1
|
Hu Z, Jia Q, Yao S, Chen X. The TWIK-related acid sensitive potassium 3 (TASK-3) channel contributes to the different effects of anesthetics on the growth and metastasis of ovarian cancer cells. Heliyon 2024; 10:e34973. [PMID: 39161826 PMCID: PMC11332837 DOI: 10.1016/j.heliyon.2024.e34973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/21/2024] Open
Abstract
Different anesthetics exert different effects on the long-term outcomes of various cancers. The TWIK-related acid sensitive potassium 3 (TASK-3) channel is an important target of anesthetics and is upregulated in various cancers. However, the role and underlying mechanism of TASK-3 channel in the effects of anesthetics on ovarian cancer remain unknown. Here, we tested whether the TASK-3 channel contributes to the effects of anesthetics on ovarian cancers. We found that the TASK-3 channel was overexpressed in human ovarian cancer and ovarian cancer cell lines. Clinically relevant concentrations of lidocaine, as a TASK-3 channel inhibitor, exert inhibitory effects on tumor growth and metastasis of ovarian cancer cells in vitro and in vivo, whereas the TASK-3 channel potent activator sevoflurane had protumor effects and propofol had no significant effects on tumor growth and metastasis of ovarian cancer. Knockdown of the TASK-3 channel by TASK-3 shRNA attenuated the effects of lidocaine and sevoflurane. Moreover, mitochondrial TASK-3 channel contributes to the effects of lidocaine and sevoflurane on the mitochondrial functions of ovarian cancer. Taken together, the TASK-3 channel, especially the mitochondrial TASK-3 (MitoTASK-3) channel, is a molecular substrate for the effects of lidocaine and sevoflurane on the tumor growth and metastasis of ovarian cancer.
Collapse
Affiliation(s)
- Zhiqiang Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Qi Jia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| |
Collapse
|
2
|
Fu M, Wang C, Hong S, Guan X, Meng H, Feng Y, Xiao Y, Zhou Y, Liu C, Zhong G, You Y, Wu T, Yang H, Zhang X, He M, Guo H. Multiple metals exposure and blood mitochondrial DNA copy number: A cross-sectional study from the Dongfeng-Tongji cohort. ENVIRONMENTAL RESEARCH 2023; 216:114509. [PMID: 36208786 DOI: 10.1016/j.envres.2022.114509] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/25/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Mitochondria are essential organelles that execute fundamental biological processes, while mitochondrial DNA is vulnerable to environmental insults. The aim of this study was to investigate the individual and mixture effect of plasma metals on blood mitochondria DNA copy number (mtDNAcn). METHODS This study involved 1399 randomly selected subcohort participants from the Dongfeng-Tongji cohort. The blood mtDNAcn and plasma levels of 23 metals were determined by using quantitative real-time polymerase chain reaction (qPCR) and inductively coupled plasma mass spectrometer (ICP-MS), respectively. The multiple linear regression was used to explore the association between each metal and mtDNAcn, and the LASSO penalized regression was performed to select the most significant metals. We also used the quantile g-computation analysis to assess the mixture effect of multiple metals. RESULTS Based on multiple linear regression models, each 1% increase in plasma concentration of copper (Cu), rubidium (Rb), and titanium (Ti) was associated with a separate 0.16% [β(95% CI) = 0.158 (0.066, 0.249), P = 0.001], 0.20% [β(95% CI) = 0.196 (0.073, 0.318), P = 0.002], and 0.25% [β(95% CI) = 0.245 (0.081, 0.409), P = 0.003] increase in blood mtDNAcn. The LASSO regression also confirmed Cu, Rb, and Ti as significant predictors for mtDNAcn. There was a significant mixture effect of multiple metals on increasing mtDNAcn among the elder participants (aged ≥65), with an approximately 11% increase in mtDNAcn for each quartile increase in all metal concentrations [β(95% CI) = 0.146 (0.048, 0.243), P = 0.004]. CONCLUSIONS Our results show that plasma Cu, Rb and Ti were associated with increased blood mtDNA, and we further revealed a significant mixture effect of all metals on mtDNAcn among elder population. These findings may provide a novel perspective on the effect of metals on mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ming Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiru Hong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Meng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Feng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Zhou
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenliang Liu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guorong Zhong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingqian You
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianhao Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Handong Yang
- Dongfeng Central Hospital, Dongfeng Motor Corporation and Hubei University of Medicine, Shiyan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Zúñiga L, Cayo A, González W, Vilos C, Zúñiga R. Potassium Channels as a Target for Cancer Therapy: Current Perspectives. Onco Targets Ther 2022; 15:783-797. [PMID: 35899081 PMCID: PMC9309325 DOI: 10.2147/ott.s326614] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/08/2022] [Indexed: 12/18/2022] Open
Abstract
Potassium (K+) channels are highly regulated membrane proteins that control the potassium ion flux and respond to different cellular stimuli. These ion channels are grouped into three major families, Kv (voltage-gated K+ channel), Kir (inwardly rectifying K+ channel) and K2P (two-pore K+ channels), according to the structure, to mediate the K+ currents. In cancer, alterations in K+ channel function can promote the acquisition of the so-called hallmarks of cancer – cell proliferation, resistance to apoptosis, metabolic changes, angiogenesis, and migratory capabilities – emerging as targets for the development of new therapeutic drugs. In this review, we focus our attention on the different K+ channels associated with the most relevant and prevalent cancer types. We summarize our knowledge about the potassium channels structure and function, their cancer dysregulated expression and discuss the K+ channels modulator and the strategies for designing new drugs.
