1
|
Wang J, Wang Y, Jiang X. Targeting anticancer immunity in melanoma tumour microenvironment: unleashing the potential of adjuvants, drugs, and phytochemicals. J Drug Target 2024; 32:1052-1072. [PMID: 39041142 DOI: 10.1080/1061186x.2024.2384071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Melanoma poses a challenge in oncology because of its aggressive nature and limited treatment modalities. The tumour microenvironment (TME) in melanoma contains unique properties such as an immunosuppressive and high-density environment, unusual vasculature, and a high number of stromal and immunosuppressive cells. In recent years, numerous experiments have focused on boosting the immune system to effectively remove malignant cells. Adjuvants, consisting of phytochemicals, toll-like receptor (TLR) agonists, and cytokines, have shown encouraging results in triggering antitumor immunity and augmenting the therapeutic effectiveness of anticancer therapy. These adjuvants can stimulate the maturation of dendritic cells (DCs) and infiltration of cytotoxic CD8+ T lymphocytes (CTLs). Furthermore, nanocarriers can help to deliver immunomodulators and antigens directly to the tumour stroma, thereby improving their efficacy against malignant cells. The remodelling of melanoma TME utilising phytochemicals, agonists, and other adjuvants can be combined with current modalities for improving therapy outcomes. This review article explores the potential of adjuvants, drugs, and their nanoformulations in enhancing the anticancer potency of macrophages, CTLs, and natural killer (NK) cells. Additionally, the capacity of these agents to repress the function of immunosuppressive components of melanoma TME, such as immunosuppressive subsets of macrophages, stromal and myeloid cells will be discussed.
Collapse
Affiliation(s)
- Jingping Wang
- Emergency Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Yaping Wang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Xiaofang Jiang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| |
Collapse
|
2
|
Ridolfi L, Gurrieri L, Riva N, Bulgarelli J, De Rosa F, Guidoboni M, Fausti V, Ranallo N, Calpona S, Tazzari M, Petrini M, Granato AM, Pancisi E, Foca F, Dall’Agata M, Bondi I, Amadori E, Cortesi P, Zani C, Ancarani V, Gamboni A, Polselli A, Pasini G, Bartolini D, Maimone G, Arpa D, Tosatto L. First step results from a phase II study of a dendritic cell vaccine in glioblastoma patients (CombiG-vax). Front Immunol 2024; 15:1404861. [PMID: 39192978 PMCID: PMC11347333 DOI: 10.3389/fimmu.2024.1404861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/04/2024] [Indexed: 08/29/2024] Open
Abstract
Background Glioblastoma (GBM) is a poor prognosis grade 4 glioma. After surgical resection, the standard therapy consists of concurrent radiotherapy (RT) and temozolomide (TMZ) followed by TMZ alone. Our previous data on melanoma patients showed that Dendritic Cell vaccination (DCvax) could increase the amount of intratumoral-activated cytotoxic T lymphocytes. Methods This is a single-arm, monocentric, phase II trial in two steps according to Simon's design. The trial aims to evaluate progression-free survival (PFS) at three months and the safety of a DCvax integrated with standard therapy in resected GBM patients. DCvax administration begins after completion of RT-CTwith weekly administrations for 4 weeks, then is alternated monthly with TMZ cycles. The primary endpoints are PFS at three months and safety. One of the secondary objectives is to evaluate the immune response both in vitro and in vivo (DTH skin test). Results By December 2022, the first pre-planned step of the study was concluded with the enrollment, treatment and follow up of 9 evaluable patients. Two patients had progressed within three months after leukapheresis, but none had experienced DCvax-related G3-4 toxicities Five patients experienced a positive DTH test towards KLH and one of these also towards autologous tumor homogenate. The median PFS from leukapheresis was 11.3 months and 12.2 months from surgery. Conclusions This combination therapy is well-tolerated, and the two endpoints required for the first step have been achieved. Therefore, the study will proceed to enroll the remaining 19 patients. (Eudract number: 2020-003755-15 https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-003755-15/IT).
