1
|
Schroeder C, Campilan B, Leary OP, Arditi J, Michles MJ, De La Garza Ramos R, Akinduro OO, Gokaslan ZL, Martinez Moreno M, Sullivan PLZ. Therapeutic Opportunities for Biomarkers in Metastatic Spine Tumors. Cancers (Basel) 2024; 16:3152. [PMID: 39335124 PMCID: PMC11430692 DOI: 10.3390/cancers16183152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/01/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
For many spine surgeons, patients with metastatic cancer are often present in an emergent situation with rapidly progressive neurological dysfunction. Since the Patchell trial, scoring systems such as NOMS and SINS have emerged to guide the extent of surgical excision and fusion in the context of chemotherapy and radiation therapy. Yet, while multidisciplinary decision-making is the gold standard of cancer care, in the middle of the night, when a patient needs spinal surgery, the wealth of chemotherapy data, clinical trials, and other medical advances can feel overwhelming. The goal of this review is to provide an overview of the relevant molecular biomarkers and therapies driving patient survival in lung, breast, prostate, and renal cell cancer. We highlight the molecular differences between primary tumors (i.e., the patient's original lung cancer) and the subsequent spinal metastasis. This distinction is crucial, as there are limited data investigating how metastases respond to their primary tumor's targeted molecular therapies. Integrating information from primary and metastatic markers allows for a more comprehensive and personalized approach to cancer treatment.
Collapse
Affiliation(s)
- Christian Schroeder
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Beatrice Campilan
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Owen P Leary
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Jonathan Arditi
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Madison J Michles
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Rafael De La Garza Ramos
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Oluwaseun O Akinduro
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Ziya L Gokaslan
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Margot Martinez Moreno
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | |
Collapse
|
2
|
Sheng W, Xu W, Ding J, Li L, You X, Wu Y, He Q. Curcumol inhibits the malignant progression of prostate cancer and regulates the PDK1/AKT/mTOR pathway by targeting miR‑9. Oncol Rep 2021; 46:246. [PMID: 34590156 PMCID: PMC8493056 DOI: 10.3892/or.2021.8197] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Curcumol has been reported to exert anti-tumor activity, but its intrinsic molecular mechanism in prostate cancer remains to be elucidated. The present study aimed to analyze the effect of curcumol on prostate cancer and identify its possible internal regulatory pathway using in vitro cell culture and in vivo tumor model experiments. The cytotoxicity of curcumol was detected using a Cell Counting Kit-8 assay and it was found that curcumol had no obvious toxicity or side effects on RWPE-1 cells. Wound healing, Transwell and flow cytometry assays demonstrated that curcumol could affect the activity of PC3 cells. The luciferase reporter assay also indicated that microRNA (miR)-9 could directly target pyruvate dehydrogenase kinase 1 (PDK1). After PC3 cells were transfected with miR-9 inhibitor or treated with curcumol, the expression levels of the PDK1/AKT/mTOR signaling pathway-related proteins [PDK1, phosphorylated (p)-AKT and p-mTOR] were increased or decreased, respectively. Next, the prostate cancer cell xenograft model was established. Tumor size and the expression levels of PDK1/AKT/mTOR signaling pathway-related factors were altered following treatment with curcumol. The in vitro and in vivo experiments collectively demonstrated that curcumol could inhibit the PDK1/AKT/mTOR signaling pathway by upregulating the expression level of miR-9. The present study found that curcumol regulates the PDK1/AKT/mTOR signaling pathway via miR-9 and affects the development of prostate cancer. These findings could provide a possible scientific insight for research into treatments for prostate cancer.
