1
|
Grab K, Fido M, Spiewla T, Warminski M, Jemielity J, Kowalska J. Aptamer-based assay for high-throughput substrate profiling of RNA decapping enzymes. Nucleic Acids Res 2024; 52:e100. [PMID: 39445825 PMCID: PMC11602136 DOI: 10.1093/nar/gkae919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Recent years have led to the identification of a number of enzymes responsible for RNA decapping. This has provided a basis for further research to identify their role, dependency and substrate specificity. However, the multiplicity of these enzymes and the complexity of their functions require advanced tools to study them. Here, we report a high-throughput fluorescence intensity assay based on RNA aptamers designed as substrates for decapping enzymes. Using a library of differently capped RNA probes we generated a decapping susceptibility heat map, which confirms previously reported substrate specificities of seven tested hydrolases and uncovers novel. We have also demonstrated the utility of our assay for evaluating inhibitors of viral decapping enzymes and performed kinetic studies of the decapping process. The assay may accelerate the characterization of new decapping enzymes, enable high-throughput screening of inhibitors and facilitate the development of molecular tools for a better understanding of RNA degradation pathways.
Collapse
Affiliation(s)
- Katarzyna Grab
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
- Doctoral School of Exact and Natural Sciences, University of Warsaw, Żwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Mateusz Fido
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Tomasz Spiewla
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
- Doctoral School of Exact and Natural Sciences, University of Warsaw, Żwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| |
Collapse
|
2
|
Ding L, Gosh A, Lee DJ, Emri G, Huss WJ, Bogner PN, Paragh G. Prognostic biomarkers of cutaneous melanoma. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2022; 38:418-434. [PMID: 34981569 DOI: 10.1111/phpp.12770] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/02/2021] [Accepted: 12/30/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND/PURPOSE Melanomas account for only approximately 4% of diagnosed skin cancers in the United States but are responsible for the majority of deaths caused by skin cancer. Both genetic factors and ultraviolet (UV) radiation exposure play a role in the development of melanoma. Although melanomas have a strong propensity to metastasize when diagnosed late, melanomas that are diagnosed and treated early pose a low mortality risk. In particular, the identification of patients with increased metastatic risk, who may benefit from early adjuvant therapies, is crucial, especially given the advent of new melanoma treatments. However, the accuracy of classic clinical and histological variables, including the Breslow thickness, presence of ulceration, and lymph node status, might not be sufficient to identify such individuals. Thus, there is a need for the development of additional prognostic melanoma biomarkers that can improve early attempts to stratify melanoma patients and reliably identify high-risk subgroups with the aim of providing effective personalized therapies. METHODS In our current work, we discuss and assess emerging primary melanoma tumor biomarkers and prognostic circulating biomarkers. RESULTS Several promising biomarkers show prognostic value (eg, exosomal MIA (ie, melanoma inhibitory activity), serum S100B, AMLo signatures, and mRNA signatures); however, the scarcity of reliable data precludes the use of these biomarkers in current clinical applications. CONCLUSION Further research is needed on several promising biomarkers for melanoma. Large-scale studies are warranted to facilitate the clinical translation of prognostic biomarker applications for melanoma in personalized medicine.