Collapse
Affiliation(s)
- Laura Ridolfi
- Experimental and Clinical Oncology of Immunotherapy and Rare Cancers, Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Lorena Gurrieri
- Experimental and Clinical Oncology of Immunotherapy and Rare Cancers, Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Nada Riva
- Experimental and Clinical Oncology of Immunotherapy and Rare Cancers, Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Jenny Bulgarelli
- Experimental and Clinical Oncology of Immunotherapy and Rare Cancers, Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Francesco De Rosa
- Experimental and Clinical Oncology of Immunotherapy and Rare Cancers, Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Massimo Guidoboni
- Experimental and Clinical Oncology of Immunotherapy and Rare Cancers, Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Valentina Fausti
- Experimental and Clinical Oncology of Immunotherapy and Rare Cancers, Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Nicoletta Ranallo
- Experimental and Clinical Oncology of Immunotherapy and Rare Cancers, Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Sebastiano Calpona
- Experimental and Clinical Oncology of Immunotherapy and Rare Cancers, Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Marcella Tazzari
- Experimental and Clinical Oncology of Immunotherapy and Rare Cancers, Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Massimiliano Petrini
- Experimental and Clinical Oncology of Immunotherapy and Rare Cancers, Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Anna Maria Granato
- Experimental and Clinical Oncology of Immunotherapy and Rare Cancers, Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Elena Pancisi
- Experimental and Clinical Oncology of Immunotherapy and Rare Cancers, Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Flavia Foca
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori” Meldola, Meldola, Italy
| | - Monia Dall’Agata
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori” Meldola, Meldola, Italy
| | - Isabella Bondi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori” Meldola, Meldola, Italy
| | - Elena Amadori
- Radiology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori” Meldola, Meldola, Italy
| | - Pietro Cortesi
- Cardioncology Division, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Zani
- Pharmacy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Valentina Ancarani
- Experimental and Clinical Oncology of Immunotherapy and Rare Cancers, Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | | | | | | | | | | | - Donatella Arpa
- Radiotherapy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | | |
Collapse
|
3
|
Granato AM, Pancisi E, Piccinini C, Stefanelli M, Pignatta S, Soldati V, Carloni S, Fanini F, Arienti C, Bulgarelli J, Tazzari M, Scarpi E, Passardi A, Tauceri F, La Barba G, Maimone G, Baravelli S, de Rosa F, Ridolfi L, Petrini M. Dendritic cell vaccines as cancer treatment: focus on 13 years of manufacturing and quality control experience in advanced therapy medicinal products. Cytotherapy 2024:S1465-3249(24)00771-0. [PMID: 39046388 DOI: 10.1016/j.jcyt.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND AIMS Dendritic cells (DCs) are professional antigen-presenting cells of the mammalian immune system. Ex vivo differentiated DCs represent a unique Advanced Therapy Medicinal Product (ATMP), used in several clinical trials as personalized cancer immunotherapy. The therapy's reliability depends on its capacity to produce high-quality mature DCs (mDCs) in compliance with Good Manufacturing Practices. AIMS From March 2010 to December 2023, 103 patients were enrolled in multiple clinical trials at the Immuno-Gene Therapy Factory at IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori". Six hundred forty-two doses were produced, and the manufacturing process was implemented to optimize production. Our study is a retrospective analysis focusing on the quality control results. METHODS We retrospectively analyzed the results of the quality control tests carried out on each produced batch, evaluating viability, purity and phenotype of mDCs and their quality in terms of microbiological safety. The data obtained are given with median and interquartile range. RESULTS The batches were found to be microbiologically safe in terms of sterility, mycoplasma, and endotoxins. An increase in DC maturation markers was found. The release criteria checks showed a high percentage of viability and purity was maintained during the production process. CONCLUSIONS Our findings have confirmed that the measures implemented have ensured the safety of the products and have contributed to the establishing a robust "Pharmaceutical Quality System." This has enabled many safe mDCs to be produced for clinical trials.
