1
|
Chen J, Li ZY, Zheng G, Cao L, Guo YM, Lian Q, Gu B, Yue CF. RNF4 mediated degradation of PDHA1 promotes colorectal cancer metabolism and metastasis. NPJ Precis Oncol 2024; 8:258. [PMID: 39521913 PMCID: PMC11550450 DOI: 10.1038/s41698-024-00724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
This study investigates the role of RNF4-mediated ubiquitination and degradation of PDHA1 in colorectal cancer (CRC) metabolism and metastasis. Integrating (The Cancer Genome Atlas) TCGA and Clinical Proteomic Tumor Analysis Consortium (CPTAC) databases, proteomic, clinical, and metabolomic analyses were performed, revealing PDHA1 as a prognostic marker in CRC. Immunohistochemical staining confirmed lower PDHA1 expression in metastatic CRC tissues. In vitro experiments demonstrated that PDHA1 overexpression inhibited CRC cell proliferation, migration, and invasion. RNF4 was identified as a key mediator in the ubiquitination degradation of PDHA1, influencing glycolytic pathways in CRC cells. Metabolomic analysis of serum samples from metastatic CRC patients further supported these findings. In vivo experiments, including xenograft and metastasis models, validated that RNF4 knockdown stabilized PDHA1, inhibiting tumor formation and metastasis. This study highlights the critical role of RNF4-mediated PDHA1 ubiquitination in promoting glycolytic metabolism, proliferation, and metastasis in CRC.
Collapse
Affiliation(s)
- Jierong Chen
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, PR China
| | - Zi-Yue Li
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, PR China
| | - Guansheng Zheng
- Department of Clinical Laboratory,Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, PR China
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510180, Guangdong, PR China
| | - Lixue Cao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, PR China
| | - Yun-Miao Guo
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, 236 Yuanzhu Road, Zhanjiang, 524045, PR China
| | - Qizhou Lian
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, PR China.
| | - Bing Gu
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, PR China.
| | - Cai-Feng Yue
- Department of Laboratory Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, 236 Yuanzhu Road, Zhanjiang, 524045, PR China.
| |
Collapse
|
2
|
Ma Y, Huang Y, Hu F, Shu K. Lipid metabolic rewiring in glioma‑associated microglia/macrophages (Review). Int J Mol Med 2024; 54:102. [PMID: 39301636 PMCID: PMC11414527 DOI: 10.3892/ijmm.2024.5426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Gliomas are the most prevailing brain malignancy in both children and adults. Microglia, which are resident in the central nervous system (CNS), are distributed throughout the brain and serve an important role in the immunity of the CNS. Microglial cells exhibit varying phenotypic and metabolic properties during different stages of glioma development, making them a highly dynamic cell population. In particular, glioma‑associated microglia/macrophages (GAMs) can alter their metabolic characteristics and influence malignancies in response to the signals they receive. The significance of macrophage metabolic reprogramming in tumor growth is becoming increasingly acknowledged in recent years. However, to the best of our knowledge, there is currently a scarcity of data from investigations into the lipid metabolic profiles of microglia/macrophages in the glioma setting. Therefore, the present review aims to provide a thorough review of the role that lipid metabolism serves in tumor‑associated macrophages. In addition, it outlines potential targets for therapy based on lipid metabolism. The present review aims to serve as a reference source for future investigations into GAMs.
Collapse
Affiliation(s)
- Yixuan Ma
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yimin Huang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Feng Hu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
3
|
Bao R, Qu H, Li B, Cheng K, Miao Y, Wang J. The role of metabolic reprogramming in immune escape of triple-negative breast cancer. Front Immunol 2024; 15:1424237. [PMID: 39192979 PMCID: PMC11347331 DOI: 10.3389/fimmu.2024.1424237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Triple-negative breast cancer (TNBC) has become a thorny problem in the treatment of breast cancer because of its high invasiveness, metastasis and recurrence. Although immunotherapy has made important progress in TNBC, immune escape caused by many factors, especially metabolic reprogramming, is still the bottleneck of TNBC immunotherapy. Regrettably, the mechanisms responsible for immune escape remain poorly understood. Exploring the mechanism of TNBC immune escape at the metabolic level provides a target and direction for follow-up targeting or immunotherapy. In this review, we focus on the mechanism that TNBC affects immune cells and interstitial cells through hypoxia, glucose metabolism, lipid metabolism and amino acid metabolism, and changes tumor metabolism and tumor microenvironment. This will help to find new targets and strategies for TNBC immunotherapy.