Collapse
Affiliation(s)
- Liang Ding
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pathology, Buffalo General Medical Center, State University of New York, Buffalo, New York, USA
| | - Alexandra Gosh
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Delphine J Lee
- Division of Dermatology, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
- Division of Dermatology, Department of Medicine, The Lundquist Institute, Torrance, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Wendy J Huss
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Paul N Bogner
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Gyorgy Paragh
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
3
|
Wu H, Zhang J, Bai Y, Zhang S, Zhang Z, Tong W, Han P, Fu B, Zhang Y, Shen Z. DCP1A is an unfavorable prognostic-related enhancer RNA in hepatocellular carcinoma. Aging (Albany NY) 2021; 13:23020-23035. [PMID: 34609335 PMCID: PMC8544297 DOI: 10.18632/aging.203593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/20/2021] [Indexed: 01/31/2023]
Abstract
Long non-coding RNAs (lncRNAs) are associated with occurrence and development of tumors. Enhancer RNA (eRNA) is a special type of lncRNAs produced from transcription of enhancer elements. The function of eRNAs in tumors have elicited significant attention recently. However, the clinical significance and role of eRNAs in hepatocellular carcinoma (HCC) has not been fully explored. The current study sought to explore the expression level and prognostic value of key eRNAs in HCC. Bioinformatics analyses were used to explore expression levels of key prognostic eRNAs in HCC and their correlation with target genes. A total of 1580 enhancer RNAs (eRNAs) and 1791 target genes were initially retrieved from TCGA-LIHC gene expression database. Further analysis through survival and correlation analysis led to identification of 12 eRNAs and 13 target genes. The findings showed that DCP1A was the most prognosis-related eRNA. This eRNA showed the highest correlation with the target gene, PRKCD. Analysis showed that poor overall survival (OS) in HCC patients was correlated with high expression level of DCP1A (eRNA) and PRKCD (target gene). The up-regulation of DCP1A was associated with advanced tumor stage, larger tumor size and higher histological grade. The results of pan-cancer analysis showed that the expression of DCP1A was differentially expressed in 13 other types of tumor tissues and their corresponding normal tissues. This eRNA was highly expressed in digestive system tumors. Functional analysis showed that high expression level of DCP1A was implicated in multiple tumor-related signaling pathways. The findings of the current study indicated DCP1A is a novel biomarker that can be used as a potential therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Hao Wu
- First Central Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Jinrui Zhang
- First Central Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Yi Bai
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Sai Zhang
- Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Zhixin Zhang
- First Central Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Wen Tong
- First Central Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Pinsheng Han
- First Central Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Bing Fu
- First Central Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Zhongyang Shen
- Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Saputro RD, Rinonce HT, Iramawasita Y, Ridho MR, Pudjohartono MF, Anwar SL, Setiaji K, Aryandono T. Potential prognostic value of PD-L1 and NKG2A expression in Indonesian patients with skin nodular melanoma. BMC Res Notes 2021; 14:206. [PMID: 34049578 PMCID: PMC8161664 DOI: 10.1186/s13104-021-05623-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/19/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Biomarker mRNA levels have been suggested to be predictors of patient survival and therapy response in melanoma cases. This study aimed to investigate the correlations between the mRNA expression levels of PD-L1 and NKG2A in melanoma tissue with clinicopathologic characteristics and survival in Indonesian primary nodular melanoma patients. RESULTS Thirty-one tissue samples were obtained; two were excluded from survival analysis due to Breslow depth of less than 4 mm. The median survival of upregulated and normoregulated PD-L1-patients were 15.800 ± 2.345 and 28.945 ± 4.126 months, respectively. However, this difference was not significant statistically (p = 0.086). Upregulated and normoregulated NKG2A patients differed very little in median survival time (25.943 ± 7.415 vs 26.470 ± 3.854 months; p = 0.981). Expression of PD-L1 and NKG2A were strongly correlated (rs: 0.787, p < 0.001). No clinicopathologic associations with PD-L1 and NKG2A mRNA levels were observed. These results suggest that PD-L1 may have potential as a prognostic factor. Although an unlikely prognostic factor, NKG2A may become an adjunct target for therapy. The strong correlation between PD-L1 and NKG2A suggests that anti-PD-1 and anti-NKG2A agents could be effective in patients with PD-L1 upregulation. The mRNA levels of these two genes may help direct choice of immunotherapy and predict patient outcomes.
Collapse
Affiliation(s)
- Ridwan Dwi Saputro
- Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital , Sleman, Yogyakarta, Indonesia
| | - Hanggoro Tri Rinonce
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital , Sleman , Yogyakarta, Indonesia.