Collapse
Affiliation(s)
- Anna Maria Granato
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Elena Pancisi
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Claudia Piccinini
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Monica Stefanelli
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sara Pignatta
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Valentina Soldati
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Silvia Carloni
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Francesca Fanini
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Chiara Arienti
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Jenny Bulgarelli
- Experimental and Clinical Oncology Unit of Immunotherapy and Rare Cancers, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Marcella Tazzari
- Experimental and Clinical Oncology Unit of Immunotherapy and Rare Cancers, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Emanuela Scarpi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alessandro Passardi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Francesca Tauceri
- Department of General and Oncologic Surgery, Morgagni-Pierantoni Hospital, AUSL Romagna, Forlì, Italy
| | - Giuliano La Barba
- Department of General and Oncologic Surgery, Morgagni-Pierantoni Hospital, AUSL Romagna, Forlì, Italy
| | | | - Stefano Baravelli
- Unit of Immunohematology and Transfusion Medicine, GB Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Francesco de Rosa
- Experimental and Clinical Oncology Unit of Immunotherapy and Rare Cancers, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Laura Ridolfi
- Experimental and Clinical Oncology Unit of Immunotherapy and Rare Cancers, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Massimiliano Petrini
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
4
|
Dillman RO, Nistor GI, Keirstead HS. Autologous dendritic cells loaded with antigens from self-renewing autologous tumor cells as patient-specific therapeutic cancer vaccines. Hum Vaccin Immunother 2023:2198467. [PMID: 37133853 DOI: 10.1080/21645515.2023.2198467] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
A promising personal immunotherapy is autologous dendritic cells (DC) loaded ex vivo with autologous tumor antigens (ATA) derived from self-renewing autologous cancer cells. DC-ATA are suspended in granulocyte-macrophage colony stimulating factor at the time of each subcutaneous injection. Previously, irradiated autologous tumor cell vaccines have produced encouraging results in 150 cancer patients, but the DC-ATA vaccine demonstrated superiority in single-arm and randomized trials in metastatic melanoma. DC-ATA have been injected into more than 200 patients with melanoma, glioblastoma, and ovarian, hepatocellular, and renal cell cancers. Key observations include: [1] greater than 95% success rates for tumor cell cultures and monocyte collection for dendritic cell production; [2] injections are well-tolerated; [3] the immune response is rapid and includes primarily TH1/TH17 cellular responses; [4] efficacy has been suggested by delayed but durable complete tumor regressions in patients with measurable disease, by progression-free survival in glioblastoma, and by overall survival in melanoma.
Collapse
Affiliation(s)
| | - Gabriel I Nistor
- Research and Development, AIVITA Biomedical Inc, Irvine, CA, USA
| | | |
Collapse
|
5
|
Stability Program in Dendritic Cell Vaccines: A “Real-World” Experience in the Immuno-Gene Therapy Factory of Romagna Cancer Center. Vaccines (Basel) 2022; 10:vaccines10070999. [PMID: 35891165 PMCID: PMC9323699 DOI: 10.3390/vaccines10070999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Advanced therapy medical products (ATMPs) are rapidly growing as innovative medicines for the treatment of several diseases. Hence, the role of quality analytical tests to ensure consistent product safety and quality has become highly relevant. Several clinical trials involving dendritic cell (DC)-based vaccines for cancer treatment are ongoing at our institute. The DC-based vaccine is prepared via CD14+ monocyte differentiation. A fresh dose of 10 million DCs is administered to the patient, while the remaining DCs are aliquoted, frozen, and stored in nitrogen vapor for subsequent treatment doses. To evaluate the maintenance of quality parameters and to establish a shelf life of frozen vaccine aliquots, a stability program was developed. Several parameters of the DC final product at 0, 6, 12, 18, and 24 months were evaluated. Our results reveal that after 24 months of storage in nitrogen vapor, the cell viability is in a range between 82% and 99%, the expression of maturation markers remains inside the criteria for batch release, the sterility tests are compliant, and the cell costimulatory capacity unchanged. Thus, the data collected demonstrate that freezing and thawing do not perturb the DC vaccine product maintaining over time its functional and quality characteristics.