Collapse
Affiliation(s)
- Ruochen Bao
- Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The 2Medical College of Binzhou Medical University, Yantai, China
| | - Hongtao Qu
- Emergency Department of Yantai Mountain Hospital, Yantai, China
| | - Baifeng Li
- Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The 2Medical College of Binzhou Medical University, Yantai, China
| | - Kai Cheng
- Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The 2Medical College of Binzhou Medical University, Yantai, China
| | - Yandong Miao
- Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2 Medical College of Binzhou Medical University, Yantai, China
| | - Jiangtao Wang
- Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The 2Medical College of Binzhou Medical University, Yantai, China
| |
Collapse
|
4
|
Loginova N, Aniskin D, Timashev P, Ulasov I, Kharwar RK. GBM Immunotherapy: Macrophage Impacts. Immunol Invest 2024; 53:730-751. [PMID: 38634572 DOI: 10.1080/08820139.2024.2337022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
BACKGROUND Glioblastoma (GBM) is an extremely aggressive form of brain tumor with low survival rates. Current treatments such as chemotherapy, radiation, and surgery are problematic due to tumor growth, invasion, and tumor microenvironment. GBM cells are resistant to these standard treatments, and the heterogeneity of the tumor makes it difficult to find a universal approach. Progression of GBM and acquisition of resistance to therapy are due to the complex interplay between tumor cells and the TME. A significant portion of the TME consists of an inflammatory infiltrate, with microglia and macrophages being the predominant cells. METHODS Analysis of the literature data over a course of 5 years suggest that the tumor-associated macrophages (TAMs) are capable of releasing cytokines and growth factors that promote tumor proliferation, survival, and metastasis while inhibiting immune cell function at the same time. RESULTS Thus, immunosuppressive state, provided with this intensively studied kind of TME cells, is supposed to promote GBM development through TAMs modulation of tumor treatment-resistance and aggressiveness. Therefore, TAMs are an attractive therapeutic target in the treatment of glioblastoma. CONCLUSION This review provides a comprehensive overview of the latest research on the nature of TAMs and the development of therapeutic strategies targeting TAMs, focusing on the variety of macrophage properties, being modulated, as well as molecular targets.
Collapse
Affiliation(s)
- Nina Loginova
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Denis Aniskin
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Peter Timashev
- World-Class Research Centre "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Rajesh Kumar Kharwar
- Endocrine Research Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
| |
Collapse
|
5
|
Fedosova N, Chumak A, Cheremshenko N, Karaman O, Symchych T, Voyeykova I. IN VIVO STUDY OF POTENTIAL MECHANISMS OF MACROPHAGE REPOLARIZATION ON THE BACKGROUND OF TUMOR GROWTH. Exp Oncol 2024; 46:30-37. [PMID: 38852055 DOI: 10.15407/exp-oncology.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Indexed: 06/10/2024]
Abstract
AIM To study the activity of antitumor immunity effectors and to analyze possible mechanisms of peritoneal Mph M1/M2 repolarization of Balb/c mice under the influence of lectin from B. subtilis IMV B-7724 in the dynamics of the model tumor growth. MATERIALS AND METHODS Studies were performed on Balb/c mice; Ehrlich adenocarcinoma (АСЕ) was used as an experimental tumor. Lectin from B. subtilis IMV B-7724 was administered to ACE-bearing mice at a dose of 1 mg/kg of body weight, 10 times. Immunological testing was performed on days 21 and 28 after tumor grafting. The functional activity of peritoneal macrophages (Mph), natural killer (NK) cells, cytotoxic lymphocytes (CTL), and cytokine levels (IFN-γ, IL-4) were studied by the standard methods. mRNA expression levels of transcription factors STAT-1, STAT-6, IRF5, and IRF4 in Mph were evaluated. RESULTS The administration of lectin from B. subtilis IMV B-7724 to mice with solid ACE led to the preservation of the initial functional state of peritoneal