Collapse
Affiliation(s)
- Leandro Zúñiga
- Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile.,Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Angel Cayo
- Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile.,Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Wendy González
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Talca, Chile
| | - Cristian Vilos
- Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Escuela de Medicina, Universidad de Talca, Talca, Chile.,Laboratory of Nanomedicine and Targeted Delivery, School of Medicine, Universidad de Talca, Talca, 3460000, Chile.,Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, 8350709, Chile
| | - Rafael Zúñiga
- Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile.,Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Escuela de Medicina, Universidad de Talca, Talca, Chile
| |
Collapse
|
4
|
Skaar DA, Dietze EC, Alva-Ornelas JA, Ann D, Schones DE, Hyslop T, Sistrunk C, Zalles C, Ambrose A, Kennedy K, Idassi O, Miranda Carboni G, Gould MN, Jirtle RL, Seewaldt VL. Epigenetic Dysregulation of KCNK9 Imprinting and Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:6031. [PMID: 34885139 PMCID: PMC8656495 DOI: 10.3390/cancers13236031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/26/2021] [Indexed: 12/02/2022] Open
Abstract
Genomic imprinting is an inherited form of parent-of-origin specific epigenetic gene regulation that is dysregulated by poor prenatal nutrition and environmental toxins. KCNK9 encodes for TASK3, a pH-regulated potassium channel membrane protein that is overexpressed in 40% of breast cancer. However, KCNK9 gene amplification accounts for increased expression in <10% of these breast cancers. Here, we showed that KCNK9 is imprinted in breast tissue and identified a differentially methylated region (DMR) controlling its imprint status. Hypomethylation at the DMR, coupled with biallelic expression of KCNK9, occurred in 63% of triple-negative breast cancers (TNBC). The association between hypomethylation and TNBC status was highly significant in African-Americans (p = 0.006), but not in Caucasians (p = 0.70). KCNK9 hypomethylation was also found in non-cancerous tissue from 77% of women at high-risk of developing breast cancer. Functional studies demonstrated that the KCNK9 gene product, TASK3, regulates mitochondrial membrane potential and apoptosis-sensitivity. In TNBC cells and non-cancerous mammary epithelial cells from high-risk women, hypomethylation of the KCNK9 DMR predicts for increased TASK3 expression and mitochondrial membrane potential (p < 0.001). This is the first identification of the KCNK9 DMR in mammary epithelial cells and demonstration that its hypomethylation in breast cancer is associated with increases in both mitochondrial membrane potential and apoptosis resistance. The high frequency of hypomethylation of the KCNK9 DMR in TNBC and non-cancerous breast tissue from high-risk women provides evidence that hypomethylation of the KNCK9 DMR/TASK3 overexpression may serve as a marker of risk and a target for prevention of TNBC, particularly in African American women.
Collapse
Affiliation(s)
- David A. Skaar
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Eric C. Dietze
- Beckman Research Institute, Department of Population Sciences, City of Hope, Duarte, CA 91010, USA; (E.C.D.); (J.A.A.-O.); (D.A.); (D.E.S.); (C.S.); (A.A.); (K.K.); (O.I.)
| | - Jackelyn A. Alva-Ornelas
- Beckman Research Institute, Department of Population Sciences, City of Hope, Duarte, CA 91010, USA; (E.C.D.); (J.A.A.-O.); (D.A.); (D.E.S.); (C.S.); (A.A.); (K.K.); (O.I.)
| | - David Ann
- Beckman Research Institute, Department of Population Sciences, City of Hope, Duarte, CA 91010, USA; (E.C.D.); (J.A.A.-O.); (D.A.); (D.E.S.); (C.S.); (A.A.); (K.K.); (O.I.)
| | - Dustin E. Schones
- Beckman Research Institute, Department of Population Sciences, City of Hope, Duarte, CA 91010, USA; (E.C.D.); (J.A.A.-O.); (D.A.); (D.E.S.); (C.S.); (A.A.); (K.K.); (O.I.)
| | - Terry Hyslop
- Department of Biostatistics, School of Medicine, Duke University, Durham, NC 27710, USA;
| | - Christopher Sistrunk
- Beckman Research Institute, Department of Population Sciences, City of Hope, Duarte, CA 91010, USA; (E.C.D.); (J.A.A.-O.); (D.A.); (D.E.S.); (C.S.); (A.A.); (K.K.); (O.I.)
| | - Carola Zalles
- Department of Pathology, Mercy Hospital, Miami, FL 33133, USA;
| | - Adrian Ambrose
- Beckman Research Institute, Department of Population Sciences, City of Hope, Duarte, CA 91010, USA; (E.C.D.); (J.A.A.-O.); (D.A.); (D.E.S.); (C.S.); (A.A.); (K.K.); (O.I.)
| | - Kendall Kennedy
- Beckman Research Institute, Department of Population Sciences, City of Hope, Duarte, CA 91010, USA; (E.C.D.); (J.A.A.-O.); (D.A.); (D.E.S.); (C.S.); (A.A.); (K.K.); (O.I.)
| | - Ombeni Idassi
- Beckman Research Institute, Department of Population Sciences, City of Hope, Duarte, CA 91010, USA; (E.C.D.); (J.A.A.-O.); (D.A.); (D.E.S.); (C.S.); (A.A.); (K.K.); (O.I.)
| | - Gustavo Miranda Carboni
- Laboratory of Oncology, Department of Oncology, School of Medicine, University of Tennessee Health Science, Memphis, TN 38163, USA;
| | - Michael N. Gould
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Randy L. Jirtle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Victoria L. Seewaldt
- Beckman Research Institute, Department of Population Sciences, City of Hope, Duarte, CA 91010, USA; (E.C.D.); (J.A.A.-O.); (D.A.); (D.E.S.); (C.S.); (A.A.); (K.K.); (O.I.)
| |
Collapse
|
5
|
TASK-1 regulates mitochondrial function under hypoxia. Biochem Biophys Res Commun 2021; 578:163-169. [PMID: 34571371 DOI: 10.1016/j.bbrc.2021.09.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 11/23/2022]
Abstract
TASK-1, TWIK-related acid-sensitive potassium channel 1, is a member of the two-pore- domain potassium channel family. It is constitutively active at resting potentials and strongly expressed in the heart. However, little is known about the role of TASK-1 channels in hypoxia. A cellular model of hypoxia and reoxygenation from rat heart-derived H9c2 cells or TASK-1 deficient HEK293T cells was employed to explore the role of TASK-1 channels in cytoprotection against hypoxia. The cell viability assay revealed that TASK-1 expression increased the number of viable cells subjected to 2 h of hypoxia followed by 2 h of reoxygenation (H/R). To dissect the protective role of TASK-1 on mitochondrial function, mitochondrial membrane potential (MMP) was assessed by tetramethylrhodamine fluorescence. It was demonstrated that MMP was significantly decreased by H/R, but it was maintained by TASK-1 expression or pretreatment with cyclosporin A, an inhibitor of mitochondrial permeability transition pore (mPTP). The effect of cyclosporin A on MMP was not further altered by TASK-1 expression. Moreover, TASK-1 expression significantly blocked cytochrome c release induced by H/R. While a small fraction of endogenous TASK-1 was found to colocalize with the mitochondrial marker MitoTracker in H9c2 cells, H/R did not alter the extent of colocalization of TASK-1 with MitoTracker. The total TASK-1 protein level was not significantly affected by H/R. In summary, we provided the evidence that TASK-1 channels confer cytoprotection against hypoxia-reoxygenation injury, possibly by their capacity of maintaining the mitochondrial membrane potential via inhibiting MPTP opening.
Collapse
|
6
|
Checchetto V, Leanza L, De Stefani D, Rizzuto R, Gulbins E, Szabo I. Mitochondrial K + channels and their implications for disease mechanisms. Pharmacol Ther 2021; 227:107874. [PMID: 33930454 DOI: 10.1016/j.pharmthera.2021.107874] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The field of mitochondrial ion channels underwent a rapid development during the last decade, thanks to the molecular identification of some of the nuclear-encoded organelle channels and to advances in strategies allowing specific pharmacological targeting of these proteins. Thereby, genetic tools and specific drugs aided definition of the relevance of several mitochondrial channels both in physiological as well as pathological conditions. Unfortunately, in the case of mitochondrial K+ channels, efforts of genetic manipulation provided only limited results, due to their dual localization to mitochondria and to plasma membrane in most cases. Although the impact of mitochondrial K+ channels on human diseases is still far from being genuinely understood, pre-clinical data strongly argue for their substantial role in the context of several pathologies, including cardiovascular and neurodegenerative diseases as well as cancer. Importantly, these channels are druggable targets, and their in-depth investigation could thus pave the way to the development of innovative small molecules with huge therapeutic potential. In the present review we summarize the available experimental evidence that mechanistically link mitochondrial potassium channels to the above pathologies and underline the possibility of exploiting them for therapy.