Collapse
|
6
|
Nistor GI, Dillman RO. Cytokine network analysis of immune responses before and after autologous dendritic cell and tumor cell vaccine immunotherapies in a randomized trial. J Transl Med 2020; 18:176. [PMID: 32316978 PMCID: PMC7171762 DOI: 10.1186/s12967-020-02328-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/02/2020] [Indexed: 02/08/2023] Open
Abstract
Background In a randomized phase II trial conducted in patients with metastatic melanoma, patient-specific autologous dendritic cell vaccines (DCV) were associated with longer survival than autologous tumor cell vaccines (TCV). Both vaccines presented antigens from cell-renewing autologous tumor cells. The current analysis was performed to better understand the immune responses induced by these vaccines, and their association with survival. Methods 110 proteomic markers were measured at a week-0 baseline, 1 week before the first of 3 weekly vaccine injections, and at week-4, 1 week after the third injection. Data was presented as a deviation from normal controls. A two-component principal component (PC) statistical analysis and discriminant analysis were performed on this data set for all patients and for each treatment cohort. Results At baseline PC-1 contained 64.4% of the variance and included the majority of cytokines associated with Th1 and Th2 responses, which positively correlated with beta-2-microglobulin (B2M), programmed death protein-1 (PD-1) and transforming growth factor beta (TGFβ1). Results were similar at baseline for both treatment cohorts. After three injections, DCV-treated patients showed correlative grouping among Th1/Th17 cytokines on PC-1, with an inverse correlation with B2M, FAS, and IL-18, and correlations among immunoglobulins in PC-2. TCV-treated patients showed a positive correlation on PC-1 among most of the cytokines and tumor markers B2M and FAS receptor. There were also correlative changes of IL12p40 with both Th1 and Th2 cytokines and TGFβ1. Discriminant analysis provided additional evidence that DCV was associated with innate, Th1/Th17, and Th2 responses while TCV was only associated with innate and Th2 responses. Conclusions These analyses confirm that DCV induced a different immune response than that induced by TCV, and these immune responses were associated with improved survival. Trial registration Clinical trials.gov NCT004936930 retrospectively registered 28 July 2009
Collapse
Affiliation(s)
- Gabriel I Nistor
- AIVITA Biomedical, Inc., 18301 Von Karman, Suite 130, Irvine, CA, 92612, USA
| | - Robert O Dillman
- AIVITA Biomedical, Inc., 18301 Von Karman, Suite 130, Irvine, CA, 92612, USA.
| |
Collapse
|
7
|
Abdel Ghafar MT, Morad MA, El-Zamarany EA, Ziada D, Soliman H, Abd-Elsalam S, Salama M. Autologous dendritic cells pulsed with lysate from an allogeneic hepatic cancer cell line as a treatment for patients with advanced hepatocellular carcinoma: A pilot study. Int Immunopharmacol 2020; 82:106375. [PMID: 32169808 DOI: 10.1016/j.intimp.2020.106375] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/14/2020] [Accepted: 03/03/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVES This is a randomized trial adopted to evaluate the safety and efficacy of immunization with specific anti-hepatocellular carcinoma dendritic cells (DCs) in Egyptian patients with advanced hepatocellular carcinoma (HCC) as a treatment or adjuvant therapy in comparison with the traditional therapy. METHODS This study was conducted on 20 HCC patients who were assigned to four groups according to BCLC staging; group I: HCC patients (stage B) received trans-arterial chemoembolization (TACE) and DCs as an adjuvant therapy; group II: HCC patients (stage B) received TACE only; group III: advanced HCC patients (stage D) received DCs vaccine; group IV: advanced HCC patients (stage D) received supportive treatment. DCs were generated from peripheral blood monocytes and pulsed with a lysate of an allogeneic hepatic cancer cell line (HepG2). Toxicity and immunological response were reported as primary outcomes whereas clinical biochemical and radiological responses were reported as secondary outcomes. RESULTS Our study detected that patients who received DCs vaccine (group III) showed mild decrease in Child-Pugh score as well as AFP and PIVKA II levels and developed 20% partial response [PR] 40% stable disease [SD] and 40% progressive disease [PD] compared to the patients of group IV on supportive treatment who developed 100% PD. Although group I patients developed PR (60%) SD (20%) and PD (20%) no significant difference was detected in the clinical biochemical or radiological response between group I and group II patients. DCs vaccine had minimal adverse effects with no autoimmunity and elicited a better immunological response such as increased CD8 cells percentage and number as well as decreased TGFβ levels in the vaccinated patients. CONCLUSION DCs vaccine is safe as it is not associated with significant toxicity. However due to the small number of included patients the efficacy and immune response of using DCs vaccine in the treatment of advanced HCC patients need to be justified by testing of a large cohort.