Collapse
Affiliation(s)
- Wen Sheng
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Wenjing Xu
- Dermatology Department, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410021, P.R. China
| | - Jin Ding
- Andrology Clinic, Shenzhen Baoan Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518133, P.R. China
| | - Ling Li
- Medical Basic Teaching Experiment Center, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Xujun You
- Andrology Clinic, Shenzhen Baoan Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518133, P.R. China
| | - Yongrong Wu
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Qinghu He
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| |
Collapse
|
3
|
Adamaki M, Zoumpourlis V. Immunotherapy as a Precision Medicine Tool for the Treatment of Prostate Cancer. Cancers (Basel) 2021; 13:E173. [PMID: 33419051 PMCID: PMC7825410 DOI: 10.3390/cancers13020173] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed type of cancer among Caucasian males over the age of 60 and is characterized by remarkable heterogeneity and clinical behavior, ranging from decades of indolence to highly lethal disease. Despite the significant progress in PCa systemic therapy, therapeutic response is usually transient, and invasive disease is associated with high mortality rates. Immunotherapy has emerged as an efficacious and non-toxic treatment alternative that perfectly fits the rationale of precision medicine, as it aims to treat patients on the basis of patient-specific, immune-targeted molecular traits, so as to achieve the maximum clinical benefit. Antibodies acting as immune checkpoint inhibitors and vaccines entailing tumor-specific antigens seem to be the most promising immunotherapeutic strategies in offering a significant survival advantage. Even though patients with localized disease and favorable prognostic characteristics seem to be the ones that markedly benefit from such interventions, there is substantial evidence to suggest that the survival benefit may also be extended to patients with more advanced disease. The identification of biomarkers that can be immunologically targeted in patients with disease progression is potentially amenable in this process and in achieving significant advances in the decision for precision treatment of PCa.
Collapse
Affiliation(s)
- Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| | | |
Collapse
|
4
|
Lobo J, Jerónimo C, Henrique R. Targeting the Immune system and Epigenetic Landscape of Urological Tumors. Int J Mol Sci 2020; 21:E829. [PMID: 32012885 PMCID: PMC7037817 DOI: 10.3390/ijms21030829] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/18/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
In the last years, we have witnessed remarkable advances in targeted therapies for cancer patients. There is a growing effort to either replace or reduce the dose of unspecific, systemic (chemo)therapies, given the associated short- and long-term side effects, by introducing more specific targeted therapies as single or combination agents. Due to the well-known implications of the immune system and epigenetic landscape in modulating cancer development, both have been explored as potential targets in several malignancies, including those affecting the genitourinary tract. As the immune system function is also epigenetically regulated, there is rationale for combining both strategies. However, this is still rather underexplored, namely in urological tumors. We aim to briefly review the use of immune therapies in prostate, kidney, bladder, and testicular cancer, and further describe studies providing supporting evidence on their combination with epigenetic-based therapies.
Collapse
Affiliation(s)
- João Lobo
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP) and Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP) and Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Rui Henrique
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP) and Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| |
Collapse
|
5
|
Seifert M, Peitzsch C, Gorodetska I, Börner C, Klink B, Dubrovska A. Network-based analysis of prostate cancer cell lines reveals novel marker gene candidates associated with radioresistance and patient relapse. PLoS Comput Biol 2019; 15:e1007460. [PMID: 31682594 PMCID: PMC6855562 DOI: 10.1371/journal.pcbi.1007460] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 11/14/2019] [Accepted: 10/05/2019] [Indexed: 12/20/2022] Open
Abstract
Radiation therapy is an important and effective treatment option for prostate cancer, but high-risk patients are prone to relapse due to radioresistance of cancer cells. Molecular mechanisms that contribute to radioresistance are not fully understood. Novel computational strategies are needed to identify radioresistance driver genes from hundreds of gene copy number alterations. We developed a network-based approach based on lasso regression in combination with network propagation for the analysis of prostate cancer cell lines with acquired radioresistance to identify clinically relevant marker genes associated with radioresistance in prostate cancer patients. We analyzed established radioresistant cell lines of the prostate cancer cell lines DU145 and LNCaP and compared their gene copy number and expression profiles to their radiosensitive