Collapse
Affiliation(s)
| | - Luigi Leanza
- Department of Biology, University of Padova, Italy
| | | | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Italy
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Germany
| | - Ildiko Szabo
- Department of Biology, University of Padova, Italy; CNR Institute of Neurosciences, Italy.
| |
Collapse
|
7
|
Bachmann M, Rossa A, Antoniazzi G, Biasutto L, Carrer A, Campagnaro M, Leanza L, Gonczi M, Csernoch L, Paradisi C, Mattarei A, Zoratti M, Szabo I. Synthesis and cellular effects of a mitochondria-targeted inhibitor of the two-pore potassium channel TASK-3. Pharmacol Res 2021; 164:105326. [PMID: 33338625 DOI: 10.1016/j.phrs.2020.105326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/03/2020] [Accepted: 11/23/2020] [Indexed: 01/25/2023]
Abstract
The two-pore potassium channel TASK-3 has been shown to localize to both the plasma membrane and the mitochondrial inner membrane. TASK-3 is highly expressed in melanoma and breast cancer cells and has been proposed to promote tumor formation. Here we investigated whether pharmacological modulation of TASK-3, and specifically of mitochondrial TASK-3 (mitoTASK-3), had any effect on cancer cell survival and mitochondrial physiology. A novel, mitochondriotropic version of the specific TASK-3 inhibitor IN-THPP has been synthesized by addition of a positively charged triphenylphosphonium moiety. While IN-THPP was unable to induce apoptosis, mitoIN-THPP decreased survival of breast cancer cells and efficiently killed melanoma lines, which we show to express mitoTASK-3. Cell death was accompanied by mitochondrial membrane depolarization and fragmentation of the mitochondrial network, suggesting a role of the channel in the maintenance of the correct function of this organelle. In accordance, cells treated with mitoIN-THPP became rapidly depleted of mitochondrial ATP which resulted in activation of the AMP-dependent kinase AMPK. Importantly, cell survival was not affected in mouse embryonic fibroblasts and the effect of mitoIN-THPP was less pronounced in human melanoma cells stably knocked down for TASK-3 expression, indicating a certain degree of selectivity of the drug both for pathological cells and for the channel. In addition, mitoIN-THPP inhibited cancer cell migration to a higher extent than IN-THPP in two melanoma cell lines. In summary, our results point to the importance of mitoTASK-3 for melanoma cell survival and migration.
Collapse
Affiliation(s)
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padua, Italy
| | | | - Lucia Biasutto
- CNR Institute of Neuroscience, Padua, Italy; Department of Biomedical Sciences, University of Padua, Italy
| | - Andrea Carrer
- Department of Biology, University of Padua, Italy; Department of Biomedical Sciences, University of Padua, Italy
| | | | - Luigi Leanza
- Department of Biology, University of Padua, Italy
| | - Monika Gonczi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Hungary
| | - Laszlo Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Hungary
| | | | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Mario Zoratti
- CNR Institute of Neuroscience, Padua, Italy; Department of Biomedical Sciences, University of Padua, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padua, Italy; CNR Institute of Neuroscience, Padua, Italy.
| |
Collapse
|
8
|
Capatina AL, Lagos D, Brackenbury WJ. Targeting Ion Channels for Cancer Treatment: Current Progress and Future Challenges. Rev Physiol Biochem Pharmacol 2020; 183:1-43. [PMID: 32865696 DOI: 10.1007/112_2020_46] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ion channels are key regulators of cancer cell pathophysiology. They contribute to a variety of processes such as maintenance of cellular osmolarity and membrane potential, motility (via interactions with the cytoskeleton), invasion, signal transduction, transcriptional activity and cell cycle progression, leading to tumour progression and metastasis. Ion channels thus represent promising targets for cancer therapy. Ion channels are attractive targets because many of them are expressed at the plasma membrane and a broad range of existing inhibitors are already in clinical use for other indications. However, many of the ion channels identified in cancer cells are also active in healthy normal cells, so there is a risk that certain blockers may have off-target effects on normal physiological function. This review describes recent research advances into ion channel inhibitors as anticancer therapeutics. A growing body of evidence suggests that a range of existing and novel Na+, K+, Ca2+ and Cl- channel inhibitors may be effective for suppressing cancer cell proliferation, migration and invasion, as well as enhancing apoptosis, leading to suppression of tumour growth and metastasis, either alone or in combination with standard-of-care therapies. The majority of evidence to date is based on preclinical in vitro and in vivo studies, although there are several examples of ion channel-targeting strategies now reaching early phase clinical trials. Given the strong links between ion channel function and regulation of tumour growth, metastasis and chemotherapy resistance, it is likely that further work in this area will facilitate the development of new therapeutic approaches which will reach the clinic in the future.
Collapse
Affiliation(s)
| | - Dimitris Lagos
- Hull York Medical School, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - William J Brackenbury
- Department of Biology, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
9
|
Böhme I, Schönherr R, Eberle J, Bosserhoff AK. Membrane Transporters and Channels in Melanoma. Rev Physiol Biochem Pharmacol 2020; 181:269-374. [PMID: 32737752 DOI: 10.1007/112_2020_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent research has revealed that ion channels and transporters can be important players in tumor development, progression, and therapy resistance in melanoma. For example, members of the ABC family were shown to support cancer stemness-like features in melanoma cells, while several members of the TRP channel family were reported to act as tumor suppressors.Also, many transporter proteins support tumor cell viability and thus suppress apoptosis induction by anticancer therapy. Due to the high number of ion channels and transporters and the resulting high complexity of the field, progress in understanding is often focused on single molecules and is in total rather slow. In this review, we aim at giving an overview about a broad subset of ion transporters, also illustrating some aspects of the field, which have not been addressed in detail in melanoma. In context with the other chapters in this special issue on "Transportome Malfunctions in the Cancer Spectrum," a comparison between melanoma and these tumors will be possible.