Collapse
Affiliation(s)
| | - Morad Ahmed Morad
- Clinical Pathology Department Faculty of Medicine, Tanta University, Egypt
| | - Enas A El-Zamarany
- Clinical Pathology Department Faculty of Medicine, Tanta University, Egypt
| | - Dina Ziada
- Tropical Medicine Department Faculty of Medicine, Tanta University, Egypt
| | - Hanan Soliman
- Tropical Medicine Department Faculty of Medicine, Tanta University, Egypt
| | | | - Marwa Salama
- Tropical Medicine Department Faculty of Medicine, Tanta University, Egypt
| |
Collapse
|
8
|
Bulgarelli J, Tazzari M, Granato AM, Ridolfi L, Maiocchi S, de Rosa F, Petrini M, Pancisi E, Gentili G, Vergani B, Piccinini F, Carbonaro A, Leone BE, Foschi G, Ancarani V, Framarini M, Guidoboni M. Dendritic Cell Vaccination in Metastatic Melanoma Turns "Non-T Cell Inflamed" Into "T-Cell Inflamed" Tumors. Front Immunol 2019; 10:2353. [PMID: 31649669 PMCID: PMC6794451 DOI: 10.3389/fimmu.2019.02353] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/18/2019] [Indexed: 02/02/2023] Open
Abstract
Dendritic cell (DC)-based vaccination effectively induces anti-tumor immunity, although in the majority of cases this does not translate into a durable clinical response. However, DC vaccination is characterized by a robust safety profile, making this treatment a potential candidate for effective combination cancer immunotherapy. To explore this possibility, understanding changes occurring in the tumor microenvironment (TME) upon DC vaccination is required. In this line, quantitative and qualitative changes in tumor-infiltrating T lymphocytes (TILs) induced by vaccination with autologous tumor lysate/homogenate loaded DCs were investigated in a series of 16 patients with metastatic melanoma. Immunohistochemistry for CD4, CD8, Foxp3, Granzyme B (GZMB), PDL1, and HLA class I was performed in tumor biopsies collected before and after DC vaccination. The density of each marker was quantified by automated digital pathology analysis on whole slide images. Co-expression of markers defining functional phenotypes, i.e., Foxp3+ regulatory CD4+ T cells (Treg) and GZMB+ cytotoxic CD8+ T cells, was assessed with sequential immunohistochemistry. A significant increase of CD8+ TILs was found in post-vaccine biopsies of patients who were not previously treated with immune-modulating cytokines or Ipilimumab. Interestingly, along with a maintained tumoral HLA class I expression, after DC vaccination we observed a significant increase of PDL1+ tumor cells, which significantly correlated with intratumoral CD8+ T cell density. This observation might explain the lack of a significant concurrent cytotoxic reactivation of CD8+ T cell, as measured by the numbers of GZMB+ T cells. Altogether these findings indicate that DC vaccination exerts an important role in sustaining or de novo inducing a T cell inflamed TME. However, the strength of the intratumoral T cell activation detected in post-DC therapy lesions is lessened by an occurring phenomenon of adaptive immune resistance, yet the concomitant PDL1 up-regulation. Overall, this study sheds light on DC immunotherapy-induced TME changes, lending the rationale for the design of smarter immune-combination therapies.
Collapse
Affiliation(s)
- Jenny Bulgarelli
- Immunotherapy-Cell Therapy and Biobank Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Marcella Tazzari
- Immunotherapy-Cell Therapy and Biobank Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Anna Maria Granato
- Immunotherapy-Cell Therapy and Biobank Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Laura Ridolfi
- Immunotherapy-Cell Therapy and Biobank Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Serena Maiocchi
- Immunotherapy-Cell Therapy and Biobank Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Francesco de Rosa
- Immunotherapy-Cell Therapy and Biobank Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Massimiliano Petrini
- Immunotherapy-Cell Therapy and Biobank Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Elena Pancisi
- Immunotherapy-Cell Therapy and Biobank Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giorgia Gentili
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Barbara Vergani
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Filippo Piccinini
- Scientific Directorate, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Antonella Carbonaro
- Department of Computer Science and Engineering (DISI), University of Bologna, Bologna, Italy
| | - Biagio Eugenio Leone
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Giovanni Foschi
- Immunotherapy-Cell Therapy and Biobank Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Valentina Ancarani
- Immunotherapy-Cell Therapy and Biobank Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Massimo Framarini
- Advanced Oncological Surgery Unit, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Massimo Guidoboni
- Immunotherapy-Cell Therapy and Biobank Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
9
|