parental cells. We found that radioresistant DU145 showed much more gene copy number alterations than LNCaP and their gene expression profiles were highly cell line specific. We learned a genome-wide prostate cancer-specific gene regulatory network and quantified impacts of differentially expressed genes with directly underlying copy number alterations on known radioresistance marker genes. This revealed several potential driver candidates involved in the regulation of cancer-relevant processes. Importantly, we found that ten driver candidates from DU145 (ADAMTS9, AKR1B10, CXXC5, FST, FOXL1, GRPR, ITGA2, SOX17, STARD4, VGF) and four from LNCaP (FHL5, LYPLAL1, PAK7, TDRD6) were able to distinguish irradiated prostate cancer patients into early and late relapse groups. Moreover, in-depth in vitro validations for VGF (Neurosecretory protein VGF) showed that siRNA-mediated gene silencing increased the radiosensitivity of DU145 and LNCaP cells. Our computational approach enabled to predict novel radioresistance driver gene candidates. Additional preclinical and clinical studies are required to further validate the role of VGF and other candidate genes as potential biomarkers for the prediction of radiotherapy responses and as potential targets for radiosensitization of prostate cancer. Prostate cancer cell lines represent an important model system to characterize molecular alterations that contribute to radioresistance, but irradiation can cause deletions and amplifications of DNA segments that affect hundreds of genes. This in combination with the small number of cell lines that are usually considered does not allow a straight-forward identification of driver genes by standard statistical methods. Therefore, we developed a network-based approach to analyze gene copy number and expression profiles of such cell lines enabling to identify potential driver genes associated with radioresistance of prostate cancer. We used lasso regression in combination with a significance test for lasso to learn a genome-wide prostate cancer-specific gene regulatory network. We used this network for network flow computations to determine impacts of gene copy number alterations on known radioresistance marker genes. Mapping to prostate cancer samples and additional filtering allowed us to identify 14 driver gene candidates that distinguished irradiated prostate cancer patients into early and late relapse groups. In-depth literature analysis and wet-lab validations suggest that our method can predict novel radioresistance driver genes. Additional preclinical and clinical studies are required to further validate these genes for the prediction of radiotherapy responses and as potential targets to radiosensitize prostate cancer.
Collapse
Affiliation(s)
- Michael Seifert
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
- * E-mail:
| | - Claudia Peitzsch
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Ielizaveta Gorodetska
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Caroline Börner
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Barbara Klink
- Institute for Clinical Genetics, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Anna Dubrovska
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiooncology-OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
6
|
Zarrabi K, Paroya A, Wu S. Emerging therapeutic agents for genitourinary cancers. J Hematol Oncol 2019; 12:89. [PMID: 31484560 PMCID: PMC6727406 DOI: 10.1186/s13045-019-0780-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
The treatment of genitourinary malignancies has dramatically evolved over recent years. Renal cell carcinoma, urothelial carcinoma of the bladder, and prostate adenocarcinoma are the most commonly encountered genitourinary malignancies and represent a heterogeneous population of cancers, in both histology and approach to treatment. However, all three cancers have undergone paradigm shifts in their respective therapeutic landscapes due to a greater understanding of their underlying molecular mechanisms and oncogenic drivers. The advance that has gained the most recent traction has been the advent of immunotherapies, particularly immune checkpoint inhibitors. Immunotherapy has increased overall survival and even provided durable responses in the metastatic setting in some patients. The early success of immune checkpoint inhibitors has led to further drug development with the emergence of novel agents which modulate the immune system within the tumor microenvironment. Notwithstanding immunotherapy, investigators are also developing novel agents tailored to a variety of targets including small-molecule tyrosine kinase inhibitors, mTOR inhibitors, and novel fusion proteins to name a few. Erdafitinib has become the first targeted therapy approved for metastatic bladder cancer. Moreover, the combination therapy of immune checkpoint inhibitors with targeted agents such as pembrolizumab or avelumab with axitinib has demonstrated both safety and efficacy and just received FDA approval for their use. We are in an era of rapid progression in drug development with multiple exciting trials and ongoing pre-clinical studies. We highlight many of the promising new emerging therapies that will likely continue to improve outcomes in patients with genitourinary malignancies.
