1
|
Long H, Hu X, Wang B, Wang Q, Wang R, Liu S, Xiong F, Jiang Z, Zhang XQ, Ye WC, Wang H. Discovery of Novel Apigenin-Piperazine Hybrids as Potent and Selective Poly (ADP-Ribose) Polymerase-1 (PARP-1) Inhibitors for the Treatment of Cancer. J Med Chem 2021; 64:12089-12108. [PMID: 34404206 DOI: 10.1021/acs.jmedchem.1c00735] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) is a potential target for the discovery of chemosensitizers and anticancer drugs. Amentoflavone (AMF) is reported to be a selective PARP-1 inhibitor. Here, structural modifications and trimming of AMF have led to a series of AMF derivatives (9a-h) and apigenin-piperazine/piperidine hybrids (14a-p, 15a-p, 17a-h, and 19a-f), respectively. Among these compounds, 15l exhibited a potent PARP-1 inhibitory effect (IC50 = 14.7 nM) and possessed high selectivity to PARP-1 over PARP-2 (61.2-fold). Molecular dynamics simulation and the cellular thermal shift assay revealed that 15l directly bound to the PARP-1 structure. In in vitro and in vivo studies, 15l showed a potent chemotherapy sensitizing effect against A549 cells and a selective cytotoxic effect toward SK-OV-3 cells through PARP-1 inhibition. 15l·2HCl also displayed good ADME characteristics, pharmacokinetic parameters, and a desirable safety margin. These findings demonstrated that 15l·2HCl may serve as a lead compound for chemosensitizers and the (BRCA-1)-deficient cancer therapy.
Collapse
Affiliation(s)
- Huan Long
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiaolong Hu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Baolin Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Quan Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Rong Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shumeng Liu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, People's Republic of China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiao-Qi Zhang
- Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
2
|
Asik E, Akpinar Y, Caner A, Kahraman N, Guray T, Volkan M, Albarracin C, Pataer A, Arun B, Ozpolat B. EF2-kinase targeted cobalt-ferrite siRNA-nanotherapy suppresses BRCA1-mutated breast cancer. Nanomedicine (Lond) 2019; 14:2315-2338. [DOI: 10.2217/nnm-2019-0132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: To investigate the role of EF2K in BRCA1-mutated breast cancer. Materials & methods: We developed silica coated cobalt-ferrite (CoFe) nanoparticles for in vivo delivery of small interfering RNAs (siRNAs) into BRCA1-mutated breast cancer. Results: Expression of EF2K is highly upregulated in the majority (78.5%) of BRCA1-mutated patients and significantly associated with poor patient survival and metastasis. Silencing of EF2K reduced cell proliferation, migration and invasion of the cancer cells. In vivo therapeutic targeting of EF2K by CoFe-siRNA-nanoparticles leads to sustained EF2K gene knockdown and suppressed tumor growth in orthotopic xenograft models of BRCA1-mutated breast cancer. Conclusion: EF2K is a potential novel molecular target in BRCA1-mutated tumors and CoFe-based siRNA nanotherapy may be used as a novel approach to target EF2K.