| | - Yayuk Iramawasita
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital , Sleman , Yogyakarta, Indonesia
| | - Muhammad Rasyid Ridho
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital , Sleman , Yogyakarta, Indonesia
| | - Maria Fransiska Pudjohartono
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital , Sleman , Yogyakarta, Indonesia
| | - Sumadi Lukman Anwar
- Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital , Sleman, Yogyakarta, Indonesia
| | - Kunto Setiaji
- Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital , Sleman, Yogyakarta, Indonesia
| | - Teguh Aryandono
- Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital , Sleman, Yogyakarta, Indonesia
| |
Collapse
|
5
|
Guo J, Fang Q, Liu Y, Xie W, Zhang Y, Li C. Identifying critical protein-coding genes and long non-coding RNAs in non-functioning pituitary adenoma recurrence. Oncol Lett 2021; 21:264. [PMID: 33664827 PMCID: PMC7882882 DOI: 10.3892/ol.2021.12525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
Non-functioning pituitary adenoma (NFPA) is a very common type of intracranial tumor. Monitoring and predicting the postoperative recurrence of NFPAs is difficult, as these adenomas do not present with serum hormone hypersecretion. Long non-coding RNAs (lncRNAs) and protein-coding genes (PCGs) play critical roles in the development and progression of numerous tumors. However, the complex network of RNA interactions related to the mechanisms underlying the postoperative recurrence of NFPA is still unclear. In the present study, 73 patients with NFPA were investigated using high-throughput sequencing and follow-up investigations. In total, 6 of these patients with recurrence within 1 year after surgery were selected as the fast recurrence group, and 6 patients with recurrence 5 years after surgery were selected as the slow recurrence group. By performing differential expression analysis of the fast recurrence and slow recurrence groups, a set of differentially expressed PCGs and lncRNAs were obtained (t-test, P<0.05). Next, protein-protein interaction coregulatory networks and lncRNA-mRNA coexpression networks were identified. In addition, the hub lncRNA-mRNA modules related to NFPA recurrence were further screened and transcriptome expression markers for NFPA regression were identified (log-rank test, P<0.05). Finally, the ability of the hub and module genes to predict recurrence and progression-free survival in patients with NFPA was evaluated. To confirm the credibility of the bioinformatic analyses, nucleolar protein 6 and LL21NC02-21A1.1 were randomly selected from among the genes with prognostic significance for validation by reverse transcription-quantitative PCR in another set of NFPA samples (n=9). These results may be helpful for evaluating the slow and rapid recurrence of NFPA after surgery and exploring the mechanisms underlying NFPA recurrence. Future effective biomarkers and therapeutic targets may also be revealed.
Collapse
Affiliation(s)
- Jing Guo
- Department of Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, P.R. China
| | - Qiuyue Fang
- Department of Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, P.R. China
| | - Yulou Liu
- Department of Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, P.R. China
| | - Weiyan Xie
- Department of Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, P.R. China
| | - Yazhuo Zhang
- Department of Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, P.R. China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China.,Cell laboratory, Beijing Institute for Brain Disorders Brain Tumor Center, Beijing 100070, P.R. China.,Department of Neurosurgery, China National Clinical Research Center for Neurological Diseases, Beijing 100070, P.R. China
| | - Chuzhong Li
- Department of Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, P.R. China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China.,Cell laboratory, Beijing Institute for Brain Disorders Brain Tumor Center, Beijing 100070, P.R. China.,Department of Neurosurgery, China National Clinical Research Center for Neurological Diseases, Beijing 100070, P.R. China
| |
Collapse
|
6
|
Wang Y, Wang H, Zhang J, Chu Z, Liu P, Zhang X, Li C, Gu X. Circ_0007031 Serves as a Sponge of miR-760 to Regulate the Growth and Chemoradiotherapy Resistance of Colorectal Cancer via Regulating DCP1A. Cancer Manag Res 2020; 12:8465-8479. [PMID: 32982440 PMCID: PMC7500843 DOI: 10.2147/cmar.s254815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Background Colorectal cancer (CRC) is a kind of malignant tumor, and the development of chemoradiotherapy resistance (CRR) increases the difficulty of its treatment. The role of circular RNAs (circRNAs) in cancer progression has been well documented. Nevertheless, the function of circ_0007031 in the growth and CRR of CRC has not been well elucidated. Methods CRR cell lines were constructed using 5-Fu and radiation. Cell counting kit 8 (CCK8) assay was employed to measure the 5-Fu resistance and proliferation of cells. Clonogenic assay was used to evaluate the radiation resistance of cells. Also, the expression of circ_0007031 and microRNA-760 (miR-760) was determined using quantitative real-time polymerase chain reaction (qRT-PCR). The cell cycle distribution and apoptosis of cells were assessed by flow cytometry. Besides, the levels of apoptosis-related protein and mRNA-decapping enzyme 1a (DCP1A) protein were measured by Western blot (WB) analysis. Further, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were used to confirm the interaction between miR-760 and circ_0007031 or DCP1A. In addition, animal experiments were performed to evaluate the function of silenced circ_0007031 on the 5-Fu and radiation resistance of CRC tumors. Results Circ_0007031 expression was markedly