Collapse
Affiliation(s)
- Ines Böhme
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Schönherr
- Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Jürgen Eberle
- Department of Dermatology, Venerology and Allergology, Skin Cancer Center Charité, University Medical Center Charité, Berlin, Germany
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany. .,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany.
| |
Collapse
|
10
|
Stolwijk JA, Sauer L, Ackermann K, Nassios A, Aung T, Haerteis S, Bäumner AJ, Wegener J, Schreml S. pH sensing in skin tumors: Methods to study the involvement of GPCRs, acid-sensing ion channels and transient receptor potential vanilloid channels. Exp Dermatol 2020; 29:1055-1061. [PMID: 32658355 DOI: 10.1111/exd.14150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
Solid tumors exhibit an inversed pH gradient with increased intracellular pH (pHi ) and decreased extracellular pH (pHe ). This inside-out pH gradient is generated via sodium/hydrogen antiporter 1, vacuolar-type H + ATPases, monocarboxylate transporters, (bi)carbonate (co)transporters and carboanhydrases. Our knowledge on how pHe -signals are sensed and what the respective receptors induce inside cells is scarce. Some pH-sensitive receptors (GPR4, GPR65/TDAG8, GPR68/OGR1, GPR132/G2A, possibly GPR31 and GPR151) and ion channels (acid-sensing ion channels ASICs, transient receptor potential vanilloid receptors TRPVs) transduce signals inside cells. As little is known on the expression and function of these pH sensors, we used immunostainings to study tissue samples from common and rare skin cancers. Our current and future work is directed towards investigating the impact of all the pH-sensing receptors in different skin tumors using cell culture techniques with selective knockdown/knockout (siRNA/CRISPR-Cas9). To study cell migration and proliferation, novel impedance-based wound healing assays have been developed and are used. The field of pH sensing in tumors and wounds holds great promise for the development of pH-targeting therapies, either against pH regulators or sensors to inhibit cell proliferation and migration.
Collapse
Affiliation(s)
- Judith A Stolwijk
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany.,Institute of Analytical Chemistry, Chemo- and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany
| | - Lisa Sauer
- Institute of Analytical Chemistry, Chemo- and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany
| | - Kirsten Ackermann
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany
| | - Anaïs Nassios
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany
| | - Thiha Aung
- Centre of Plastic, Aesthetic, Hand and Reconstructive Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Silke Haerteis
- Institute of Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Antje J Bäumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany
| | - Joachim Wegener
- Institute of Analytical Chemistry, Chemo- and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany
| | - Stephan Schreml
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
11
|
|
12
|
Zúñiga R, Valenzuela C, Concha G, Brown N, Zúñiga L. TASK-3 Downregulation Triggers Cellular Senescence and Growth Inhibition in Breast Cancer Cell Lines. Int J Mol Sci 2018; 19:ijms19041033. [PMID: 29596383 PMCID: PMC5979529 DOI: 10.3390/ijms19041033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 12/28/2022] Open
Abstract
TASK-3 potassium channels are believed to promote proliferation and survival of cancer cells, in part, by augmenting their resistance to both hypoxia and serum deprivation. While overexpression of TASK-3 is frequently observed in cancers, the understanding of its role and regulation during tumorigenesis remains incomplete. Here, we evaluated the effect of reducing the expression of TASK-3 in MDA-MB-231 and MCF-10F human mammary epithelial cell lines through small hairpin RNA (shRNA)-mediated knockdown. Our results show that knocking down TASK-3 in fully transformed MDA-MB-231 cells reduces proliferation, which was accompanied by an induction of cellular senescence and cell cycle arrest, with an upregulation of cyclin-dependent kinase (CDK) inhibitors p21 and p27. In non-tumorigenic MCF-10F cells, however, TASK-3 downregulation did not lead to senescence induction, although cell proliferation was impaired and an upregulation of CDK inhibitors was also evident. Our observations implicate TASK-3 as a critical factor in cell cycle progression and corroborate its potential as a therapeutic target in breast cancer treatment.
Collapse
Affiliation(s)
- Rafael Zúñiga
- Centro de Investigaciones Médicas (CIM), Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Escuela de Medicina, Universidad de Talca, Talca 3460000, Chile.
| | - Claudio Valenzuela
- Centro de Investigaciones Médicas (CIM), Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Escuela de Medicina, Universidad de Talca, Talca 3460000, Chile.
| | - Guierdy Concha
- Centro de Investigaciones Médicas (CIM), Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Escuela de Medicina, Universidad de Talca, Talca 3460000, Chile.
| | - Nelson Brown
- Centro de Investigaciones Médicas (CIM), Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Escuela de Medicina, Universidad de Talca, Talca 3460000, Chile.
| | - Leandro Zúñiga
- Centro de Investigaciones Médicas (CIM), Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Escuela de Medicina, Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
13
|
Bustos G, Cruz P, Lovy A, Cárdenas C. Endoplasmic Reticulum-Mitochondria Calcium Communication and the Regulation of Mitochondrial Metabolism in Cancer: A Novel Potential Target. Front Oncol 2017; 7:199. [PMID: 28944215 PMCID: PMC5596064 DOI: 10.3389/fonc.2017.00199] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/18/2017] [Indexed: 01/15/2023] Open
Abstract
Cancer is characterized by an uncontrolled cell proliferation rate even under low nutrient availability, which is sustained by a metabolic reprograming now recognized as a hallmark of cancer. Warburg was the first to establish the relationship between cancer and mitochondria; however, he interpreted enhanced aerobic glycolysis as mitochondrial dysfunction. Today it is accepted that many cancer cell types need fully functional mitochondria to maintain their homeostasis. Calcium (Ca2+)—a key regulator of several cellular processes—has proven to be essential for mitochondrial metabolism. Inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+ transfer from the endoplasmic reticulum to the mitochondria through the mitochondrial calcium uniporter (MCU) proves to be essential for the maintenance of mitochondrial function and cellular energy balance. Both IP3R and MCU are overexpressed in several cancer cell types, and the inhibition of the Ca2+ communication between these two organelles causes proliferation arrest, migration decrease, and cell death through mechanisms that are not fully understood. In this review, we summarize and analyze the current findings in this area, emphasizing the critical role of Ca2+ and mitochondrial metabolism in cancer and its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Galdo Bustos
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Pablo Cruz
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Alenka Lovy
- Department of Neuroscience, Center for Neuroscience Research, Tufts University School of Medicine, Boston, MA, United States
| | - César Cárdenas
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,Buck Institute for Research on Aging, Novato, CA, United States.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
14
|
Yao J, McHedlishvili D, McIntire WE, Guagliardo NA, Erisir A, Coburn CA, Santarelli VP, Bayliss DA, Barrett PQ. Functional TASK-3-Like Channels in Mitochondria of Aldosterone-Producing Zona Glomerulosa Cells. Hypertension 2017. [PMID: 28630209 DOI: 10.1161/hypertensionaha.116.08871] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ca2+ drives aldosterone synthesis in the cytosolic and mitochondrial compartments of the adrenal zona glomerulosa cell. Membrane potential across each of these compartments regulates the amplitude of the Ca2+ signal; yet, only plasma membrane ion channels and their role in regulating cell membrane potential have garnered investigative attention as pathological causes of human hyperaldosteronism. Previously, we reported that genetic deletion of TASK-3 channels (tandem pore domain acid-sensitive K+ channels) from mice produces aldosterone excess in the absence of a change in the cell membrane potential of zona glomerulosa cells. Here, we report using yeast 2-hybrid, immunoprecipitation, and electron microscopic analyses that TASK-3 channels are resident in mitochondria, where they regulate mitochondrial morphology, mitochondrial membrane potential, and aldosterone production. This study provides proof of principle that mitochondrial K+ channels, by modulating inner mitochondrial membrane morphology and mitochondrial membrane potential, have the ability to play a pathological role in aldosterone dysregulation in steroidogenic cells.