Mph M1 during the experiment. The bacterial lectin ensured the preservation of the cytotoxic activity of CD8+ T-lymphocytes and a significant (p < 0.05) increase in the NK activity (by 2.7 times compared to the intact animals and by 12.9 times compared to the untreated mice). A strong positive correlation was noted between the levels of the functional activity of Mph and CD8+ T-lymphocytes of animals with tumors and the indices of the antitumor effectiveness of bacterial lectin. The indirect polarization of Mph was evidenced by a strong positive correlation between the level of the NO/Arg ratio (which characterizes the direction of Mph polarization) and the cytotoxic activity of CD8+ T-lymphocytes, NK cells, and the expression of STAT1/STAT6 (the 21st day) and IRF5/IRF4 (the 28th day). CONCLUSION In ACE-bearing mice, repolarization of the peritoneal Mph toward M1 can occur not only due to the direct action of bacterial lectin on the cellular receptors but also with the involvement of other effectors of antitumor immunity (NK cells, T-lymphocytes). The transcription factors of the STAT and IRF signaling pathways are involved in the polarization process.
Collapse
MESH Headings
- Animals
- Mice
- Mice, Inbred BALB C
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Carcinoma, Ehrlich Tumor/immunology
- Carcinoma, Ehrlich Tumor/pathology
- Carcinoma, Ehrlich Tumor/metabolism
- Bacillus subtilis
- Cytokines/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- N Fedosova
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the NAS of Ukraine, Kyiv, Ukraine
| | - A Chumak
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the NAS of Ukraine, Kyiv, Ukraine
| | - N Cheremshenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the NAS of Ukraine, Kyiv, Ukraine
| | - O Karaman
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the NAS of Ukraine, Kyiv, Ukraine
| | - T Symchych
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the NAS of Ukraine, Kyiv, Ukraine
| | - I Voyeykova
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
6
|
Sang R, Yu X, Xia H, Qian X, Yong J, Xu Y, Sun Y, Yao Y, Zhou J, Zhuo S. NT5DC2 knockdown suppresses progression, glycolysis, and neuropathic pain in triple-negative breast cancer by blocking the EGFR pathway. Mol Carcinog 2024; 63:785-796. [PMID: 38289126 DOI: 10.1002/mc.23688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/03/2023] [Accepted: 01/14/2024] [Indexed: 03/16/2024]
Abstract
Triple-negative breast cancer (TNBC) is an exceptionally aggressive breast cancer subtype associated with neuropathic pain. This study explores the effects of 5'-nucleotidase domain-containing protein 2 (NT5DC2) on the progression of TNBC and neuropathic pain. Microarray analysis was conducted to identify differentially expressed genes in TNBC and the pathways involved. Gain- and loss-of-function assays of NT5DC2 were performed in TNBC cells, followed by detection of the extracellular acidification rate, adenosine triphosphate (ATP) levels, lactic acid production, glucose uptake, proliferation, migration, and invasion in TNBC cells. Macrophages were co-cultured with TNBC cells to examine the release of polarization-related factors and cytokines. A xenograft tumor model was established for in vivo validation. In addition, a mouse model of neuropathic pain was established through subepineural injection of TNBC cells, followed by measurement of the sciatic functional index and behavioral analysis to assess neuropathic pain. NT5DC2 was upregulated in TNBC and was positively correlated with epidermal growth factor receptor (EGFR). NT5DC2 interacted with EGFR to promote downstream signal transduction in TNBC cells. NT5DC2 knockdown diminished proliferation, migration, invasion, the extracellular acidification rate, ATP levels, lactic acid production, and glucose uptake in TNBC cells. Co-culture with NT5DC2-knockdown TNBC cells alleviated the M2 polarization of macrophages. Furthermore, NT5DC2 knockdown reduced tumor growth and neuropathic pain in mice. Importantly, activation of the EGFR pathway counteracted the effects of NT5DC2 knockdown. NT5DC2 knockdown protected against TNBC progression and neuropathic pain by inactivating the EGFR pathway.
