1
|
Zhu Z, Lin R, Zhao B, Shi W, Cai Q, Zhang L, Xin Q, Li L, Miao Z, Zhou S, Huang Z, Huang Q, Zheng N. Whole-genome resequencing revealed the population structure and selection signal of 4 indigenous Chinese laying ducks. Poult Sci 2024; 103:103832. [PMID: 38781766 PMCID: PMC11145554 DOI: 10.1016/j.psj.2024.103832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
The assessment of animal genetic structure had significant importance for the preservation and breeding of animal germplasm resources. Selection signals are genotype markers generated during the process of biological evolution, and the detection of selection signals could reveal the direction of species evolution. The aim of this study was to generate a whole-genome resequencing data from Jinding duck, Shanma duck, Youxian Partridge duck, and Taiwan Brown tsaiya duck to reveal their population structure and selection signals. The population structure analysis revealed significant genetic differences among the 4 indigenous laying ducks, indicating their independent lineage. Specifically, Shanma duck and Youxian partridge duck were closely and likely originated from a common ancestor. In addition, selection sweep analysis was performed using the population genetic differentiation coefficient (Fst) and nucleotide diversity ratio (π ratio). The top 5% was used as the threshold for the Fst and π ratio, and the 2 thresholds were combined to identify selected genomic regions. In the selected regions of the 3 comparison groups, 136, 143, and 268 candidate genes were detected. Further screening of all candidate genes revealed that 35 candidate genes appeared simultaneously in 3 comparative groups, with 16 genes annotated. The 16 genes were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The results revealed 5 functional genes (AQP3, PIK3C3, NOL6, RPP25, and DCTN3) that may be related to important economic traits in laying ducks and involved mainly invasopressin-regulated water reabsorption, ribosome biogenesis, and the PI3K signaling pathway. The results provide insights into the protection and exploitation of genetic resources of Chinese indigenous laying ducks.
Collapse
Affiliation(s)
- Zhiming Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China
| | - Ruiyi Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bangzhe Zhao
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China; College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenli Shi
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China; College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiannan Cai
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China; College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Linli Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China
| | - Qingwu Xin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China
| | - Li Li
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China
| | - Zhongwei Miao
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China
| | - Shiyi Zhou
- Seed Industry Development Center of Shishi, Shishi 362700, China
| | - Zhongbin Huang
- Seed Industry Development Center of Shishi, Shishi 362700, China
| | - Qinlou Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China
| | - Nenzhu Zheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China.
| |
Collapse
|
2
|
Mohammed Zaidh S, Aher KB, Bhavar GB, Irfan N, Ahmed HN, Ismail Y. Genes adaptability and NOL6 protein inhibition studies of fabricated flavan-3-ols lead skeleton intended to treat breast carcinoma. Int J Biol Macromol 2024; 258:127661. [PMID: 37898257 DOI: 10.1016/j.ijbiomac.2023.127661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/10/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Breast cancer invasive 2.3 million women worldly and second prominent factor of cancer-related mortality. Finding a new site-specific and safe small molecule is a current need in this field. With the aid of deep learning Algorithms, we analyzed the published big database from cancer CBioportal to find the best target protein. Further, Multi-omics analysis such as enrichment analysis, scores of molecular, RNA biological function at a cellular level, and protein domain were obtained and matched to find the better hit molecules. The gene analysis output shows nucleolar protein 6 plays a significant responsibility in breast carcinoma and 354 natural and synthetic lead molecules are docked inside the active site. Docking result gave the output hit molecule falavan-3-ols with a binding score of -5.325 (Kcal/mol) and interaction analysis illustrates, 13 active amino acids favoring the binding interaction with functional groups of the hit molecule compared to the standard molecule Abemacilib (-2.857 (Kcal/mol)). Best docked complex of flavan-3-ols and NOL6 protein subjected to dynamic simulation 100 ns to study the stability. The results proved that π-π stacked, carbon‑hydrogen and electrostatic interactions are stable throughout the 100 ns simulation. The overall results conclude the hit molecule flavan-3-ol will be a safe and potent lead molecule to generate and treat breast carcinoma patients.
Collapse
Affiliation(s)
- S Mohammed Zaidh
- Crescent School of Pharmacy, BS Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| | - Kiran Balasaheb Aher
- Department of Pharmaceutical Quality Assurance, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India
| | - Girija Balasaheb Bhavar
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India
| | - N Irfan
- Crescent School of Pharmacy, BS Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India.