Collapse
Affiliation(s)
- Junlan Yao
- From the Departments of Pharmacology (J.Y., D.M., W.E.M., N.A.G., D.A.B., P.Q.B.) and Psychology (A.E.), University of Virginia School of Medicine, Charlottesville; Silverback Therapeutics, Inc, Seattle, WA (C.A.C.); and Department of Neuroscience, Merck & Co, Inc, West point, PA (V.P.S.)
| | - David McHedlishvili
- From the Departments of Pharmacology (J.Y., D.M., W.E.M., N.A.G., D.A.B., P.Q.B.) and Psychology (A.E.), University of Virginia School of Medicine, Charlottesville; Silverback Therapeutics, Inc, Seattle, WA (C.A.C.); and Department of Neuroscience, Merck & Co, Inc, West point, PA (V.P.S.)
| | - William E McIntire
- From the Departments of Pharmacology (J.Y., D.M., W.E.M., N.A.G., D.A.B., P.Q.B.) and Psychology (A.E.), University of Virginia School of Medicine, Charlottesville; Silverback Therapeutics, Inc, Seattle, WA (C.A.C.); and Department of Neuroscience, Merck & Co, Inc, West point, PA (V.P.S.)
| | - Nick A Guagliardo
- From the Departments of Pharmacology (J.Y., D.M., W.E.M., N.A.G., D.A.B., P.Q.B.) and Psychology (A.E.), University of Virginia School of Medicine, Charlottesville; Silverback Therapeutics, Inc, Seattle, WA (C.A.C.); and Department of Neuroscience, Merck & Co, Inc, West point, PA (V.P.S.)
| | - Alev Erisir
- From the Departments of Pharmacology (J.Y., D.M., W.E.M., N.A.G., D.A.B., P.Q.B.) and Psychology (A.E.), University of Virginia School of Medicine, Charlottesville; Silverback Therapeutics, Inc, Seattle, WA (C.A.C.); and Department of Neuroscience, Merck & Co, Inc, West point, PA (V.P.S.)
| | - Craig A Coburn
- From the Departments of Pharmacology (J.Y., D.M., W.E.M., N.A.G., D.A.B., P.Q.B.) and Psychology (A.E.), University of Virginia School of Medicine, Charlottesville; Silverback Therapeutics, Inc, Seattle, WA (C.A.C.); and Department of Neuroscience, Merck & Co, Inc, West point, PA (V.P.S.)
| | - Vincent P Santarelli
- From the Departments of Pharmacology (J.Y., D.M., W.E.M., N.A.G., D.A.B., P.Q.B.) and Psychology (A.E.), University of Virginia School of Medicine, Charlottesville; Silverback Therapeutics, Inc, Seattle, WA (C.A.C.); and Department of Neuroscience, Merck & Co, Inc, West point, PA (V.P.S.)
| | - Douglas A Bayliss
- From the Departments of Pharmacology (J.Y., D.M., W.E.M., N.A.G., D.A.B., P.Q.B.) and Psychology (A.E.), University of Virginia School of Medicine, Charlottesville; Silverback Therapeutics, Inc, Seattle, WA (C.A.C.); and Department of Neuroscience, Merck & Co, Inc, West point, PA (V.P.S.)
| | - Paula Q Barrett
- From the Departments of Pharmacology (J.Y., D.M., W.E.M., N.A.G., D.A.B., P.Q.B.) and Psychology (A.E.), University of Virginia School of Medicine, Charlottesville; Silverback Therapeutics, Inc, Seattle, WA (C.A.C.); and Department of Neuroscience, Merck & Co, Inc, West point, PA (V.P.S.).
| |
Collapse
|
15
|
Kim HK, Noh YH, Nilius B, Ko KS, Rhee BD, Kim N, Han J. Current and upcoming mitochondrial targets for cancer therapy. Semin Cancer Biol 2017. [PMID: 28627410 DOI: 10.1016/j.semcancer.2017.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria are essential intracellular organelles that regulate energy metabolism, cell death, and signaling pathways that are important for cell proliferation and differentiation. Therefore, mitochondria are fundamentally implicated in cancer biology, including initiation, growth, metastasis, relapse, and acquired drug resistance. Based on these implications, mitochondria have been proposed as a major therapeutic target for cancer treatment. In addition to classical view of mitochondria in cancer biology, recent studies found novel pathophysiological roles of mitochondria in cancer. In this review, we introduce recent concepts of mitochondrial roles in cancer biology including mitochondrial DNA mutation and epigenetic modulation, energy metabolism reprogramming, mitochondrial channels, involvement in metastasis and drug resistance, and cancer stem cells. We also discuss the role of mitochondria in emerging cancer therapeutic strategies, especially cancer immunotherapy and CRISPR-Cas9 system gene therapy.
Collapse
Affiliation(s)
- Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea; Department of Integrated Biomedical Science, College of Medicine, Inje University, Busan, Republic of Korea
| | - Yeon Hee Noh
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Bernd Nilius
- KU Leuven, Department Cell Mol Medicine, Leuven, 3000, Belgium
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea.
| |
Collapse
|
16
|
Augustynek B, Kunz WS, Szewczyk A. Guide to the Pharmacology of Mitochondrial Potassium Channels. Handb Exp Pharmacol 2017; 240:103-127. [PMID: 27838853 DOI: 10.1007/164_2016_79] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This chapter provides a critical overview of the available literature on the pharmacology of mitochondrial potassium channels. In the first part, the reader is introduced to the topic, and eight known protein contributors to the potassium permeability of the inner mitochondrial membrane are presented. The main part of this chapter describes the basic characteristics of each channel type mentioned in the introduction. However, the most important and valuable information included in this chapter concerns the pharmacology of mitochondrial potassium channels. Several available channel modulators are critically evaluated and rated by suitability for research use. The last figure of this chapter shows the results of this evaluation at a glance. Thus, this chapter can be very useful for beginners in this field. It is intended to be a time- and resource-saving guide for those searching for proper modulators of mitochondrial potassium channels.