Ridolfi L, de Rosa F, Fiammenghi L, Petrini M, Granato AM, Ancarani V, Pancisi E, Soldati V, Cassan S, Bulgarelli J, Riccobon A, Gentili G, Nanni O, Framarini M, Tauceri F, Guidoboni M. Complementary vaccination protocol with dendritic cells pulsed with autologous tumour lysate in patients with resected stage III or IV melanoma: protocol for a phase II randomised trial (ACDC Adjuvant Trial). BMJ Open 2018; 8:e021701. [PMID: 30082356 PMCID: PMC6078243 DOI: 10.1136/bmjopen-2018-021701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Surgery is one of the treatments of choice for patients with a single metastasis from melanoma but is rarely curative. Such patients could potentially benefit from consolidation immunotherapy. Vaccination with dendritic cells (DCs) loaded with tumour antigens elicits a tumour-specific immune response. In our experience, patients who developed delayed type hypersensitivity (DTH) after DC vaccination showed a median overall survival (OS) of 22.9 monthsvs4.8 months for DTH-negative cases. A phase II randomised trial showed an advantage OS of a DC vaccine over a tumour cell-based vaccine (2-year OS 72% vs31%, respectively). Given that there is no standard therapy after surgical resection of single metastases, we planned a study to compare vaccination with DCs pulsed with autologous tumour lysate versus follow-up. METHODS AND ANALYSIS This is a randomised phase II trial in patients with resected stage III/IV melanoma. Assuming a median relapse-free survival (RFS) of 7.0 months for the standard group and 11.7 months for the experimental arm (HR 0.60), with a two-sided tailed alpha of 0.10, 60 patients per arm must be recruited. An interim futility analysis will be performed at 18 months. The DC vaccine, produced in accordance with Good Manufacturing Practice guidelines, consists of autologous DCs loaded with autologous tumour lysate and injected intradermally near lymph nodes. Vaccine doses will be administered every 4 weeks for six vaccinations and will be followed by 3 million unit /day of interleukin-2 for 5 days. Tumour restaging, blood sampling for immunological biomarkers and DTH testing will be performed every 12 weeks. ETHICS AND DISSEMINATION The protocol, informed consent and accompanying material given to patients were submitted by the investigator to the Ethics Committee for review. The local Ethics Committee and the Italian Medicines Agency approved the protocol (EudraCT code no.2014-005123-27). Results will be published in a peer-reviewed international scientific journal. TRIAL REGISTRATION NUMBER 2014-005123-27.
Collapse
Affiliation(s)
- Laura Ridolfi
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Francesco de Rosa
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Laura Fiammenghi
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Massimiliano Petrini
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Anna Maria Granato
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Valentina Ancarani
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Elena Pancisi
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Valentina Soldati
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Serena Cassan
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Jenny Bulgarelli
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Angela Riccobon
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giorgia Gentili
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori I(RST) IRCCS, Meldola, Italy
| | - Oriana Nanni
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori I(RST) IRCCS, Meldola, Italy
| | - Massimo Framarini
- Advanced Oncological Surgery, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Francesca Tauceri
- Advanced Oncological Surgery, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Massimo Guidoboni
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
10
|
Clark JI, Bufalino S, Singh S, Borys E. Rhabdomyolysis during high dose interleukin-2 treatment of metastatic melanoma after sequential immunotherapies: a case report. J Immunother Cancer 2018; 6:53. [PMID: 29898784 PMCID: PMC6001027 DOI: 10.1186/s40425-018-0370-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/30/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The treatment options for metastatic malignant melanoma have drastically changed recently,including the increased use of immunotherapeutic agents that offer significant responses. Accordingly, it hasbecome common for sequential administration of such agents. Despite this, no guidelines exist on propersequencing or potential unique toxicities associated with such sequencing. CASE PRESENTATION We describe here the first incidence, to our knowledge, of clinically significant rhabdomyolysis associated with high-dose interleukin-2 after prior treatment with ipilimumab, genetically engineered T-cell therapy and subsequent single agent pembrolizumab in a patient with BRAF wild type metastatic malignant melanoma. CONCLUSION Further studies into the biology of sequential immunotherapy in the treatment of cancer are warranted.