Collapse
Affiliation(s)
- Rui Sang
- Health Management Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Xiaoping Yu
- Health Management Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
- Department of Ultrasound, Medical Imaging Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Han Xia
- Department of Ultrasound, Medical Imaging Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Xingxing Qian
- Health Management Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Jiacheng Yong
- Health Management Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yan Xu
- Health Management Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
- Department of Ultrasound, Medical Imaging Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yan Sun
- Health Management Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yiran Yao
- Department of Ultrasound, Medical Imaging Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Jing Zhou
- Health Management Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Shuangshuang Zhuo
- Department of Ultrasound, Medical Imaging Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Wu Y, Han W, Dong H, Liu X, Su X. The rising roles of exosomes in the tumor microenvironment reprogramming and cancer immunotherapy. MedComm (Beijing) 2024; 5:e541. [PMID: 38585234 PMCID: PMC10999178 DOI: 10.1002/mco2.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Exosomes are indispensable for intercellular communications. Tumor microenvironment (TME) is the living environment of tumor cells, which is composed of various components, including immune cells. Based on TME, immunotherapy has been recently developed for eradicating cancer cells by reactivating antitumor effect of immune cells. The communications between tumor cells and TME are crucial for tumor development, metastasis, and drug resistance. Exosomes play an important role in mediating these communications and regulating the reprogramming of TME, which affects the sensitivity of immunotherapy. Therefore, it is imperative to investigate the role of exosomes in TME reprogramming and the impact of exosomes on immunotherapy. Here, we review the communication role of exosomes in regulating TME remodeling and the efficacy of immunotherapy, as well as summarize the underlying mechanisms. Furthermore, we also introduce the potential application of the artificially modified exosomes as the delivery systems of antitumor drugs. Further efforts in this field will provide new insights on the roles of exosomes in intercellular communications of TME and cancer progression, thus helping us to uncover effective strategies for cancer treatment.
Collapse
Affiliation(s)
- Yu Wu
- Clinical Medical Research Center of the Affiliated HospitalInner Mongolia Medical UniversityHohhotChina
| | - Wenyan Han
- Clinical Laboratorythe Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotChina
| | - Hairong Dong
- Clinical LaboratoryHohhot first hospitalHohhotChina
| | - Xiaofeng Liu
- Hepatopancreatobiliary Surgery Department IKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital and InstituteBeijingChina
| | - Xiulan Su
- Clinical Medical Research Center of the Affiliated HospitalInner Mongolia Medical UniversityHohhotChina
| |
Collapse
|
8
|
Qiu Y, Lu G, Li N, Hu Y, Tan H, Jiang C. Exosome-mediated communication between gastric cancer cells and macrophages: implications for tumor microenvironment. Front Immunol 2024; 15:1327281. [PMID: 38455041 PMCID: PMC10917936 DOI: 10.3389/fimmu.2024.1327281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024] Open
Abstract
Gastric cancer (GC) is a malignant neoplasm originating from the epithelial cells of the gastric mucosa. The pathogenesis of GC is intricately linked to the tumor microenvironment within which the cancer cells reside. Tumor-associated macrophages (TAMs) primarily differentiate from peripheral blood monocytes and can be broadly categorized into M1 and M2 subtypes. M2-type TAMs have been shown to promote tumor growth, tissue remodeling, and angiogenesis. Furthermore, they can actively suppress acquired immunity, leading to a poorer prognosis and reduced tolerance to chemotherapy. Exosomes, which contain a myriad of biologically active molecules including lipids, proteins, mRNA, and noncoding RNAs, have emerged as key mediators of communication between tumor cells and TAMs. The exchange of these molecules via exosomes can markedly influence the tumor microenvironment and consequently impact tumor progression. Recent studies have elucidated a correlation between TAMs and various clinicopathological parameters of GC, such as tumor size, differentiation, infiltration depth, lymph node metastasis, and TNM staging, highlighting the pivotal role of TAMs in GC development and metastasis. In this review, we aim to comprehensively examine the bidirectional communication between GC cells and TAMs, the implications of alterations in the tumor microenvironment on immune escape, invasion, and metastasis in GC, targeted therapeutic approaches for GC, and the efficacy of potential GC drug resistance strategies.