Collapse
Affiliation(s)
- Bartłomiej Augustynek
- Laboratory of Intracellular Ion Channels, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Wolfram S Kunz
- Department of Epileptology, University of Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland.
| |
Collapse
|
17
|
Peruzzo R, Biasutto L, Szabò I, Leanza L. Impact of intracellular ion channels on cancer development and progression. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2016; 45:685-707. [PMID: 27289382 PMCID: PMC5045486 DOI: 10.1007/s00249-016-1143-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022]
Abstract
Cancer research is nowadays focused on the identification of possible new targets in order to try to develop new drugs for curing untreatable tumors. Ion channels have emerged as "oncogenic" proteins, since they have an aberrant expression in cancers compared to normal tissues and contribute to several hallmarks of cancer, such as metabolic re-programming, limitless proliferative potential, apoptosis-resistance, stimulation of neo-angiogenesis as well as cell migration and invasiveness. In recent years, not only the plasma membrane but also intracellular channels and transporters have arisen as oncological targets and were proposed to be associated with tumorigenesis. Therefore, the research is currently focusing on understanding the possible role of intracellular ion channels in cancer development and progression on one hand and, on the other, on developing new possible drugs able to modulate the expression and/or activity of these channels. In a few cases, the efficacy of channel-targeting drugs in reducing tumors has already been demonstrated in vivo in preclinical mouse models.
Collapse
Affiliation(s)
| | - Lucia Biasutto
- CNR Institute of Neuroscience, Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padua, Padua, Italy
- CNR Institute of Neuroscience, Padua, Italy
| | - Luigi Leanza
- Department of Biology, University of Padua, Padua, Italy.
| |
Collapse
|
18
|
TASK-1 Regulates Apoptosis and Proliferation in a Subset of Non-Small Cell Lung Cancers. PLoS One 2016; 11:e0157453. [PMID: 27294516 PMCID: PMC4905626 DOI: 10.1371/journal.pone.0157453] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/31/2016] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide; survival times are poor despite therapy. The role of the two-pore domain K+ (K2P) channel TASK-1 (KCNK3) in lung cancer is at present unknown. We found that TASK-1 is expressed in non-small cell lung cancer (NSCLC) cell lines at variable levels. In a highly TASK-1 expressing NSCLC cell line, A549, a characteristic pH- and hypoxia-sensitive non-inactivating K+ current was measured, indicating the presence of functional TASK-1 channels. Inhibition of TASK-1 led to significant depolarization in these cells. Knockdown of TASK-1 by siRNA significantly enhanced apoptosis and reduced proliferation in A549 cells, but not in weakly TASK-1 expressing NCI-H358 cells. Na+-coupled nutrient transport across the cell membrane is functionally coupled to the efflux of K+ via K+ channels, thus TASK-1 may potentially influence Na+-coupled nutrient transport. In contrast to TASK-1, which was not differentially expressed in lung cancer vs. normal lung tissue, we found the Na+-coupled nutrient transporters, SLC5A3, SLC5A6, and SLC38A1, transporters for myo-inositol, biotin and glutamine, respectively, to be significantly overexpressed in lung adenocarcinomas. In summary, we show for the first time that the TASK-1 channel regulates apoptosis and proliferation in a subset of NSCLC.
Collapse
|
19
|
Laskowski M, Augustynek B, Kulawiak B, Koprowski P, Bednarczyk P, Jarmuszkiewicz W, Szewczyk A. What do we not know about mitochondrial potassium channels? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1247-1257. [PMID: 26951942 DOI: 10.1016/j.bbabio.2016.03.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 01/14/2023]
Abstract
In this review, we summarize our knowledge about mitochondrial potassium channels, with a special focus on unanswered questions in this field. The following potassium channels have been well described in the inner mitochondrial membrane: ATP-regulated potassium channel, Ca(2+)-activated potassium channel, the voltage-gated Kv1.3 potassium channel, and the two-pore domain TASK-3 potassium channel. The primary functional roles of these channels include regulation of mitochondrial respiration and the alteration of membrane potential. Additionally, they modulate the mitochondrial matrix volume and the synthesis of reactive oxygen species by mitochondria. Mitochondrial potassium channels are believed to contribute to cytoprotection and cell death. In this paper, we discuss fundamental issues concerning mitochondrial potassium channels: their molecular identity, channel pharmacology and functional properties. Attention will be given to the current problems present in our understanding of the nature of mitochondrial potassium channels. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Michał Laskowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Bartłomiej Augustynek
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Piotr Bednarczyk
- Department of Biophysics, Warsaw University of Life Sciences - SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
| | - Wieslawa Jarmuszkiewicz
- Laboratory of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
20
|
Sun H, Luo L, Lal B, Ma X, Chen L, Hann CL, Fulton AM, Leahy DJ, Laterra J, Li M. A monoclonal antibody against KCNK9 K(+) channel extracellular domain inhibits tumour growth and metastasis. Nat Commun 2016; 7:10339. [PMID: 26842342 PMCID: PMC4742836 DOI: 10.1038/ncomms10339] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/30/2015] [Indexed: 12/25/2022] Open
Abstract
Two-pore domain potassium (K2P) channels act to maintain cell resting membrane potential--a prerequisite for many biological processes. KCNK9, a member of K2P family, is implicated in cancer, owing to its overexpression in human tumours and its ability to promote neoplastic cell survival and growth. However, KCNK9's underlying contributions to malignancy remain elusive due to the absence of specific modulators. Here we describe the development of monoclonal antibodies against the KCNK9 extracellular domain and their functional effects. We show that one antibody (Y4) with the highest affinity binding induces channel internalization. The addition of Y4 to KCNK9-expressing carcinoma cells reduces cell viability and increases cell death. Systemic administration of Y4 effectively inhibits growth of human lung cancer xenografts and murine breast cancer metastasis in mice. Evidence for Y4-mediated carcinoma cell autonomous and immune-dependent cytotoxicity is presented. Our study reveals that antibody-based KCNK9 targeting is a promising therapeutic strategy in KCNK9-expressing malignancies.
Collapse
Affiliation(s)
- Han Sun
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.,Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland 21205, USA
| | - Liqun Luo
- Immunotherapy Institute, Fujian Medical University, Fujian 350108, China
| | - Bachchu Lal
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland 21205, USA
| | - Xinrong Ma
- Department of Pathology, University of Maryland, Baltimore, Maryland 21201, USA
| | - Lieping Chen
- Department of Immunobiology and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Christine L Hann
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Amy M Fulton
- Department of Pathology, University of Maryland, Baltimore, Maryland 21201, USA.,Baltimore Veterans Administration Medical Center, Baltimore, Maryland 21201, USA
| | - Daniel J Leahy
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - John Laterra
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.,Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland 21205, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Min Li
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
21
|
Madamba SM, Damri KN, Dejean LM, Peixoto PM. Mitochondrial Ion Channels in Cancer Transformation. Front Oncol 2015; 5:120. [PMID: 26090338 PMCID: PMC4455240 DOI: 10.3389/fonc.2015.00120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/15/2015] [Indexed: 11/13/2022] Open
Abstract
Cancer transformation involves reprograming of mitochondrial function to avert cell death mechanisms, monopolize energy metabolism, accelerate mitotic proliferation, and promote metastasis. Mitochondrial ion channels have emerged as promising therapeutic targets because of their connection to metabolic and apoptotic functions. This mini review discusses how mitochondrial channels may be associated with cancer transformation and expands on the possible involvement of mitochondrial protein import complexes in pathophysiological process.
