.1037, Centre de Recherche en Cancérologie de Toulouse-Purpan, Toulouse, France
| | - Nadia Amara
- Département de Pathologie, Institut Universitaire du Cancer-Oncopole, Toulouse, France
| | - Sandrine Malot
- Service d'Hématologie, AP-HP, Hôpital Saint-Antoine, Paris, France Centre de Référence des Microangiopathies Thrombotiques, AP-HP, Paris, France
| | | | - Christiane Copie-Bergman
- Département de Pathologie, AP-HP, Groupe Hospitalier Henri Mondor - Albert henevier, Créteil, France
| | | | | | - Pierre Brousset
- Département de Pathologie, Institut Universitaire du Cancer-Oncopole, Toulouse, France INSERM, U.1037, Centre de Recherche en Cancérologie de Toulouse-Purpan, Toulouse, France
| | - Stefania Pittaluga
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Elaine S Jaffe
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Paul Coppo
- Service d'Hématologie, AP-HP, Hôpital Saint-Antoine, Paris, France Centre de Référence des Microangiopathies Thrombotiques, AP-HP, Paris, France UPMC, Université Paris VI, France Inserm U1170, Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
14
|
Zagouri F, Terpos E, Kastritis E, Dimopoulos MA. Emerging antibodies for the treatment of multiple myeloma. Expert Opin Emerg Drugs 2016; 21:225-37. [DOI: 10.1080/14728214.2016.1186644] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Targeting the programmed death-1/programmed death-ligand 1 axis in lymphoma. Curr Opin Oncol 2015. [DOI: 10.1097/01.cco.0000473027.31140.a8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|