1
|
Liang YY, Liao XY, Jia JJ, Yin YZ, Zhang YH, Gao FG. K33 only mutant ubiquitin augments bone marrow-derived dendritic cell-mediated CTL priming via PI3K-Akt pathway. Immunology 2024; 172:486-499. [PMID: 38547355 DOI: 10.1111/imm.13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/18/2024] [Indexed: 06/15/2024] Open
Abstract
To explore the effect of K33 only mutant ubiquitin (K33O) on bone marrow-derived dendritic cells' (BMDCs') maturity, antigen uptake capability, surface molecule expressions and BMDC-mediated CTL priming, and further investigate the role of PI3K-Akt engaged in K33O-increased BMDC maturation, antigen uptake and presentation, surface molecule expressions and BMDC-based CTL priming. BMDCs were conferred K33O and other ubiquitin mutants (K33R, K48R, K63R-mutant ubiquitin) incubation or LY294002 and wortmannin pretreatment. PI3K-Akt phosphorylation, antigen uptake, antigenic presentation and CD86/MHC class I expression in BMDC were determined by western blot or flow cytometry. BMDC-based CTL proliferation and priming were determined by in vitro mixed lymphocyte reaction (MLR), ex vivo enzyme-linked immunospot assay (Elispot) and flow cytometry with intracellular staining, respectively. The treatment with K33O effectively augmented PI3K-Akt phosphorylation, BMDCs' antigen uptake, antigenic presentation, CD86/MHC class I and CD11c expressions. MLR, Elispot and flow cytometry revealed that K33O treatment obviously enhanced CTL proliferation, CTL priming and perforin/granzyme B expression. The pretreatment with PI3K-Akt inhibitors efficiently abrogated K33O's effects on BMDC. The replenishment of K33 only mutant ubiquitin augments BMDC-mediated CTL priming in bone marrow-derived dendritic cells via PI3K-Akt signalling.
Collapse
Affiliation(s)
- Yi Yun Liang
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Xiao Yan Liao
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Jun Jun Jia
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Yi Zhen Yin
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Yue Hua Zhang
- Laboratory Animal Center, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Feng Guang Gao
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| |
Collapse
|
2
|
van de Ven R, Hilton TL, Hu HM, Dubay CJ, Haley D, Paustian C, Puri S, Urba WJ, Curti BD, Aung S, Fox BA. Autophagosome-based strategy to monitor apparent tumor-specific CD8 T cells in patients with prostate cancer. Oncoimmunology 2018; 7:e1466766. [PMID: 30524883 PMCID: PMC6279418 DOI: 10.1080/2162402x.2018.1466766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/23/2018] [Accepted: 04/13/2018] [Indexed: 01/05/2023] Open
Abstract
The immune system plays an essential role in eradicating cancer in concert with various treatment modalities. In the absence of autologous tumor material, no standardized method exists to assess T cell responses against the many antigens that may serve as cancer rejection antigens. Thus, development of methods to screen for therapy-induced anti-tumor responses is a high priority that could help tailor therapy. Here we tested whether a tumor-derived antigen source called DRibbles®, which contain a pool of defective ribosomal products (DRiPs), long-lived and short-lived proteins (SLiPs) and danger-associated molecular patterns (DAMPs), can be used to identify tumor-associated antigen (TAA)-specific responses in patients before or after immunotherapy treatment. Protein content, gene expression and non-synonymous - single nucleotide variants (ns-SNVs) present in UbiLT3 DRibbles were compared with prostate adenocarcinomas and the prostate GVAX vaccine cell lines (PC3/LNCaP). UbiLT3 DRibbles were found to share proteins, as well as match tumor sequences for ns-SNVs with prostate adenocarcinomas and with the cell lines PC3 and LNCaP. UbiLT3 DRibbles were used to monitor anti-tumor responses in patients vaccinated with allogeneic prostate GVAX. UbiLT3-DRibble-reactive CD8+ T-cell responses were detected in post-vaccine PBMC of 6/12 patients (range 0.85-22% of CD8+ cells) after 1 week in vitro stimulation (p = 0.007 vs. pre-vaccine). In conclusion, a cancer-derived autophagosome-enriched preparation, packaging over 100 proteins over-expressed in prostate cancer into microvesicles containing DAMPs, could be used to identify CD8+ T cells in peripheral blood from patients after prostate GVAX vaccination and may represent a general method to monitor anti-cancer T cell responses following immunotherapy.