Collapse
Affiliation(s)
- Stephen M. Madamba
- Department of Natural Sciences, Baruch College, City University of New York, New York, NY, USA
- City University of New York Graduate Center, New York, NY, USA
| | - Kevin N. Damri
- Department of Natural Sciences, Baruch College, City University of New York, New York, NY, USA
| | - Laurent M. Dejean
- Department of Chemistry, College of Science and Mathematics, California State University Fresno, Fresno, CA, USA
| | - Pablo M. Peixoto
- Department of Natural Sciences, Baruch College, City University of New York, New York, NY, USA
- City University of New York Graduate Center, New York, NY, USA
- Department of Basic Sciences, New York University College of Dentistry, New York, NY, USA
| |
Collapse
|
22
|
Involvement of potassium channels in the progression of cancer to a more malignant phenotype. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2477-92. [PMID: 25517985 DOI: 10.1016/j.bbamem.2014.12.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/01/2014] [Accepted: 12/08/2014] [Indexed: 12/22/2022]
Abstract
Potassium channels are a diverse group of pore-forming transmembrane proteins that selectively facilitate potassium flow through an electrochemical gradient. They participate in the control of the membrane potential and cell excitability in addition to different cell functions such as cell volume regulation, proliferation, cell migration, angiogenesis as well as apoptosis. Because these physiological processes are essential for the correct cell function, K+ channels have been associated with a growing number of diseases including cancer. In fact, different K+ channel families such as the voltage-gated K+ channels, the ether à-go-go K+ channels, the two pore domain K+ channels and the Ca2+-activated K+ channels have been associated to tumor biology. Potassium channels have a role in neoplastic cell-cycle progression and their expression has been found abnormal in many types of tumors and cancer cells. In addition, the expression and activity of specific K+ channels have shown a significant correlation with the tumor malignancy grade. The aim of this overview is to summarize published data on K+ channels that exhibit oncogenic properties and have been linked to a more malignant cancer phenotype. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
|
23
|
Nagy D, Gönczi M, Dienes B, Szöőr Á, Fodor J, Nagy Z, Tóth A, Fodor T, Bai P, Szücs G, Rusznák Z, Csernoch L. Silencing the KCNK9 potassium channel (TASK-3) gene disturbs mitochondrial function, causes mitochondrial depolarization, and induces apoptosis of human melanoma cells. Arch Dermatol Res 2014; 306:885-902. [PMID: 25318378 DOI: 10.1007/s00403-014-1511-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 07/24/2014] [Accepted: 09/29/2014] [Indexed: 01/12/2023]
Abstract
TASK-3 (KCNK9 or K2P9.1) channels are thought to promote proliferation and/or survival of malignantly transformed cells, most likely by increasing their hypoxia tolerance. Based on our previous results that suggested mitochondrial expression of TASK-3 channels, we hypothesized that TASK-3 channels have roles in maintaining mitochondrial activity. In the present work we studied the effect of reduced TASK-3 expression on the mitochondrial function and survival of WM35 and A2058 melanoma cells. TASK-3 knockdown cells had depolarized mitochondrial membrane potential and contained a reduced amount of mitochondrial DNA. Compared to their scrambled shRNA-transfected counterparts, they demonstrated diminished responsiveness to the application of the mitochondrial uncoupler [(3-chlorophenyl)hydrazono]malononitrile (CCCP). These observations indicate impaired mitochondrial function. Further, TASK-3 knockdown cells presented reduced viability, decreased total DNA content, altered cell morphology, and reduced surface area. In contrast to non- and scrambled shRNA-transfected melanoma cell lines, which did not present noteworthy apoptotic activity, almost 50 % of the TASK-3 knockdown cells exhibited strong Annexin-V-specific immunofluorescence signal. Sequestration of cytochrome c from the mitochondria to the cytosol, increased caspase 3 activity, and translocation of the apoptosis-inducing factor from mitochondria to cell nuclei were also demonstrated in TASK-3 knockdown cells. Interference with TASK-3 channel expression, therefore, induces caspase-dependent and -independent apoptosis of melanoma cells, most likely via causing mitochondrial depolarization. Consequently, TASK-3 channels may be legitimate targets of future melanoma therapies.
Collapse
Affiliation(s)
- Dénes Nagy
- Department of Physiology, Faculty of General Medicine, University of Debrecen, Nagyerdei krt 98, PO Box 22, 4012, Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.
Collapse
|
25
|
Mitochondrial ion channels as oncological targets. Oncogene 2014; 33:5569-81. [DOI: 10.1038/onc.2013.578] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 02/06/2023]
|
26
|
Williams S, Bateman A, O'Kelly I. Altered expression of two-pore domain potassium (K2P) channels in cancer. PLoS One 2013; 8:e74589. [PMID: 24116006 PMCID: PMC3792113 DOI: 10.1371/journal.pone.0074589] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/03/2013] [Indexed: 01/31/2023] Open
Abstract
Potassium channels have become a focus in cancer biology as they play roles in cell behaviours associated with cancer progression, including proliferation, migration and apoptosis. Two-pore domain (K2P) potassium channels are background channels which enable the leak of potassium ions from cells. As these channels are open at rest they have a profound effect on cellular membrane potential and subsequently the electrical activity and behaviour of cells in which they are expressed. The K2P family of channels has 15 mammalian members and already 4 members of this family (K2P2.1, K2P3.1, K2P9.1, K2P5.1) have been implicated in cancer. Here we examine the expression of all 15 members of the K2P family of channels in a range of cancer types. This was achieved using the online cancer microarray database, Oncomine (www.oncomine.org). Each gene was examined across 20 cancer types, comparing mRNA expression in cancer to normal tissue. This analysis revealed all but 3 K2P family members (K2P4.1, K2P16.1, K2P18.1) show altered expression in cancer. Overexpression of K2P channels was observed in a range of cancers including breast, leukaemia and lung while more cancers (brain, colorectal, gastrointestinal, kidney, lung, melanoma, oesophageal) showed underexpression of one or more channels. K2P1.1, K2P3.1, K2P12.1, were overexpressed in a range of cancers. While K2P1.1, K2P3.1, K2P5.1, K2P6.1, K2P7.1 and K2P10.1 showed significant underexpression across the cancer types examined. This analysis supports the view that specific K2P channels may play a role in cancer biology. Their altered expression together with their ability to impact the function of other ion channels and their sensitivity to environmental stimuli (pO2, pH, glucose, stretch) makes understanding the role these channels play in cancer of key importance.