Collapse
Affiliation(s)
- Joseph I. Clark
- Cardinal Bernardin Cancer Center, Loyola University Medical Center, 2160 S 1st Avenue, Maywood, IL 60153 USA
| | | | - Shruti Singh
- Cardinal Bernardin Cancer Center, Loyola University Medical Center, 2160 S 1st Avenue, Maywood, IL 60153 USA
| | - Ewa Borys
- Cardinal Bernardin Cancer Center, Loyola University Medical Center, 2160 S 1st Avenue, Maywood, IL 60153 USA
| |
Collapse
|
11
|
Tang MR, Guo JY, Wang D, Xu N. Identification of CD24 as a marker for tumorigenesis of melanoma. Onco Targets Ther 2018; 11:3401-3406. [PMID: 29928131 PMCID: PMC6003289 DOI: 10.2147/ott.s157043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective Cutaneous melanoma (CM) is a common skin cancer. Surgery is still the primary treatment for CM, as melanoma is resistant to chemotherapy. In the recent years, it has been found that cancer stem-like cells (CSCs) are responsible for this drug resistance. CD24 is a widely used marker to isolate CSCs. In this study, we aimed to analyze the properties of CD24+ and CD24- subpopulation of melanoma cells. Materials and methods We isolated CD24+ cells CSCs using magnetic-activated cell sorting system. We extracted total RNA and carried out reverse transcription polymerase chain reaction analysis. We counted the cell colonies using soft agar assay and assessed the cell invasion using cell migration assay. We implanted CD24+ or CD24- cells into the flank of non-obese diabetic severe combined immunodeficiency mice, and measured the tumor volumes every 5 days until the end of the experiment. We carried out immunohistochemical analysis to study the tissue sections. Results We demonstrated that the CD24+ subpopulation has self-renewal properties in vitro and in vivo by using soft agar assay and xenograft tumor model. Furthermore, we confirmed that CD24 expression is accompanied by activation of Notch1 signaling pathway. Conclusion This study provides new knowledge on the role of CD24 in the tumorigenic ability of melanoma.
Collapse
Affiliation(s)
- Ming-Rui Tang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Jia-Yan Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Di Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Nan Xu
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| |
Collapse
|
12
|
Skewing effect of sulprostone on dendritic cell maturation compared with dinoprostone. Cytotherapy 2018; 20:851-860. [DOI: 10.1016/j.jcyt.2018.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/27/2018] [Accepted: 04/09/2018] [Indexed: 02/03/2023]
|
13
|
Grees M, Sharbi-Yunger A, Evangelou C, Baumann D, Cafri G, Tzehoval E, Eichmüller SB, Offringa R, Utikal J, Eisenbach L, Umansky V. Optimized dendritic cell vaccination induces potent CD8 T cell responses and anti-tumor effects in transgenic mouse melanoma models. Oncoimmunology 2018; 7:e1445457. [PMID: 29900058 DOI: 10.1080/2162402x.2018.1445457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/30/2022] Open
Abstract
Despite melanoma immunogenicity and remarkable therapeutic effects of negative immune checkpoint inhibitors, a significant fraction of patients does not respond to current treatments. This could be due to limitations in tumor immunogenicity and profound immunosuppression in the melanoma microenvironment. Moreover, insufficient tumor antigen processing and presentation by dendritic cells (DC) may hamper the development of tumor-specific T cells. Using two genetically engineered mouse melanoma models (RET and BRAFV600E transgenic mice), in which checkpoint inhibitor therapy alone is not efficacious, we performed proof-of-concept studies with an improved, multivalent DC vaccination strategy based on our recently developed genetic mRNA cancer vaccines. The in vivo expression of multiple chimeric MHC class I receptors allows a simultaneous presentation of several melanoma-associated shared antigens tyrosinase related protein (TRP)-1, tyrosinase, human glycoprotein 100 and TRP-2. The DC vaccine induced a significantly improved survival in both transgenic mouse models. Vaccinated melanoma-bearing mice displayed an increased CD8 T cell reactivity indicated by a higher IFN-γ production and an upregulation of activation marker expression along with an attenuated immunosuppressive pattern of myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg). The combination of DC vaccination with ultra-low doses of paclitaxel or anti-PD-1 antibodies resulted in further prolongation of mouse survival associated with a stronger reduction of MDSC and Treg immunosuppressive phenotype. Our data suggest that an improved multivalent DC vaccine based on shared tumor antigens induces potent anti-tumor effects and could be combined with checkpoint inhibitors or targeting immunosuppressive cells to further improve their therapeutic efficiency.