| | - Haja Nazeer Ahmed
- Crescent School of Pharmacy, BS Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| | - Y Ismail
- Crescent School of Pharmacy, BS Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| |
Collapse
|
3
|
Radhakrishnan S, Martin CA, Rammohan A, Vij M, Chandrasekar M, Rela M. Significance of nucleologenesis, ribogenesis, and nucleolar proteome in the pathogenesis and recurrence of hepatocellular carcinoma. Expert Rev Gastroenterol Hepatol 2023; 17:363-378. [PMID: 36919496 DOI: 10.1080/17474124.2023.2191189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
INTRODUCTION Emerging evidence suggests that enhanced ribosome biogenesis, increased size, and quantitative distribution of nucleoli are associated with dysregulated transcription, which in turn drives a cell into aberrant cellular proliferation and malignancy. Nucleolar alterations have been considered a prognostic histological marker for aggressive tumors. More recently, advancements in the understanding of chromatin network (nucleoplasm viscosity) regulated liquid-liquid phase separation mechanism of nucleolus formation and their multifunctional role shed light on other regulatory processes, apart from ribosomal biogenesis of the nucleolus. AREAS COVERED Using hepatocellular carcinoma as a model to study the role of nucleoli in tumor progression, we review the potential of nucleolus coalescence in the onset and development of tumors through non-ribosomal biogenesis pathways, thereby providing new avenues for early diagnosis and cancer therapy. EXPERT OPINION Molecular-based classifications have failed to identify the nucleolar-based molecular targets that facilitate cell-cycle progression. However, the algorithm-based tumor risk identification with high-resolution medical images suggests prominent nucleoli, karyotheca, and increased nucleus/cytoplasm ratio as largely associated with tumor recurrence. Nonetheless, the role of the non-ribosomal functions of nucleoli in tumorigenesis remains elusive. This clearly indicates the lacunae in the study of the nucleolar proteins pertaining to cancer. [Figure: see text].
Collapse
Affiliation(s)
| | | | - Ashwin Rammohan
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Chennai, India
| | - Mukul Vij
- Department of Pathology, Dr. Rela Institute & Medical Centre, Chennai, India
| | - Mani Chandrasekar
- Department of Oncology, Dr. Rela Institute & Medical Centre, Chennai, India
| | - Mohamed Rela
- Cell Laboratory, National Foundation for Liver Research, Chennai, India
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Chennai, India
| |
Collapse
|
4
|
Lu C, Liao W, Huang Y, Huang Y, Luo Y. Increased expression of NOP14 is associated with improved prognosis due to immune regulation in colorectal cancer. BMC Gastroenterol 2022; 22:207. [PMID: 35473611 PMCID: PMC9044756 DOI: 10.1186/s12876-022-02286-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/20/2022] [Indexed: 12/29/2022] Open
Abstract
Background Colorectal cancer (CRC) is the third most common of cancer-related deaths. Nucleolar protein 14 (NOP14) is known to play different roles in diverse types of cancers. However, little is known about its roles in CRC. Here, we assessed the prognostic value and functions of NOP14 in CRC using the data from The Cancer Genome Atlas (TCGA) and validated them based on the data from Gene Expression Omnibus (GEO). Methods NOP14 mRNA and protein data in CRC was obtained from the TCGA, GEO, human protein atlas (HPA), and UALCAN databases. Survival and Cox regression analysis was performed to assess the prognostic value of NOP14 in CRC patients. Next, to evaluate the potential functions of NOP14, a protein–protein interaction (PPI) network was constructed and gene set enrichment analysis (GSEA) of differential expression genes (DEGs) associated with dysregulated NOP14 was performed. Finally, to investigate the immune response associated with NOP14 expression in CRC, we analyzed the correlations between immune cells infiltration and NOP14 expression level. Additionally, the correlations between immune molecule expression levels with NOP14 expression level were analyzed. Results High NOP14 mRNA expression was observed in CRC tissues based on the data from TCGA and GEO datasets. Similarly, high NOP14 protein levels were found in CRC tissues according to the immunohistochemical images from HPA. Interestingly, high NOP14 expression level was associated with an improved prognosis in CRC patients. Univariate and multivariate Cox regression analysis indicated that high NOP14 expression level was an independent protective factor for CRC patients. With the support of PPI network analysis, we found several risk genes interacted with NOP14. GSEA revealed that high NOP14 expression inhibited several signal pathways involved in tumor formation and development. Additionally, high NOP14 expression was positively associated with most kinds of immune cell infiltrations and the expression levels of some molecules related to immune activation. Conclusion Altogether, these results indicated that high NOP14 expression leads to improved prognosis in CRC patients by inhibiting the signaling pathways involved in tumor growth and promoting the immune responses.
Collapse
Affiliation(s)
- Caijie Lu
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong Province, China
| | - Weihua Liao
- Department of Radiology, Guangzhou Nansha District Maternal and Child Health Hospital, No. 103, Haibang Road, Nansha District, Guangzhou, 511457, Guangdong Province, China
| | - Yiwen Huang
- Department of Emergency, Nansha Hospital, Guangzhou First People's Hospital, School of Medicine, Southern China University of Technology, Guangzhou, Guangdong, China
| | - Yaoxing Huang
- Department of Gastroenterology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Yuqi Luo
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong Province, China.
| |
Collapse
|