increased in CRC tissues and cells, especially in CRC resistant cells. Circ_0007031 knockdown hindered proliferation, induced cell cycle arrest in the G0/G1 phase, enhanced apoptosis, and lowered the CRR of CRC resistant cells. Further, miR-760 could be targeted by circ_0007031, and its inhibitor could reverse the inhibition effect of circ_0007031 knockdown on the growth and CRR of CRC resistant cells. Moreover, DCP1A was a target of miR-760, and its overexpression could invert the suppression effect of miR-760 overexpression on the growth and CRR of CRC resistant cells. Circ_0007031 silencing could enhance the sensitivity of CRC tumors to 5-Fu and radiation to markedly reduce CRC tumor growth in vivo. Conclusion Circ_0007031 might play a positive role in the CRR of CRC through regulating the miR-760/DCP1A axis, which might provide a new approach for treating the CRR of CRC.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China.,Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Hua Wang
- Department of Pharmacy, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Jian Zhang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Zhifen Chu
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Pu Liu
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Xing Zhang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Chao Li
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Xiaosong Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
7
|
Shi C, Liu T, Chi J, Luo H, Wu Z, Xiong B, Liu S, Zeng Y. LINC00339 promotes gastric cancer progression by elevating DCP1A expression via inhibiting miR-377-3p. J Cell Physiol 2019; 234:23667-23674. [PMID: 31188482 DOI: 10.1002/jcp.28934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022]
Abstract
Up to date, the mechanism of gastric cancer (GC) development is poorly understood. This study was to demonstrate the effects of LINC00339 on GC progression. Here, we found that LINC00339 was overexpressed expressed in GC tissues and predicted poor outcome. By CCK8, colony formation and Transwell assays, we showed LINC00339 knockdown suppressed GC cell proliferation, migration, and invasion in vitro. Flow cytometry analysis (FACS) indicated that LINC00339 knockdown induced tumor cell apoptosis. Besides, we utilized the xenograft assay and found that LINC00339 depletion led to decreased tumor growth in vivo. Mechanistically, miR-377-3p was found to be inhibited by LINC00339. And LINC00339 suppressed miR-377-3p to upregulate DCP1A, which consequently promoted GC progression. In conclusion, LINC00339 promotes gastric cancer progression by elevating DCP1A expression via inhibiting miR-377-3p.
Collapse
Affiliation(s)
- Chengmin Shi
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tonglei Liu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Junlin Chi
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Huayou Luo
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhizhong Wu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Binghong Xiong
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shuang Liu
- Department of Ultrasound, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yujian Zeng
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
8
|
Ortiz-Sánchez P, Villalba-Orero M, López-Olañeta MM, Larrasa-Alonso J, Sánchez-Cabo F, Martí-Gómez C, Camafeita E, Gómez-Salinero JM, Ramos-Hernández L, Nielsen PJ, Vázquez J, Müller-McNicoll M, García-Pavía P, Lara-Pezzi E. Loss of SRSF3 in Cardiomyocytes Leads to Decapping of Contraction-Related mRNAs and Severe Systolic Dysfunction. Circ Res 2019; 125:170-183. [PMID: 31145021 PMCID: PMC6615931 DOI: 10.1161/circresaha.118.314515] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE RBPs (RNA binding proteins) play critical roles in the cell by regulating mRNA transport, splicing, editing, and stability. The RBP SRSF3 (serine/arginine-rich splicing factor 3) is essential for blastocyst formation and for proper liver development and function. However, its role in the heart has not been explored. OBJECTIVE To investigate the role of SRSF3 in cardiac function. METHODS AND RESULTS Cardiac SRSF3 expression was high at mid gestation and decreased during late embryonic development. Mice lacking SRSF3 in the embryonic heart showed impaired cardiomyocyte proliferation and died in utero. In the adult heart, SRSF3 expression was reduced after myocardial infarction, suggesting a possible role in cardiac homeostasis. To determine the role of this RBP in the adult heart, we used an inducible, cardiomyocyte-specific SRSF3 knockout mouse model. After SRSF3 depletion in cardiomyocytes, mice developed severe systolic dysfunction that resulted in death within 8 days. RNA-Seq analysis revealed downregulation of mRNAs encoding sarcomeric and calcium handling proteins. Cardiomyocyte-specific SRSF3 knockout mice also showed evidence of alternative splicing of mTOR (mammalian target of rapamycin) mRNA, generating a shorter protein isoform lacking catalytic activity. This was associated with decreased phosphorylation of 4E-BP1 (eIF4E-binding protein 1), a protein that binds to eIF4E (eukaryotic translation initiation factor 4E) and prevents mRNA decapping. Consequently, we found increased decapping of mRNAs encoding proteins involved in cardiac contraction. Decapping was partially reversed by mTOR activation. CONCLUSIONS We show that cardiomyocyte-specific loss of SRSF3 expression results in decapping of critical mRNAs involved in cardiac contraction. The molecular mechanism underlying this effect likely involves the generation of a short mTOR isoform by alternative splicing, resulting in reduced 4E-BP1 phosphorylation. The identification of mRNA decapping as a mechanism of systolic heart failure may open the way to the development of urgently needed therapeutic tools.