Collapse
Affiliation(s)
- Elif Asik
- Department of Experimental Therapeutics, The University of Texas-MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Yeliz Akpinar
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
- Department of Chemistry, Kırsehir Ahi Evran University, Kırsehir 40100, Turkey
| | - Ayse Caner
- Department of Experimental Therapeutics, The University of Texas-MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Nermin Kahraman
- Department of Experimental Therapeutics, The University of Texas-MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Tulin Guray
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Murvet Volkan
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Constance Albarracin
- Department of Pathology, Division of Pathology/Lab Medicine, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Apar Pataer
- Department of Thoracic Surgery, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Banu Arun
- Departments of Breast Medical Oncology & Breast Cancer Genetics, The University of Texas-MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas-MD Anderson Cancer Center, Houston, TX 77054, USA
- Center for RNA Interference & Non-Coding RNA, The University of Texas-MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
3
|
Wilson A, Menon V, Khan Z, Alam A, Litovchick L, Yakovlev V. Nitric oxide-donor/PARP-inhibitor combination: A new approach for sensitization to ionizing radiation. Redox Biol 2019; 24:101169. [PMID: 30889466 PMCID: PMC6423503 DOI: 10.1016/j.redox.2019.101169] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023] Open
Abstract
Recently, clinical development of PARP inhibitors (PARPi) expanded from using them as a single agent to combining them with DNA-damaging therapy to derive additional therapeutic benefit from stimulated DNA damage. Furthermore, inhibiting PARP in cancers with BRCA1/2 mutations has been shown to be an effective synthetic lethality approach either as a single agent or in combination with the different DNA damaging agents: chemotherapy or ionizing radiation (IR). However, inherited BRCA1/2 mutations account only for 5–10% of breast cancers, 10–15% of ovarian cancers, and lesser for the other cancers. Hence, for most of the cancer patients with BRCA1/2-proficient tumors, sensitization to DNA-damaging agents with PARPi is significantly less effective. We recently demonstrated that moderate, non-toxic concentrations of NO-donors inhibited BRCA1 expression, with subsequent inhibition of error-free HRR and increase of error-prone non-homologous end joining (NHEJ). We also demonstrated that the effect of NO-dependent block of BRCA1 expression can only be achieved in the presence of oxidative stress, a condition that characterizes the tumor microenvironment and is also a potential effect of IR. Hence, NO-donors in combination with PARPi, with effects limited by tumor microenvironment and irradiated area, suggest a precise tumor-targeted approach for radio-sensitization of BRCA1/2-proficient tumors. The combination with NO-donors allows PARPi to be successfully applied to a wider variety of tumors. The present work demonstrates a new drug combination (NO-donors and PARP-inhibitors) which demonstrated a high potency in sensitization of wide variety of tumors to ionizing radiation treatment.
Collapse
Affiliation(s)
- Aaron Wilson
- Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, United States
| | - Vijay Menon
- Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Zubair Khan
- Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, United States
| | - Asim Alam
- Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, United States
| | - Larisa Litovchick
- Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Vasily Yakovlev
- Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, United States.
| |
Collapse
|
4
|
Donizy P, Pietrzyk G, Halon A, Kozyra C, Gansukh T, Lage H, Surowiak P, Matkowski R. Nuclear-cytoplasmic PARP-1 expression as an unfavorable prognostic marker in lymph node‑negative early breast cancer: 15-year follow-up. Oncol Rep 2014; 31:1777-87. [PMID: 24535158 DOI: 10.3892/or.2014.3024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 01/24/2014] [Indexed: 11/06/2022] Open
Abstract
PARP-1 plays an important role in DNA damage repair and maintaining genome integrity by repairing DNA single-strand breaks (SSBs) by base excision repair (BER). The aim of the present study was to examine the expression of PARP-1 in breast cancer (BC) patients and to assess the relationship between the subcellular localization of this protein and clinicopathological characteristics. The reactivity of PARP-1 was analyzed by immunohistochemistry in a homogeneous group of 83 stage II ductal BC patients with a 15-year follow-up. Immunostaining of PARP-1 was also evaluated in 4 human BC cell lines and resistance prediction profile for 11 anticancer agents was performed using 3 models of drug-resistant cell lines. Nuclear-cytoplasmic expression (NCE) was associated with shorter overall survival, which was not statistically significant during the 10-year follow-up but became statistically significant after 10 years of observation, during the 15-year follow-up (P=0.015). Analysis performed in subgroups of patients with (N+) and without (N-) nodal metastases showed that NCE was associated with poor clinical outcome in N- patients (P=0.017). Multivariate analysis confirmed a significant impact of NCE on unfavorable prognosis in N- early BC. The presence of PARP-1 NCE may be a new potential unfavorable prognostic factor in lymph node- negative early BC.
Collapse
Affiliation(s)
- Piotr Donizy
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Grazyna Pietrzyk
- Laboratory of Mammotomic Biopsy, 4th Military Hospital, 50-001 Wroclaw, Poland
| | - Agnieszka Halon
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Cyprian Kozyra
- Department of Statistics, Wroclaw University of Economics, 53-345 Wroclaw, Poland
| | | | - Hermann Lage
- Institute of Pathology, Charité Universitätsmedizin, D-10117 Berlin, Germany
| | - Pawel Surowiak
- Department of Histology and Embryology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Rafal Matkowski
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|