Collapse
Affiliation(s)
- Sarah Williams
- Human Development and Health, Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Andrew Bateman
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ita O'Kelly
- Human Development and Health, Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- * E-mail: I.M.O'
| |
Collapse
|
27
|
Leanza L, Biasutto L, Managò A, Gulbins E, Zoratti M, Szabò I. Intracellular ion channels and cancer. Front Physiol 2013; 4:227. [PMID: 24027528 PMCID: PMC3759743 DOI: 10.3389/fphys.2013.00227] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/05/2013] [Indexed: 02/02/2023] Open
Abstract
Several types of channels play a role in the maintenance of ion homeostasis in subcellular organelles including endoplasmatic reticulum, nucleus, lysosome, endosome, and mitochondria. Here we give a brief overview of the contribution of various mitochondrial and other organellar channels to cancer cell proliferation or death. Much attention is focused on channels involved in intracellular calcium signaling and on ion fluxes in the ATP-producing organelle mitochondria. Mitochondrial K+ channels (Ca2+-dependent BKCa and IKCa, ATP-dependent KATP, Kv1.3, two-pore TWIK-related Acid-Sensitive K+ channel-3 (TASK-3)), Ca2+ uniporter MCU, Mg2+-permeable Mrs2, anion channels (voltage-dependent chloride channel VDAC, intracellular chloride channel CLIC) and the Permeability Transition Pore (MPTP) contribute importantly to the regulation of function in this organelle. Since mitochondria play a central role in apoptosis, modulation of their ion channels by pharmacological means may lead to death of cancer cells. The nuclear potassium channel Kv10.1 and the nuclear chloride channel CLIC4 as well as the endoplasmatic reticulum (ER)-located inositol 1,4,5-trisphosphate (IP3) receptor, the ER-located Ca2+ depletion sensor STIM1 (stromal interaction molecule 1), a component of the store-operated Ca2+ channel and the ER-resident TRPM8 are also mentioned. Furthermore, pharmacological tools affecting organellar channels and modulating cancer cell survival are discussed. The channels described in this review are summarized on Figure 1. Overall, the view is emerging that intracellular ion channels may represent a promising target for cancer treatment.
Collapse
Affiliation(s)
- Luigi Leanza
- Department of Biology, University of Padova Padova, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Inside job: ligand-receptor pharmacology beneath the plasma membrane. Acta Pharmacol Sin 2013; 34:859-69. [PMID: 23685953 PMCID: PMC3703709 DOI: 10.1038/aps.2013.51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/07/2013] [Indexed: 12/24/2022] Open
Abstract
Most drugs acting on the cell surface receptors are membrane permeable and thus able to engage their target proteins in different subcellular compartments. However, these drugs' effects on cell surface receptors have historically been studied on the plasma membrane alone. Increasing evidence suggests that small molecules may also modulate their targeted receptors through membrane trafficking or organelle-localized signaling inside the cell. These additional modes of interaction have been reported for functionally diverse ligands of GPCRs, ion channels, and transporters. Such intracellular drug-target engagements affect cell surface expression. Concurrent intracellular and cell surface signaling may also increase the complexity and therapeutic opportunities of small molecule modulation. Here we discuss examples of ligand-receptor interactions that are present in both intra- and extracellular sites, and the potential therapeutic opportunities presented by this phenomenon.
Collapse
|
29
|
Abstract
The current status of peptides that target the mitochondria in the context of cancer is the focus of this review. Chemotherapy and radiotherapy used to kill tumor cells are principally mediated by the process of apoptosis that is governed by the mitochondria. The failure of anticancer therapy often resides at the level of the mitochondria. Therefore, the mitochondrion is a key pharmacological target in cancer due to many of the differences that arise between malignant and healthy cells at the level of this ubiquitous organelle. Additionally, targeting the characteristics of malignant mitochondira often rely on disruption of protein--protein interactions that are not generally amenable to small molecules. We discuss anticancer peptides that intersect with pathological changes in the mitochondrion.
Collapse
|
30
|
Patent Highlights. Pharm Pat Anal 2012. [DOI: 10.4155/ppa.12.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of recent key developments in the patent literature of relevance to the advancement of pharmaceutical and medical R&D
Collapse
|
31
|
Fernandez TL, Dawson RA, Van Lonkhuyzen DR, Kimlin MG, Upton Z. A tan in a test tube -in vitro models for investigating ultraviolet radiation-induced damage in skin. Exp Dermatol 2012; 21:404-10. [DOI: 10.1111/j.1600-0625.2012.01485.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Abstract
During embryonic development, the skin, the largest organ of the human body, and nervous system are both derived from the neuroectoderm. Consequently, several key factors and mechanisms that influence and control central or peripheral nervous system activities are also present and hence involved in various regulatory mechanisms of the skin. Apparently, this is the case for the ion and non-ion selective channels as well. Therefore, in this review, we shall focus on delineating the regulatory roles of the channels in skin physiology and pathophysiology. First, we introduce key cutaneous functions and major characteristics of the channels in question. Then, we systematically detail the involvement of a multitude of channels in such skin processes (e.g. skin barrier formation, maintenance, and repair, immune mechanisms, exocrine secretion) which are mostly defined by cutaneous non-neuronal cell populations. Finally, we close by summarizing data suggesting that selected channels are also involved in skin diseases such as e.g. atopic dermatitis, psoriasis, non-melanoma cancers and malignant melanoma, genetic and autoimmune diseases, etc., as well as in skin ageing.
Collapse
Affiliation(s)
- Attila Oláh
- DE-MTA Lendület Cellular Physiology Research Group, Department of Physiology, University of Debrecen, Medical and Health Science Center, Research Center for Molecular Medicine, Nagyerdei krt. 98, H-4032, Debrecen, Hungary
| | | | | |
Collapse
|
33
|
Szabò I, Leanza L, Gulbins E, Zoratti M. Physiology of potassium channels in the inner membrane of mitochondria. Pflugers Arch 2011; 463:231-46. [PMID: 22089812 DOI: 10.1007/s00424-011-1058-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 10/30/2011] [Indexed: 02/06/2023]
Abstract
The inner membrane of the ATP-producing organelles of endosymbiotic origin, mitochondria, has long been considered to be poorly permeable to cations and anions, since the strict control of inner mitochondrial membrane permeability is crucial for efficient ATP synthesis. Over the past 30 years, however, it has become clear that various ion channels--along with antiporters and uniporters--are present in the mitochondrial inner membrane, although at rather low abundance. These channels are important for energy supply, and some are a decisive factor in determining whether a cell lives or dies. Their electrophysiological and pharmacological characterisations have contributed importantly to the ongoing elucidation of their pathophysiological roles. This review gives an overview of recent advances in our understanding of the functions of the mitochondrial potassium channels identified so far. Open issues concerning the possible molecular entities giving rise to the observed activities and channel protein targeting to mitochondria are also discussed.
Collapse
Affiliation(s)
- Ildikò Szabò
- Department of Biology, University of Padova, Padova, Italy.
| | | | | | | |
Collapse
|