Collapse
Affiliation(s)
- Paula Ortiz-Sánchez
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.).,Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain (P.O.-S., P.G.-P.)
| | - María Villalba-Orero
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.)
| | - Marina M López-Olañeta
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.)
| | - Javier Larrasa-Alonso
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.)
| | - Fátima Sánchez-Cabo
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.)
| | - Carlos Martí-Gómez
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.)
| | - Emilio Camafeita
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.)
| | - Jesús M Gómez-Salinero
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.)
| | - Laura Ramos-Hernández
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.)
| | - Peter J Nielsen
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany (P.J.N.)
| | - Jesús Vázquez
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.).,Centro de Investigacion Biomedica en Red Cardiovascular (CIBERCV), Madrid, Spain (J.V., P.G.-P., E.L.-P)
| | - Michaela Müller-McNicoll
- Goethe-University Frankfurt, Institute of Cell Biology and Neuroscience, Frankfurt/Main, Germany (M.M.-M.)
| | - Pablo García-Pavía
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain (P.O.-S., P.G.-P.).,Centro de Investigacion Biomedica en Red Cardiovascular (CIBERCV), Madrid, Spain (J.V., P.G.-P., E.L.-P).,Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Madrid, Spain (P.G.-P.)
| | - Enrique Lara-Pezzi
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.).,Centro de Investigacion Biomedica en Red Cardiovascular (CIBERCV), Madrid, Spain (J.V., P.G.-P., E.L.-P).,National Heart and Lung Institute, Imperial College London, United Kingdom (E.L.-P.)
| |
Collapse
|
9
|
Wu C, Zhu X, Tao K, Liu W, Ruan T, Wan W, Zhang C, Zhang W. MALAT1 promotes the colorectal cancer malignancy by increasing DCP1A expression and miR203 downregulation. Mol Carcinog 2018; 57:1421-1431. [PMID: 29964337 DOI: 10.1002/mc.22868] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/03/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022]
Abstract
The long non-coding RNA MALAT1 has been proved to promote the cell proliferation, drug resistance, invasion, and metastasis of colorectal cancer (CRC) in vitro and in vivo by regulating the expression of various oncogenes and their protein products. Our previous work discovered that the expression of the mRNA-decapping enzymes 1a (DCP1A) is upregulated in CRCs. However, the relationships between MALAT1 and DCP1A in the development of CRC and the underlying mechanisms are still unclear. In this study, we investigated the molecular mechanisms by which MALAT1 and DCP1A may be linked to contribute to the malignancies of CRCs. We found that DCP1A is a direct target molecule of MALAT1. Moreover, by screening the downstream genes of MALAT1, we noticed that microRNA 203(miR203), an oncogene suppressor in numerous cancers, is inversely correlated to both MALAT1 and DCP1A expressions. Following MALAT1 knockdown, we observed overexpression of miR203 accompanied with DCP1A downregulation to a level that reversed the promoted cell proliferation, invasion, and migration in vitro and in vivo, which could be restored by miR203 knockdown or DCP1A overexpression. These results proposed a new molecular mechanism of MALAT-miR203-DCP1A axis which is involved with the development and contributes to the malignancy of colorectal cancers.
Collapse
Affiliation(s)
- Chuanqing Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojie Zhu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weizhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tuo Ruan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenze Wan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weikang Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|