1
|
Lu Q, Wu Y, Xie Y, Yang S, Jin H. Prognostic impact of tumor size on cancer-specific survival for postoperative WHO grade II oligodendroglioma: a SEER-based study. Front Surg 2025; 12:1455567. [PMID: 39963181 PMCID: PMC11830688 DOI: 10.3389/fsurg.2025.1455567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025] Open
Abstract
Background WHO grade II oligodendroglioma (OG/II) is a rare primary brain tumor with various outcomes. Our study aims to investigate prognostic factors for postoperative OG/II patients and then evaluate the instructional value of tumor size. Methods We retrospectively studied the cases from the Surveillance, Epidemiology, and End Results (SEER) database. Univariate and multivariate Cox analyses and Kaplan-Meier survival curves were used to identify and assess prognostic factors. The optimal cut-off value of tumor size was determined by X-tile analysis and verified by multivariate analyses. Subsequently, Subgroup analyses were performed based on tumor size. Result 676 OG/II patients were enrolled in our study. Multivariate Cox analyses revealed that age > 60 (HR 3.52), male (HR 1.48), total resection (HR 0.38), and tumor size (HR 2.04) were independent factors in predicting cancer-specific survival (CCS). The optimal cut-off value for tumor size was 60 mm. Patients with tumor size less than 60 mm, age > 60 (HR 3.82), and radiation (HR 1.58) were associated with worse CSS, while total resection (HR 0.35) was associated with better CSS. Lastly, a tumor size-based nomogram was established objectively and accurately. Conclusion Our study identified four crucial prognostic factors related to CSS in postoperative OG/II patients: age, sex, the extent of recession, and tumor size. A tumor size of 60 mm was an optimal cut-off point for dividing patients into low and high-risk groups. Patients in the low-risk group may not benefit from extended resection and radiation. Tumor size can be a valuable factor for making therapeutic schedules.
Collapse
Affiliation(s)
- Qin Lu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Yongyan Wu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Yonglin Xie
- Department of Emergency, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Shuxu Yang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Lab of Biotherapy, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Zhou S, Wu S, Li Z, Wang X. Construction and Validation of Nomograms for Predicting Overall Survival and Cancer-Specific Survival in Patients with Primary Anaplastic Oligodendroglioma. World Neurosurg 2024; 187:e472-e484. [PMID: 38677647 DOI: 10.1016/j.wneu.2024.04.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
OBJECTIVE Anaplastic oligodendroglioma (AOD) is a rare high-grade central nervous system tumor. The current research on prognostic prediction of AOD remains limited. This study aimed to identify prognostic factors and establish the nomograms to predict overall survival (OS) and cancer-specific survival (CSS) for patients with AOD. METHODS Patients diagnosed with AOD between 1992 and 2020 were extracted from the Surveillance, Epidemiology, and End Result database. We performed univariate and multivariate Cox regression analyses to identify independent prognostic factors based on the training group. Kaplan-Meier survival curves were used to compare the impact of various independent factors on patient prognosis. For OS and CSS, the nomograms were constructed and verified by the validation group. Harrell''s concordance index, receiver operating characteristic curves, calibration curves, and decision curve analyses were used to assess the discrimination, consistency, and clinical value of the nomograms. RESULTS A total of 1202 AOD patients were enrolled, being randomly divided into training (n = 841) and validation (n = 361) groups (7:3 ratio). Univariate and multivariate Cox analysis identified 4 significant independent factors (tumor site, age, surgery, and chemotherapy). For OS and CSS, Harrell''s concordance index were 0.731 (0.705-0.757) and 0.728 (0.701-0.754) in the training group, 0.688 (0.646-0.731) and 0.684 (0.639-0.729) in the validation group, respectively. Receiver operating characteristic curves and Calibration curves showed good discrimination and consistency, respectively. In addition, the decision curve analyses curves showed the nomograms have good clinical benefits. CONCLUSIONS We successfully established the nomograms to predict the OS and CSS for AOD patients. The nomograms showed good performance in prognostic prediction, assisting clinicians in evaluating patient prognosis and personalizing treatment plans.
