1
|
Dong C, Sun Q, Zheng F, Ji J, Xu X, Yao X, Gan D. Heavy moxibustion at Sanyin point ameliorates neurogenic bladder dysfunction in spinal cord injury rats through the PI3 K/mTOR pathway. J Spinal Cord Med 2024:1-11. [PMID: 39660978 DOI: 10.1080/10790268.2024.2420431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVE The present study aims to investigate the effect and mechanism of heavy moxibustion (100 moxa-cone) at Sanyin point (the common point of Yin and kidney) on the function of neurogenic bladder (NB) dysfunction in rats with spinal cord injury (SCI). METHODS Twenty-four male Sprague-Dawley rats were divided into four groups (n = 6): control, NB, NB + Moxibustion, and NB + Moxibustion + YS-49 (PI3 K agonist). The rats in control groups accepted a cut open of the skin, fascia, and muscle. The NB model was established using spinal cord transection. Fourteen days later, animals received heavy moxibustion at Sanyin point for three weeks or/and intraperitoneal administration of YS-49 (a PI3 K agonist). Basso, Beattie, and Bresnahan (BBB) scale, urodynamic parameters, bladder size, and weight were measured. The hematoxylin-eosin staining method was used to observe the histology of the bladder mucosa. Moreover, NB dysfunction after SCI could be restored by autophagy activation and autophagy is mediated by the PI3 K/Akt/mTOR pathway. Therefore, the expressions of autophagy factor (LC3 II/I and p62), PI3 K, and p-mTOR in the bladder mucosa were evaluated by western blotting. RESULTS Heavy moxibustion treatment relieved the development of NB dysfunction in rats with SCI, with an increase in the bladder voiding efficiency and a decrease in afferent activity during storage in the moxibustion group compared with the NB group. The expression levels of LC3 II/I were markedly elevated by moxibustion, accompanied by a decrease in the levels of p62. YS-49 addition increased the PI3 K and p-mTOR expression which were down-regulated by moxibustion. Importantly, YS-49 reversed the effects of moxibustion on autophagy and bladder function. CONCLUSION Heavy moxibustion at Sanyin point exerted its effect on healing-impaired NB dysfunction in rats with SCI, possibly activating autophagy through the PI3 K/mTOR pathway.
Collapse
Affiliation(s)
- Chunxuan Dong
- Department of Rehabilitation, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, People's Republic of China
| | - Qibin Sun
- Department of Workstation of Sun Qibin, The Famous Old TCM Doctor in China, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, People's Republic of China
| | - Fangjiang Zheng
- Department of Publicity, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, People's Republic of China
| | - Jing Ji
- Department of Rehabilitation, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, People's Republic of China
| | - Xiumei Xu
- Department of Rehabilitation, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, People's Republic of China
| | - Xingzhang Yao
- Department of Orthopedic Reconstruction, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, People's Republic of China
| | - Decheng Gan
- Department of Traditional Chinese Medicine, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, People's Republic of China
| |
Collapse
|
2
|
Zeng M, Wang Y, Tao X, Fan T, Yin X, Shen C, Wang X. Novel Perspectives in the Management of Colorectal Cancer: Mechanistic Investigations Into the Reversal of Drug Resistance via Active Constituents Derived From Herbal Medicine. Phytother Res 2024; 38:5962-5984. [PMID: 39462152 DOI: 10.1002/ptr.8363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/03/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
The high incidence and mortality rate of colorectal cancer have become a significant global health burden. Chemotherapy has been the traditional treatment for colorectal cancer and has demonstrated promising antitumor effects, leading to significant improvements in patient survival. However, the development of chemoresistance poses a major challenge during chemotherapy in colorectal cancer, significantly impeding treatment efficacy and affecting patient prognosis. Despite the development of a variety of novel anticolorectal cancer chemotherapy agents, their effectiveness and side effects vary, possibly due to the complex mechanisms of resistance in colorectal cancer. Abnormal drug metabolism or protein targets are the most direct causes of resistance. Further studies have revealed that these resistance mechanisms involve biochemical processes such as altered protein expression, autophagy, and epithelial-mesenchymal transitions. Herbal active ingredients offer an alternative treatment option and have shown promise in reversing colorectal cancer drug resistance. This paper aims to summarize the role of various biochemical processes and key protein targets in the occurrence and maintenance of resistance mechanisms in colorectal cancer. Additionally, it elaborates on the mechanisms of action of herbal active ingredients in reversing colorectal cancer drug resistance. The article also discusses the limitations and opportunities in developing novel anticolorectal cancer drugs based on herbal medicine.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelin Tao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Tianfei Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Yin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Shen
