1
|
Jordan MA, Morschl J, Autenrieth SE. Dendritic cells in multiple myeloma: from immune evasion to therapeutic potential. Front Immunol 2025; 16:1575509. [PMID: 40313957 PMCID: PMC12043573 DOI: 10.3389/fimmu.2025.1575509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/02/2025] [Indexed: 05/03/2025] Open
Abstract
Multiple myeloma (MM) is a type of hematologic cancer characterized by the uncontrolled clonal expansion of plasma cells in the bone marrow (BM). This leads to significant dysfunction and suppression of the immune system in affected patients. Myeloma cells employ sophisticated strategies to manipulate immune and non-immune cells, evading immune surveillance and enhancing their survival. One key factor in this evasion is the disruption of dendritic cell (DC)-mediated immune mechanisms. Extensive evidence indicates that in the presence of myeloma cells, DC numbers are notably reduced, and their phenotype and function are altered, impairing their ability to present antigens and activate robust T-cell responses effectively. Despite rapid advances in MM treatment, with promising strategies such as DC-based vaccines being already achieved, DC dysfunction remains a substantial hurdle, associated with or contributing to poor therapeutic outcomes, disease relapse, and MM's persistence as an incurable disease. To address these challenges, it is essential to understand the intricate mechanisms through which myeloma cells transform DCs into their "accomplices," undermining immune responses. This review comprehensively summarizes the current understanding of the role of DCs in MM. Additionally, it evaluates the potential of DCs in anti-MM immunotherapy, discussing persistent challenges and highlighting emerging perspectives that may lead to promising breakthroughs for improved patient outcomes.
Collapse
|
2
|
Liu Z, Yang C, Liu X, Xu X, Zhao X, Fu R. Therapeutic strategies to enhance immune response induced by multiple myeloma cells. Front Immunol 2023; 14:1169541. [PMID: 37275861 PMCID: PMC10232766 DOI: 10.3389/fimmu.2023.1169541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
Multiple myeloma (MM)as a haematological malignancy is still incurable. In addition to the presence of somatic genetic mutations in myeloma patients, the presence of immunosuppressive microenvironment greatly affects the outcome of treatment. Although the discovery of immunotherapy makes it possible to break the risk of high toxicity and side effects of traditional chemotherapeutic drugs, there are still obstacles of ineffective treatment or disease recurrence. In this review, we discuss therapeutic strategies to further enhance the specific anti-tumor immune response by activating the immunogenicity of MM cells themselves. New ideas for future myeloma therapeutic approaches are provided.
Collapse
|
3
|
Verheye E, Bravo Melgar J, Deschoemaeker S, Raes G, Maes A, De Bruyne E, Menu E, Vanderkerken K, Laoui D, De Veirman K. Dendritic Cell-Based Immunotherapy in Multiple Myeloma: Challenges, Opportunities, and Future Directions. Int J Mol Sci 2022; 23:904. [PMID: 35055096 PMCID: PMC8778019 DOI: 10.3390/ijms23020904] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapeutic approaches, including adoptive cell therapy, revolutionized treatment in multiple myeloma (MM). As dendritic cells (DCs) are professional antigen-presenting cells and key initiators of tumor-specific immune responses, DC-based immunotherapy represents an attractive therapeutic approach in cancer. The past years, various DC-based approaches, using particularly ex-vivo-generated monocyte-derived DCs, have been tested in preclinical and clinical MM studies. However, long-term and durable responses in MM patients were limited, potentially attributed to the source of monocyte-derived DCs and the immunosuppressive bone marrow microenvironment. In this review, we briefly summarize the DC development in the bone marrow niche and the phenotypical and functional characteristics of the major DC subsets. We address the known DC deficiencies in MM and give an overview of the DC-based vaccination protocols that were tested in MM patients. Lastly, we also provide strategies to improve the efficacy of DC vaccines using new, improved DC-based approaches and combination therapies for MM patients.
Collapse
Affiliation(s)
- Emma Verheye
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (E.V.); (A.M.); (E.D.B.); (E.M.); (K.V.)
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium; (J.B.M.); (S.D.); (G.R.)
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Jesús Bravo Melgar
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium; (J.B.M.); (S.D.); (G.R.)
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Sofie Deschoemaeker
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium; (J.B.M.); (S.D.); (G.R.)
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Geert Raes
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium; (J.B.M.); (S.D.); (G.R.)
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Anke Maes
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (E.V.); (A.M.); (E.D.B.); (E.M.); (K.V.)
| | - Elke De Bruyne
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (E.V.); (A.M.); (E.D.B.); (E.M.); (K.V.)
| | - Eline Menu
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (E.V.); (A.M.); (E.D.B.); (E.M.); (K.V.)
| | - Karin Vanderkerken
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (E.V.); (A.M.); (E.D.B.); (E.M.); (K.V.)
| | - Damya Laoui
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium; (J.B.M.); (S.D.); (G.R.)