Collapse
Affiliation(s)
- Kevin Zarrabi
- Department of Medicine, Stony Brook University Hospital, 9447 SUNY, Stony Brook, NY 11794-9447 USA
| | - Azzam Paroya
- Department of Medicine, Stony Brook University Hospital, 9447 SUNY, Stony Brook, NY 11794-9447 USA
| | - Shenhong Wu
- Department of Medicine, Stony Brook University Hospital, 9447 SUNY, Stony Brook, NY 11794-9447 USA
- Division of Hematology/Oncology, Department of Medicine, Northport VA Medical Center, Northport, NY USA
| |
Collapse
|
7
|
van Duijn PW, Marques RB, Ziel-van der Made ACJ, van Zoggel HJAA, Aghai A, Berrevoets C, Debets R, Jenster G, Trapman J, van Weerden WM. Tumor heterogeneity, aggressiveness, and immune cell composition in a novel syngeneic PSA-targeted Pten knockout mouse prostate cancer (MuCaP) model. Prostate 2018; 78:1013-1023. [PMID: 30133757 DOI: 10.1002/pros.23659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/09/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Prostate cancer is recognized as a heterogeneous disease demanding appropriate preclinical models that reflect tumor complexity. Previously, we established the PSA-Cre;PtenLoxP/LoxP genetic engineered mouse model (GEMM) for prostate cancer reflecting the various stages of tumor development. Prostate tumors in this Pten KO model slowly develop, requiring more than 10 months. In order to enhance its practical utility, we established a syngeneic panel of cell lines derived from PSA-Cre targeted Pten KO tumors, designated the mouse prostate cancer (MuCap) model. METHODS Four different MuCaP epithelial cell lines were established from three independent primary Pten KO mouse prostate tumors. Tumorigenic capacity of the MuCaP cell lines was determined by subcutaneous inoculation of these cell lines in immunocompetent mice. Response to PI3K-targeted therapy was validated in ex vivo tissue slices of the established MuCaP tumors. RESULTS The MuCaP cell lines were all tumorigenic in immunocompetent mice after subcutaneous inoculation. Interestingly, these syngrafted tumors represented different tumor growth rates and morphologies. Treatment with the specific PI3K inhibitor GDC0941 resulted in responses very similar between syngeneic MuCaP and primary Pten KO prostate tumors. Finally, immunoprofiling of the different syngeneic MuCaP tumors demonstrated differential numbers of tumor infiltrating lymphocytes and distinct immune gene profiles with expression of CD8, INFy, and PD1 being inversely related to tumor aggressiveness. CONCLUSIONS Collectively, we present here a well-defined MuCaP platform of in vitro and in vivo mouse prostate cancer models that may support preclinical assessment of (immune)-therapies for prostate cancer.
Collapse
Affiliation(s)
- Petra W van Duijn
- Department of Pathology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Urology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rute B Marques
- Department of Urology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | - Ashraf Aghai
- Department of Urology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Cor Berrevoets
- Department of Medical Oncology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Reno Debets
- Department of Medical Oncology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Guido Jenster
- Department of Urology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jan Trapman
- Department of Pathology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Wytske M van Weerden
- Department of Urology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Abstract
Objective: The optimal management strategy for prostate cancer (PCa) remains controversial. We performed a systemic review of current progress and controversies regarding the diagnosis and treatment of PCa. Data Sources: We searched PubMed for recently published articles up to July 2017 using the following key words: “prostate cancer,” “progress,” “controversy,” “immunotherapy,” and “prevention.” Study Selection: Articles were obtained and reviewed to provide a systematic review of the current progress and controversies regarding PCa management. Results: The value of serum prostate-specific antigen (PSA) screening remains controversial, but PSA screening is recommended to facilitate the early diagnosis of PCa in high-risk groups. Prostate biopsy via the transrectal or perineal approach has both advantages and disadvantages. There was a significant correlation between testosterone levels and PCa prognosis. The current research is focused on the mechanisms responsible for PCa. Active surveillance has been proposed as a management strategy for low-risk, localized PCa, but there is an urgent need for further clinical studies to establish the criteria for recommending this approach. The main complications of radical resection for PCa are urinary incontinence and erectile dysfunction, though three-dimensional laparoscopic and robot-assisted laparoscopic techniques have obvious advantages over radical surgery. Radiotherapy is also a therapeutic option for PCa, while immunotherapies may alter the prostate tumor microenvironment. Ongoing studies aim to provide guidance on effective sequential and combination strategies. Prevention remains an important strategy for reducing PCa morbidity and mortality. Conclusions: The diagnosis, treatment, and prevention of PCa are complex issues, worthy of intensive study. Further studies are needed to improve the management of PCa.