Collapse
Affiliation(s)
- Shuoming Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shuaishuai Wu
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhaoming Li
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiangyu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Current Considerations in the Treatment of Grade 3 Gliomas. Curr Treat Options Oncol 2022; 23:1219-1232. [PMID: 35913658 DOI: 10.1007/s11864-022-01000-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 12/12/2022]
Abstract
OPINION STATEMENT Treatment recommendations for grade 3 gliomas are guided by their histopathologic and molecular phenotype. In the 2021 WHO classification, these tumors are categorized into two types, grade 3 IDH mutant (IDHmt), 1p/19q codeleted oligodendroglioma and IDH mutant astrocytoma. Treatment consists of maximal safe surgery, followed by radiation therapy (RT) and alkylating agent-based chemotherapy. Based on the updated CATNON result, RT followed by temozolomide improves outcome in patients with non-codeleted grade 3 IDHmt astrocytoma. In patients with IDHmt, codeleted oligodendroglioma, the addition of procarbazine, CCNU, and vincristine regimen is the recommended treatment, based on large randomized controlled trials. These current treatments prolong the overall survival to up to 10 years in patients with grade 3 IDHmt astrocytoma and 14 years in grade 3 IDHmt codeleted oligodendroglioma. Treatment options at recurrence include re-resection, re-irradiation, and other cytotoxic chemotherapy; however, these are of limited benefit. Novel agents targeting IDH mutation and its metabolic effects are currently under investigation to improve the outcome of these patients.
Collapse
|
4
|
Lin Q, Bao JH, Xue F, Qin JJ, Chen Z, Chen ZR, Li C, Yan YX, Fu J, Shen ZL, Chen XZ. The Risk of Heart Disease-Related Death Among Anaplastic Astrocytoma Patients After Chemotherapy: A SEER Population-Based Analysis. Front Oncol 2022; 12:870843. [PMID: 35795052 PMCID: PMC9251342 DOI: 10.3389/fonc.2022.870843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background Despite improved overall survival outcomes, chemotherapy has brought concerns for heart disease–related death (HDRD) among cancer patients. The effect of chemotherapy on the risk of HDRD in anaplastic astrocytoma (AA) patients remains unclear. Methods We obtained 7,129 AA patients from the Surveillance, Epidemiology, and End Results (SEER) database from 1975 to 2016. Kaplan–Meier and Cox regression analysis were conducted to evaluate the effect of chemotherapy on the HDRD risk. Based on the competing risk model, we calculated the cumulative incidences of HDRD and non-HDRD and performed univariate and multivariate regression analyses. Then, a 1:1 propensity score matching (PSM) was used to improve the comparability between AA patients with and without chemotherapy. Landmark analysis at 216 and 314 months was employed to minimize immortal time bias. Results AA patients with chemotherapy were at a lower HDRD risk compared to those patients without chemotherapy (adjusted HR=0.782, 95%CI=0.736–0.83, P<0.001). For competing risk regression analysis, the cumulative incidence of HDRD in non-chemotherapy exceeded HDRD in the chemotherapy group (P<0.001) and multivariable analysis showed a lower HDRD risk in AA patients with chemotherapy (adjusted SHR=0.574, 95%CI=0.331–0.991, P=0.046). In the PSM-after cohort, there were no significant association between chemotherapy and the increased HDRD risk (adjusted SHR=0.595, 95%CI=0.316−1.122, P=0.11). Landmark analysis showed that AA patients who received chemotherapy had better heart disease–specific survival than those in the non-chemotherapy group (P=0.007) at the follow-up time points of 216 months. No difference was found when the follow-up time was more than 216 months. Conclusion AA patients with chemotherapy are associated with a lower risk of HDRD compared with those without chemotherapy. Our findings may help clinicians make a decision about the management of AA patients and provide new and important evidence for applying chemotherapy in AA patients as the first-line treatment. However, more research is needed to confirm these findings and investigate the correlation of the risk of HDRD with different chemotherapy drugs and doses.
Collapse
Affiliation(s)
- Qi Lin
- Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jia-Hao Bao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fei Xue
- Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jia-Jun Qin
- Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhen Chen
- Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhong-Rong Chen
- Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chao Li
- Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi-Xuan Yan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jin Fu
- Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Xian-Zhen Chen, ; Zhao-Li Shen, ; Jin Fu,
| | - Zhao-Li Shen
- Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Xian-Zhen Chen, ; Zhao-Li Shen, ; Jin Fu,
| | - Xian-Zhen Chen
- Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Xian-Zhen Chen, ; Zhao-Li Shen, ; Jin Fu,
| |
Collapse
|