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Kim De Veirman
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (E.V.); (A.M.); (E.D.B.); (E.M.); (K.V.)
| |
Collapse
|
4
|
Rundgren IM, Ryningen A, Anderson Tvedt TH, Bruserud Ø, Ersvær E. Immunomodulatory Drugs Alter the Metabolism and the Extracellular Release of Soluble Mediators by Normal Monocytes. Molecules 2020; 25:molecules25020367. [PMID: 31963193 PMCID: PMC7024334 DOI: 10.3390/molecules25020367] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Immunomodulatory drugs (IMiDs) are used in the treatment of hematological malignancies, especially multiple myeloma. IMiDs have direct anticancer effects but also indirect effects via cancer-supporting stromal cells. Monocytes are a stromal cell subset whose metabolism is modulated by the microenvironment, and they communicate with neighboring cells through extracellular release of soluble mediators. Toll-like receptor 4 (TLR4) is then a common regulator of monocyte metabolism and mediator release. Our aim was to investigate IMiD effects on these two monocyte functions. We compared effects of thalidomide, lenalidomide, and pomalidomide on in vitro cultured normal monocytes. Cells were cultured in medium alone or activated by lipopolysaccharide (LPS), a TLR4 agonist. Metabolism was analyzed by the Seahorse XF 96 cell analyzer. Mediator release was measured as culture supernatant levels. TLR4 was a regulator of both monocyte metabolism and mediator release. All three IMiDs altered monocyte metabolism especially when cells were cultured with LPS; this effect was strongest for lenalidomide that increased glycolysis. Monocytes showed a broad soluble mediator release profile. IMiDs decreased TLR4-induced mediator release; this effect was stronger for pomalidomide than for lenalidomide and especially thalidomide. To conclude, IMiDs can alter the metabolism and cell–cell communication of normal monocytes, and despite their common molecular target these effects differ among various IMiDs.
Collapse
Affiliation(s)
- Ida Marie Rundgren
- Department of Biomedical Laboratory Scientist Education and Chemical Engineering, Faculty of Engineering and Natural Sciences, Western Norway University of Applied Sciences, 5020 Bergen, Norway; (I.M.R.); (A.R.); (E.E.)
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Anita Ryningen
- Department of Biomedical Laboratory Scientist Education and Chemical Engineering, Faculty of Engineering and Natural Sciences, Western Norway University of Applied Sciences, 5020 Bergen, Norway; (I.M.R.); (A.R.); (E.E.)
| | | | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
- Correspondence:
| | - Elisabeth Ersvær
- Department of Biomedical Laboratory Scientist Education and Chemical Engineering, Faculty of Engineering and Natural Sciences, Western Norway University of Applied Sciences, 5020 Bergen, Norway; (I.M.R.); (A.R.); (E.E.)
| |
Collapse
|
5
|
Rundgren IM, Ersvær E, Ahmed AB, Ryningen A, Bruserud Ø. Circulating monocyte subsets in multiple myeloma patients receiving autologous stem cell transplantation - a study of the preconditioning status and the course until posttransplant reconstitution for a consecutive group of patients. BMC Immunol 2019; 20:39. [PMID: 31703617 PMCID: PMC6842166 DOI: 10.1186/s12865-019-0323-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/22/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Induction therapy of multiple myeloma patients prior to autologous stem cell transplantation has changed from conventional chemotherapy to treatment based on proteasome inhibitors or immunomodulatory drugs. We used flow cytometry to analyze total monocyte and monocyte subset (classical, intermediate and non-classical monocytes) peripheral blood levels before and following auto-transplantation for a consecutive group of myeloma patients who had received the presently used induction therapy. RESULTS The patients showed normal total monocyte concentrations after induction/stem cell mobilization, but the concentrations of classical monocytes were increased compared with healthy controls. Melphalan conditioning reduced the levels of total CD14+ as well as classical and non-classical monocytes, whereas intermediate monocytes were not affected. Thus, melphalan has a non-random effect on monocyte subsets. Melphalan had a stronger effect on total and classical monocyte concentrations for those patients who had received induction therapy including immunomodulatory drugs. Total monocytes and monocyte subset concentrations decreased during the period of pancytopenia, but monocyte reconstitution occurred before hematopoietic reconstitution. However, the fractions of various monocyte subsets varied considerably between patients. CONCLUSIONS The total level of circulating monocytes is normalized early after auto-transplantation for multiple myeloma, but pre- and post-transplant levels of various monocyte subsets show considerable variation between patients.
Collapse
Affiliation(s)
- Ida Marie Rundgren
- Department of Biomedical Laboratory Scientist Education and Chemical Engineering Faculty of Engineering and Natural Sciences, Western Norway University of Applied Sciences, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Elisabeth Ersvær
- Department of Biomedical Laboratory Scientist Education and Chemical Engineering Faculty of Engineering and Natural Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Aymen Bushra Ahmed
- Section for Hematology, Department of Medicine, Haukeland University Hospital, N-5021, Bergen, Norway
| | - Anita Ryningen
- Department of Biomedical Laboratory Scientist Education and Chemical Engineering Faculty of Engineering and Natural Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, Bergen, Norway. .,Section for Hematology, Department of Medicine, Haukeland University Hospital, N-5021, Bergen, Norway.