Collapse
Affiliation(s)
- Yue Qiu
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Guimei Lu
- Department of Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Na Li
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Yanyan Hu
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Hao Tan
- Thoracic Esophageal Radiotherapy Department, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Chengyao Jiang
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Chumak A, Fedosova N, Cheremshenko N, Karaman O, Симчич Т, Voyeykova I. EFFECT OF B. SUBTILIS ІМV B-7724 LECTIN ON THE ACTIVITY OF EFFECTORS OF CELLULAR ANTITUMOR IMMUNITY OF MICE WITH LEWIS LUNG CARCINOMA. Exp Oncol 2023; 45:328-336. [PMID: 38186022 DOI: 10.15407/exp-oncology.2023.03.328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Indexed: 01/09/2024]
Abstract
AIM To evaluate the effect of B. subtilis IMV B-7724 lectin on the functional activity of macrophages (Mph), natural killer (NK) cells and cytotoxic lymphocytes (CTL) of mice bearing Lewis lung carcinoma (LLC). MATERIALS AND METHODS The studies were performed on C57Bl/6J mice; LLC was used as an experimental transplantable tumor. The lectin from B. subtilis IMV B-7724 was administered to LLC-bearing mice subcutaneously at a dose of 1 mg/kg of body weight for 10 days. The immunological testing was performed on days 14, 21, and 28 after tumor grafting. The cytotoxic activity of Mph, NK, and CTL was estimated in MTT-assay; the content of the stable metabolites of nitric oxide (NO) was measured by a standard Griess reaction; the arginase activity (Arg) was determined based on the measurement of urea. RESULTS The administration of the B. subtilis IMV B-7724 lectin to LLC-bearing mice exerted its antitumor and antimetastatic effects partially via a significant (p < 0.05) increase of Mph and NK activities after the completion of the treatment. In the group of animals injected with lectin, the NO/Arg ratio increased significantly, indicating the prevalence of Mph with proinflammatory and antitumor properties. The cytotoxic activity of Mph exceeded the indices of untreated mice and intact control by 1.8 times and 5.3 times respectively; of NK - by 2.8 and 1.3 times respectively. The effect of treatment on the CTL activity was less pronounced. CONCLUSION Antitumor and antimetastatic activity of the lectin from B. subtilis IMV B-7724 ensured the preservation of the cytotoxic activity of the main effectors of antitumor immunity (Mph, NK, and CTL) throughout LLC growth.
Collapse
Affiliation(s)
- A Chumak
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - N Fedosova
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - N Cheremshenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - O Karaman
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Т Симчич
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - I Voyeykova
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
10
|
Zheng S, Li H, Li Y, Chen X, Shen J, Chen M, Zhang C, Wu J, Sun Q. The emerging role of glycolysis and immune evasion in gastric cancer. Cancer Cell Int 2023; 23:317. [PMID: 38071310 PMCID: PMC10710727 DOI: 10.1186/s12935-023-03169-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/27/2023] [Indexed: 08/21/2024] Open
Abstract
Gastric cancer (GC) is the fifth most common malignancy and the third leading cause of cancer-related deaths worldwide. Similar to other types of tumors, GC cells undergo metabolic reprogramming and switch to a "predominantly glycolytic" metabolic pattern to promote its survival and metastasis, also known as "the Warburg effect", which is characterized by enhanced glucose uptake and lactate production. A large number of studies have shown that targeting cancer cells to enhanced glycolysis is a promising strategy, that can make cancer cells more susceptible to other conventional treatment methods of treatment, including chemotherapy, radiotherapy and immunotherapy, and so on. Therefore, this review summarizes the metabolic characteristics of glycolysis in GC cells and focuses on how abnormal lactate concentration can lead to immunosuppression through its effects on the differentiation, metabolism, and function of infiltrating immune cells, and how targeting this phenomenon may be a potential strategy to improve the therapeutic efficacy of GC.