Collapse
Affiliation(s)
- De-Xin Dong
- Department of Urology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing 100730, China
| | - Zhi-Gang Ji
- Department of Urology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing 100730, China
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Metastatic castration-resistant prostate cancer is in critical need of new and innovative treatment strategies. Since the approval of sipuleucel-T, the investigatory climate of prostate cancer immunotherapy has been rapidly evolving with promising developments in vaccine and immune checkpoint therapies. RECENT FINDINGS Sipuleucel-T remains the first and only therapeutic cancer vaccine approved for its survival benefit in metastatic castration-resistant prostate cancer. Additional cancer vaccines are currently being evaluated, with the most promising being a peptide vaccine encoding prostate-specific antigen, known as prostate-specific antigen-TRICOM. Emerging data supports combinatorial strategies for vaccine therapy and a potential role for implementation in earlier stages of advanced disease. Immune checkpoint therapies have demonstrated limited success in prostate cancer with negative late phase trials for ipilimumab monotherapy and discouraging early phase results for programmed cell death protein 1 blockade. Novel immune-modulatory targets and rational combination strategies aim to produce more favorable results. Recent progress has been made to determine biologic predictors for response and toxicity in prostate cancer immunotherapy aiming to improve patient selection and safety. SUMMARY Steady progress is anticipated in the field of prostate cancer immunotherapy including ongoing development of novel cancer vaccines, immune checkpoint therapies, and combinatorial strategies.
Collapse
|
10
|
White M, Freistaedter A, Jones GJB, Zervos E, Roper RL. Development of improved therapeutic mesothelin-based vaccines for pancreatic cancer. PLoS One 2018; 13:e0193131. [PMID: 29474384 PMCID: PMC5825036 DOI: 10.1371/journal.pone.0193131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/05/2018] [Indexed: 11/25/2022] Open
Abstract
Pancreatic cancer is the 5th leading cause of cancer deaths, and there are no effective treatments. We developed a poxvirus platform vaccine with improved immunogenicity and inserted the mesothelin gene to create an anti-mesothelin cancer vaccine. Mesothelin expression is mostly restricted to tumors in adult mammals and thus may be a good target for cancer treatment. We show here that the modified vaccinia virus Ankara (MVA) virus expressing mesothelin and the enhanced MVA virus missing the immunosuppressive A35 gene and expressing mesothelin were both safe in mice and were able to induce IFN-gamma secreting T cells in response to mesothelin expressing tumor cells. In addition, the MVA virus has oncolytic properties in vitro as it can replicate in and kill Panc02 pancreatic adenocarcinoma cell line tumor cells, even though it is unable to replicate in most mammalian cells. Deletion of the A35 gene in MVA improved T cell responses as expected. However, we were unable to demonstrate inhibition of Panc02 tumor growth in immunocompetent mice with pre-vaccination of mice, boosts, or even intratumoral injections of the recombinant viruses. Vaccine efficacy may be limited by shedding of mesothelin from tumor cells thus creating a protective screen from the immune system.
Collapse
Affiliation(s)
- Michael White
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, United States of America
| | - Andrew Freistaedter
- Department of Microbiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States of America
| | - Gwendolyn J B Jones
- Department of Microbiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States of America
| | - Emmanuel Zervos
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, United States of America
| | - Rachel L Roper
- Department of Microbiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States of America
| |
Collapse
|