| |
Collapse
|
6
|
De Beck L, Melhaoui S, De Veirman K, Menu E, De Bruyne E, Vanderkerken K, Breckpot K, Maes K. Epigenetic treatment of multiple myeloma mediates tumor intrinsic and extrinsic immunomodulatory effects. Oncoimmunology 2018; 7:e1484981. [PMID: 30288346 PMCID: PMC6169579 DOI: 10.1080/2162402x.2018.1484981] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/26/2022] Open
Abstract
Immune evasion is an important driver of disease progression in the plasma cell malignancy multiple myeloma. Recent work highlights the potential of epigenetic modulating agents as tool to enhance anti-tumor immunity. The immune modulating effects of the combination of a DNA methyltransferase inhibitor and a histone deacetylase inhibitor in multiple myeloma is insufficiently characterized. Therefore, we used the murine immunocompetent 5T33MM model to investigate hallmarks of immunogenic cell death as well as alterations in the immune cell constitution in the bone marrow of diseased mice in response to the DNA methyltransferase inhibitor decitabine and the histone deacetylase inhibitor quisinostat. Vaccination of mice with 5T33 cells treated with epigenetic compounds delayed tumor development upon a subsequent tumor challenge. In vitro, epigenetic treatment induced ecto-calreticulin and CD47, as well as a type I interferon response. Moreover, treated 5T33vt cells triggered dendritic cell maturation. The combination of decitabine and quisinostat in vivo resulted in combinatory anti-myeloma effects. In vivo, epigenetic treatment increased tumoral ecto-calreticulin and decreased CD47 and PD-L1 expression, increased dendritic cell maturation and reduced CD11b positive cells. Moreover, epigenetic treatment induced a temporal increase in presence of CD8-positive and CD4-positive T cells with naive and memory-like phenotypes based on CD62L and CD44 expression levels, and reduced expression of exhaustion markers PD-1 and TIM3. In conclusion, a combination of a DNA methyltransferase inhibitor and a histone deacetylase inhibitor increased the immunogenicity of myeloma cells and altered the immune cell constitution in the bone marrow of myeloma-bearing mice.
Collapse
Affiliation(s)
- Lien De Beck
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussel, Belgium.,Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sarah Melhaoui
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussel, Belgium
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussel, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussel, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussel, Belgium
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ken Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussel, Belgium
| |
Collapse
|
7
|
Kang T, Huang Y, Zhu Q, Cheng H, Pei Y, Feng J, Xu M, Jiang G, Song Q, Jiang T, Chen H, Gao X, Chen J. Necroptotic cancer cells-mimicry nanovaccine boosts anti-tumor immunity with tailored immune-stimulatory modality. Biomaterials 2018; 164:80-97. [PMID: 29499438 DOI: 10.1016/j.biomaterials.2018.02.033] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/10/2018] [Accepted: 02/17/2018] [Indexed: 12/30/2022]
Abstract
Recent breakthroughs in cancer immunotherapy offer new paradigm-shifting therapeutic options for combating cancer. Personalized therapeutic anti-cancer vaccines training T cells to directly fight against tumor cells endogenously offer tremendous benefits in working synergistically with immune checkpoint inhibitors. Biomimetic nanotechnology offers a versatile platform to boost anticancer immunity by efficiently co-delivering optimized immunogenic antigen materials and adjuvants to antigen presenting cells (APC). Necroptotic tumor cells can release danger associated molecule patterns (DAMPs) like heat shock proteins, being more immunogenic than naïve tumor cells. Here, nano-size "artificial necroptotic cancer cell" (αHSP70p-CM-CaP) composing of phospholipid bilayer and a phosphate calcium core was designed as a flexible vaccine platform for co-delivering cancer membrane proteins (CM), DAMPs signal-augmenting element α-helix HSP70 functional peptide (αHSP70p) and CpG to both natural killer (NK) cells and APC. Mechanically, immunogenic B16OVA tumor cells membrane-associated antigens and αHSP70p were reconstituted in artificial outer phospholipid bilayer membrane via one-step hydration and CpG encapsulated in the phosphate calcium core. The resulted αHSP70p-CM-CaP exhibited 30 nm in diameter with the immunogenic membrane proteins reserved in the particles to produce synergistic effect on bone marrow derived dendritic cells maturation and antigen-presentation. Following αHSP70p-CM-CaP vaccination, efficient lymph node trafficking and multi-epitope-T cells response was observed in mice. Vitally, αHSP70p-CM-CaP was also able to induce expansion of IFN-γ-expressing CD8+ T cells and NKG2D+ NK cells subsets. Most promisingly, αHSP70p-CM-CaP vaccination led to the killing of target cells and tumor regression in vivo when combined with anti-PD-1 antibody treatment on mice B16OVA melanoma models. Altogether, we demonstrated proof-of-concept evidence for the feasibility, capability and safety of a nanovaccine platform towards efficient personalized anticancer application.
Collapse
Affiliation(s)
- Ting Kang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | - Yukun Huang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | - Qianqian Zhu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | - Hao Cheng
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yuanyuan Pei
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | - Jingxian Feng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | - Minjun Xu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China
| | - Tianze Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China.
| | - Jun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China.
| |
Collapse
|