Collapse
Affiliation(s)
- Shanshan Zheng
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Huaizhi Li
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Yaqi Li
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Xu Chen
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
| | - Junyu Shen
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Menglin Chen
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Cancan Zhang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Jian Wu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China.
| | - Qingmin Sun
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China.
| |
Collapse
|
11
|
Kang Y, Amoafo EB, Entsie P, Beatty GL, Liverani E. A role for platelets in metabolic reprogramming of tumor-associated macrophages. Front Physiol 2023; 14:1250982. [PMID: 37693009 PMCID: PMC10484008 DOI: 10.3389/fphys.2023.1250982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Cancer incidence and mortality are growing worldwide. With a lack of optimal treatments across many cancer types, there is an unmet need for the development of novel treatment strategies for cancer. One approach is to leverage the immune system for its ability to survey for cancer cells. However, cancer cells evolve to evade immune surveillance by establishing a tumor microenvironment (TME) that is marked by remarkable immune suppression. Macrophages are a predominant immune cell within the TME and have a major role in regulating tumor growth. In the TME, macrophages undergo metabolic reprogramming and differentiate into tumor-associated macrophages (TAM), which typically assume an immunosuppressive phenotype supportive of tumor growth. However, the plasticity of macrophage biology offers the possibility that macrophages may be promising therapeutic targets. Among the many determinants in the TME that may shape TAM biology, platelets can also contribute to cancer growth and to maintaining immune suppression. Platelets communicate with immune cells including macrophages through the secretion of immune mediators and cell-cell interaction. In other diseases, altering platelet secretion and cell-cell communication has been shown to reprogram macrophages and ameliorate inflammation. Thus, intervening on platelet-macrophage biology may be a novel therapeutic strategy for cancer. This review discusses our current understanding of the interaction between platelets and macrophages in the TME and details possible strategies for reprogramming macrophages into an anti-tumor phenotype for suppressing tumor growth.
Collapse
Affiliation(s)
- Ying Kang
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, United States
| | - Emmanuel Boadi Amoafo
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, United States
| | - Philomena Entsie
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, United States
| | - Gregory L. Beatty
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Elisabetta Liverani
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
12
|
Teng Y, Xu L, Li W, Liu P, Tian L, Liu M. Targeting reactive oxygen species and fat acid oxidation for the modulation of tumor-associated macrophages: a narrative review. Front Immunol 2023; 14:1224443. [PMID: 37545527 PMCID: PMC10401428 DOI: 10.3389/fimmu.2023.1224443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are significant immunocytes infiltrating the tumor microenvironment(TME). Recent research has shown that TAMs exhibit diversity in terms of their phenotype, function, time, and spatial distribution, which allows for further classification of TAM subtypes. The metabolic efficiency of fatty acid oxidation (FAO) varies among TAM subtypes. FAO is closely linked to the production of reactive oxygen species (ROS), which play a role in processes such as oxidative stress. Current evidence demonstrates that FAO and ROS can influence TAMs' recruitment, polarization, and phagocytosis ability either individually or in combination, thereby impacting tumor progression. But the specific mechanisms associated with these relationships still require further investigation. We will review the current status of research on the relationship between TAMs and tumor development from three aspects: ROS and TAMs, FAO and TAMs, and the interconnectedness of FAO, ROS, and TAMs.