Collapse
Affiliation(s)
- Mareike Grees
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Adi Sharbi-Yunger
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Christos Evangelou
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Daniel Baumann
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gal Cafri
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Esther Tzehoval
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Stefan B Eichmüller
- GMP and T cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rienk Offringa
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Lea Eisenbach
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
14
|
Dillman RO, Cornforth AN, Nistor GI, McClay EF, Amatruda TT, Depriest C. Randomized phase II trial of autologous dendritic cell vaccines versus autologous tumor cell vaccines in metastatic melanoma: 5-year follow up and additional analyses. J Immunother Cancer 2018; 6:19. [PMID: 29510745 PMCID: PMC5840808 DOI: 10.1186/s40425-018-0330-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/26/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Despite improved survival following checkpoint inhibitors, there is still a potential role for anti-cancer therapeutic vaccines. Because of biological heterogeneity and neoantigens resulting from each patient's mutanome, autologous tumor may be the best source of tumor-associated antigens (TAA) for vaccines. Ex vivo loading of autologous dendritic cells with TAA may be associated with superior clinical outcome compared to injecting irradiated autologous tumor cells. We conducted a randomized phase II trial to compare autologous tumor cell vaccines (TCV) and autologous dendritic cell vaccines (DCV) loaded with autologous TAA. METHODS Short-term autologous tumor cell lines were established from metastatic tumor. Vaccines were admixed with 500 micrograms of GM-CSF and injected weekly for 3 weeks, then at weeks 8, 12,16, 20, and 24. The primary endpoint was overall survival. Secondary objectives were identification of adverse events, and results of delayed type hypersensitivity (DTH) reactions to intradermal tumor cell injections. RESULTS Forty-two patients were randomized. All were followed from randomization until death or for five years; none were lost to follow-up. DCV was associated with longer survival: median 43.4 versus 20.5 months (95% CI, 18.6 to > 60 versus 9.3 to 32.3 months) and a 70% reduction in the risk of death (hazard ratio = 0.304, p = 0.0053, 95% CI, 0.131 to 0.702). Tumor DTH reactions were neither prognostic nor predictive. The most common treatment-related adverse events were mild to moderate local injection site reactions and flu-like symptoms; but grade 2 treatment-related adverse events were more frequent with TCV. Serum marker analyses at week-0 and week-4 showed that serum markers were similar at baseline in each arm, but differed after vaccination. CONCLUSIONS This is the only human clinical trial comparing DCV and TCV as platforms for autologous TAA presentation. DCV was associated with minimal toxicity and long-term survival in patients with metastatic melanoma. DTH to autologous tumor cells was neither prognostic for survival nor predictive of benefit for either vaccine. TRIAL REGISTRATION Clinical trials.gov NCT00948480 retrospectively registered 28 July 2009.
Collapse
Affiliation(s)
- Robert O. Dillman
- Hoag Cancer Institute, Newport Beach, CA 92660 USA
- AIVITA Biomedical, Inc., Irvine, CA USA
| | | | | | - Edward F. McClay
- California Cancer Associates for Research and Excellence (cCARE), Institute for Melanoma Research & Education, Encinitas, CA USA
| | | | | |
Collapse
|
15
|
Dillman RO. An update on the relevance of vaccine research for the treatment of metastatic melanoma. Melanoma Manag 2017; 4:203-215. [PMID: 30190926 PMCID: PMC6094615 DOI: 10.2217/mmt-2017-0021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/03/2017] [Indexed: 01/17/2023] Open
Abstract
Signal transduction inhibitors and anticheckpoint antibodies have significantly improved survival for metastatic melanoma patients, but most still die within 5 years. Vaccine approaches to induce immunity to well-characterized melanoma-associated antigens, or to antigens expressed on allogeneic tumor cell lines, have not resulted in approved agents. Despite the limitations associated with the immunosuppressive tumor microenvironment, there now is one intralesional autologous vaccine approved for patients who have primarily soft-tissue metastases. There is continued interest in patient-specific vaccines, especially dendritic cell vaccines that utilize ex vivo loading of autologous antigen, thus bypassing certain in vivo immunosuppressive cells and cytokines. Because of their mechanism of action and limited toxicity, they are potentially synergistic or additive to other antimelanoma therapies.
Collapse
Affiliation(s)
- Robert O Dillman
- Chief Medical Officer, AIVITA Biomedical, Inc; Clinical Professor of Medicine, University of California Irvine, Irvine, CA 92612, USA
| |
Collapse
|