Collapse
Affiliation(s)
- Rieneke van de Ven
- Laboratory of Molecular and Tumor Immunology
- Department of Medical Oncology, VU University medical center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | - Hong-Ming Hu
- Laboratory of Cancer Immunobiology
- UbiVac LLC, Portland, OR
| | | | | | | | - Sachin Puri
- Laboratory of Molecular and Tumor Immunology
| | - Walter J. Urba
- Robert W. Franz Cancer Research Center at the Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR
| | - Brendan D. Curti
- Robert W. Franz Cancer Research Center at the Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR
| | | | - Bernard A. Fox
- Laboratory of Molecular and Tumor Immunology
- UbiVac LLC, Portland, OR
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR
| |
Collapse
|
3
|
Brentville VA, Atabani S, Cook K, Durrant LG. Novel tumour antigens and the development of optimal vaccine design. Ther Adv Vaccines Immunother 2018; 6:31-47. [PMID: 29998219 DOI: 10.1177/2515135518768769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/23/2018] [Indexed: 12/13/2022] Open
Abstract
The interplay between tumours and the immune system has long been known to involve complex interactions between tumour cells, immune cells and the tumour microenvironment. The progress of checkpoint inhibitors in the clinic in the last decade has highlighted again the role of the immune system in the fight against cancer. Numerous efforts have been undertaken to develop ways of stimulating the cellular immune response to eradicate tumours. These interventions include the identification of appropriate tumour antigens as targets for therapy. In this review, we summarize progress in selection of target tumour antigen. Targeting self antigens has the problem of thymic deletion of high-affinity T-cell responses leaving a diminished repertoire of low-affinity T cells that fail to kill tumour cells. Thymic regulation appears to be less stringent for differentiation of cancer-testis antigens, as many tumour rejection antigens fall into this category. More recently, targeting neo-epitopes or post-translational modifications such as a phosphorylation or stress-induced citrullination has shown great promise in preclinical studies. Of particular interest is that the responses can be mediated by both CD4 and CD8 T cells. Previous vaccines have targeted CD8 T-cell responses but more recently, the central role of CD4 T cells in orchestrating inflammation within tumours and also differentiating into potent killer cells has been recognized. The design of vaccines to induce such immune responses is discussed herein. Liposomally encoded ribonucleic acid (RNA), targeted deoxyribonucleic acid (DNA) or long peptides linked to toll-like receptor (TLR) adjuvants are the most promising new vaccine approaches. These exciting new approaches suggest that the 'Holy Grail' of a simple nontoxic cancer vaccine may be on the horizon. A major hurdle in tumour therapy is also to overcome the suppressive tumour environment. We address current progress in combination therapies and suggest that these are likely to show the most promise for the future.
Collapse
Affiliation(s)
| | - Suha Atabani
- Academic Department of Clinical Oncology, University of Nottingham, Nottingham, UK
| | - Katherine Cook
- Academic Department of Clinical Oncology, University of Nottingham, Nottingham, UK
| | - Lindy G Durrant
- Scancell Limited, Academic Department of Clinical Oncology, University of Nottingham, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| |
Collapse
|
4
|
Zhao J, Pan N, Huang F, Aldarouish M, Wen Z, Gao R, Zhang Y, Hu HM, Shen Y, Wang LX. Vx3-Functionalized Alumina Nanoparticles Assisted Enrichment of Ubiquitinated Proteins from Cancer Cells for Enhanced Cancer Immunotherapy. Bioconjug Chem 2018; 29:786-794. [PMID: 29382195 DOI: 10.1021/acs.bioconjchem.7b00578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A simple and effective strategy was developed to enrich ubiquitinated proteins (UPs) from cancer cell lysate using the α-Al2O3 nanoparticles covalently linked with ubiquitin binding protein (Vx3) (denoted as α-Al2O3-Vx3) via a chemical linker. The functionalized α-Al2O3-Vx3 showed long-term stability and high efficiency for the enrichment of UPs from cancer cell lysates. Flow cytometry analysis results indicated dendritic cells (DCs) could more effectively phagocytize the covalently linked α-Al2O3-Vx3-UPs than the physical mixture of α-Al2O3 and Vx3-UPs (α-Al2O3/Vx3-UPs). Laser confocal microscopy images revealed that α-Al2O3-Vx3-UPs localized within the autophagosome of DCs, which then cross-presented α-Al2O3-Vx3-UPs to CD8+ T cells in an autophagosome-related cross-presentation pathway. Furthermore, α-Al2O3-Vx3-UPs enhanced more potent antitumor immune response and antitumor efficacy than α-Al2O3/cell lysate or α-Al2O3/Vx3-UPs. This work highlights the potential of using the Vx3 covalently linked α-Al2O3 as a simple and effective platform to enrich UPs from cancer cells for the development of highly efficient therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Jinjin Zhao
- Department of Microbiology and Immunology , Medicine School of Southeast University , Nanjing , Jiangsu 210009 , P.R. China
| | - Ning Pan
- Department of Microbiology and Immunology , Medicine School of Southeast University , Nanjing , Jiangsu 210009 , P.R. China
| | - Fang Huang
- Department of Microbiology and Immunology , Medicine School of Southeast University , Nanjing , Jiangsu 210009 , P.R. China
| | - Mohanad Aldarouish
- Department of Microbiology and Immunology , Medicine School of Southeast University , Nanjing , Jiangsu 210009 , P.R. China
| | - Zhifa Wen
- Department of Microbiology and Immunology , Medicine School of Southeast University , Nanjing , Jiangsu 210009 , P.R. China
| | - Rong Gao
- Department of Microbiology and Immunology , Medicine School of Southeast University , Nanjing , Jiangsu 210009 , P.R. China
| | - Yuye Zhang
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 210009 , P.R. China
| | - Hong-Ming Hu
- Department of Microbiology and Immunology , Medicine School of Southeast University , Nanjing , Jiangsu 210009 , P.R. China.,Laboratory of Cancer Immunobiology, Earle A. Chiles Research Institute , Providence Portland Medical Center , Portland , Oregon 97213 United States
| | - Yanfei Shen
- Department of Bioengineering , Medicine School of Southeast University , Nanjing , Jiangsu 210009 , P.R. China
| | - Li-Xin Wang
- Department of Microbiology and Immunology , Medicine School of Southeast University , Nanjing , Jiangsu 210009 , P.R. China
| |
Collapse
|