Collapse
Affiliation(s)
| | | | | | | | - Linli Tian
- *Correspondence: Linli Tian, ; Ming Liu,
| | - Ming Liu
- *Correspondence: Linli Tian, ; Ming Liu,
| |
Collapse
|
13
|
Khan SU, Khan IM, Khan MU, Ud Din MA, Khan MZ, Khan NM, Liu Y. Role of LGMN in tumor development and its progression and connection with the tumor microenvironment. Front Mol Biosci 2023; 10:1121964. [PMID: 36825203 PMCID: PMC9942682 DOI: 10.3389/fmolb.2023.1121964] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
Legumain (LGMN) has been demonstrated to be overexpressed not just in breast, prostatic, and liver tumor cells, but also in the macrophages that compose the tumor microenvironment. This supports the idea that LGMN is a pivotal protein in regulating tumor development, invasion, and dissemination. Targeting LGMN with siRNA or chemotherapeutic medicines and peptides can suppress cancer cell proliferation in culture and reduce tumor growth in vivo. Furthermore, legumain can be used as a marker for cancer detection and targeting due to its expression being significantly lower in normal cells compared to tumors or tumor-associated macrophages (TAMs). Tumor formation is influenced by aberrant expression of proteins and alterations in cellular architecture, but the tumor microenvironment is a crucial deciding factor. Legumain (LGMN) is an in vivo-active cysteine protease that catalyzes the degradation of numerous proteins. Its precise biological mechanism encompasses a number of routes, including effects on tumor-associated macrophage and neovascular endothelium in the tumor microenvironment. The purpose of this work is to establish a rationale for thoroughly investigating the function of LGMN in the tumor microenvironment and discovering novel tumor early diagnosis markers and therapeutic targets by reviewing the function of LGMN in tumor genesis and progression and its relationship with tumor milieu.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China,Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China,*Correspondence: Ibrar Muhammad Khan, ; Yong Liu,
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, International Research Center for X Polymers, Zhejiang University, Hangzhou, China
| | - Muhammad Azhar Ud Din
- Faculty of Pharmacy, Gomal University Dera Ismail Khan KPK, Dera IsmailKhan, Pakistan
| | - Muhammad Zahoor Khan
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera IsmailKhan, Pakistan
| | - Nazir Muhammad Khan
- Department of Zoology, University of Science and Technology, Bannu, Pakistan
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China,*Correspondence: Ibrar Muhammad Khan, ; Yong Liu,
| |
Collapse
|
14
|
Correlation analysis of lipid metabolism genes with the immune microenvironment in gastric cancer and the construction of a novel gene signature. Clin Transl Oncol 2022; 25:1315-1331. [PMID: 36520384 DOI: 10.1007/s12094-022-03038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Lipid metabolism reprogramming plays an important role in cell growth, proliferation, angiogenesis and invasion of cancer. However, the prognostic value of lipid metabolism during gastric cancer (GC) progression and the relationship with the immune microenvironment are still unclear. The aim of this study was to clarify the correlation between lipid metabolism genes and GC immunity. METHOD We obtained 350 patients from The Cancer Genome Atlas (TCGA) and 355 patients from Gene Expression Omnibus (GEO) databases. Lipid metabolism-related gene datasets were obtained from the Reactome and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Molecular subtypes were obtained by Consensus clustering, and subtype immune status was analyzed using ESTIMATE, TIMER and microenvironmental cell population counter (MCP Counter) algorithm for immune analysis. Functional analyses included the application of Gene Set Enrichment Analysis (GSEA), KEGG, gene ontology (GO), and Protein-Protein Interaction Networks (PPI) to evaluate the molecular mechanisms of different subtypes. Weighted gene co-expression network analysis (WGCNA) was used to identify genes associated with immunity. The LASSO algorithm and multivariate Cox regression analysis were used to construct prognostic risk models. RESULT Based on the lipid metabolism genes found in GC, patients with GC can be divided into two subgroups with significantly different survival. The subgroup with a better prognosis presented higher immune scores and immune infiltrating cell abundance. 1170 immune-related genes were screened by WGCNA, and further screening by PPI network analysis revealed that PTPRC, CD4, ITGB2 and LCP2 were closely associated with immune cells. Combined with the TIDE score results, it was found that the population with high expression of the above genes might be more sensitive to immunotherapy. In addition, a survival prediction model for GC was developed based on five survival-related lipid metabolism genes, PIAS4, PLA2R1, PRKACA, SLCO1A2 and STARD4. The ROC analysis over time showed that the risk prediction score model had good stability. CONCLUSION Lipid metabolism gene expression is correlated with the immune microenvironment in GC patients and can accurately predict their prognosis. Studies on lipid metabolism and GC immunity can help to screen the population for immunotherapy benefits.
Collapse
|