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xueyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Ling J, Li B, Yuan X, Yang W, Sun K. Intermittent Hypoxia Impairs Cognitive Function and Promotes Mitophagy and Lysophagy in Obstructive Sleep Apnea-Hypopnea Syndrome Rat Model. Mol Biotechnol 2024:10.1007/s12033-024-01319-y. [PMID: 39549209 DOI: 10.1007/s12033-024-01319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/28/2024] [Indexed: 11/18/2024]
Abstract
Autophagy regulates intermittent hypoxia (IH)-induced obstructive sleep apnea-hypopnea syndrome (OSAHS). We investigated the effects of IH and its withdrawal on cognitive function, autophagy, and lysophagy in OSAHS. An OSAHS rat model was established, and rats were divided into five groups: normoxia control, IH-4w (4-week IH), IH-6w (6-week IH), IH-8w (8-week IH), and IH-8w + 4w (8-week IH and 4-week normoxia). The cognitive behavior; mitochondrial and lysosomal morphology of the hippocampal tissue; mitochondrial respiratory function, permeability, and membrane potential; lysosomal function; autophagy- and lysophagy-related protein levels; and hypoxia-associated autophagy gene expression in rats were assessed. The cognitive function of rats in the IH-4w, IH-6w, and IH-8w groups was significantly impaired. In IH-8w cells, mitochondrial function was damaged with swollen morphology and decreased quantity, respiration, permeability, and membrane potential, along with significantly increased mitophagy-related protein ATG5 and LC3II/LC3 levels and decreased p62 levels. Expression of hypoxia-associated autophagy genes Becn1, Hif1, Bnip3, Bnip3l, and Fundc1 was significantly higher in the IH-8w group. Significantly increased LAMP2, CTSB, and ACP2 levels in IH-8w cells further indicated impaired lysosomal function. Lysophagy-related protein LAMP1, LC3II/LC3I, and TFEB levels were significantly increased in the IH-8w group, whereas p62 level was significantly decreased. The above listed evidence indicated damage to the mitochondria and lysosomes, as well as stimulation of mitophagy and lysophagy in IH-treatment OSAHS rat model. After withdrawing IH and culturing for 4 weeks in normal conditions, the cognitive function of rats improved, and mitophagy and lysophagy decreased. Our findings indicate that IH impairs cognitive function and promotes mitophagy and lysophagy in an OSAHS rat model, and IH withdrawal recovered the above effects.
Collapse
Affiliation(s)
- Jizu Ling
- Department of Pediatric Medicine, The First Hospital of Lanzhou University, No.1, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China.
| | - BoWen Li
- Department of Pediatric Medicine, The First Hospital of Lanzhou University, No.1, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China
| | - XinHui Yuan
- Department of Pediatric Medicine, The First Hospital of Lanzhou University, No.1, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China
| | - WenKai Yang
- Department of Pediatric Medicine, The First Hospital of Lanzhou University, No.1, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China
| | - KeYang Sun
- Department of Pediatric Medicine, The First Hospital of Lanzhou University, No.1, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China
| |
Collapse
|
4
|
Afroz S, Preet R, Vishwakarma V, Evans AE, Magstadt AN, Dixon DA. Regulation of autophagy by Rab27B in colorectal cancer. Int J Biochem Cell Biol 2024:106693. [PMID: 39542128 DOI: 10.1016/j.biocel.2024.106693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Autophagy is a cellular recycling process that is associated with tumor growth, anti-tumor immune responses, and therapy resistance in colorectal cancer (CRC). In this report, we identify the small GTPase Rab27B to control the autophagy process in CRC. Depletion of Rab27B showed an abnormal accumulation of autophagy vesicles and increased autophagy markers in CRC cells, indicating autophagy dysregulation. Image analysis indicated that autophagy flux is blocked at the autophagosome/lysosome fusion step when Rab27B is lost. While Rab27B deficient cells are proficient at growth under 2D in vitro conditions, cell growth was significantly impacted in both in vitro 3D growth and in vivo tumorigenesis studies. Together, these results demonstrate a new role of Rab27B in the autophagy trafficking process in CRC and identify Rab27B as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Sahida Afroz
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Ranjan Preet
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Vikalp Vishwakarma
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Andrew E Evans
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Alexa N Magstadt
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA; University of Kansas Cancer Center, Kansas City, KS, USA.
| |
Collapse
|
5
|
Zhang YL, Ma MX, Xing LN, Zhang JN, Guo XN, Qiao SK. Downregulation of autophagy is associated with poor clinical outcome after immunochemotherapy in patients with diffuse large B-cell lymphoma. Exp Hematol 2024; 139:104638. [PMID: 39244145 DOI: 10.1016/j.exphem.2024.104638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
This study aimed to determine the expression levels of the autophagy markers Beclin-1 and p62 in patients with diffuse large B-cell lymphoma (DLBCL) and explore the association between autophagy and disease prognosis. The expression of Beclin-1 and p62 was investigated in patients with DLBCL and patients with reactive lymphoproliferative disease (RLD) using immunohistochemistry. The association between the clinical characteristics of patients with DLBCL and autophagy status was further analyzed. Beclin-1 levels were increased in RLD patients compared with those with DLBCL, but the difference was not statistically significant (p > 0.05). p62 levels in DLBCL patients were significantly higher than those in RLD patients (p < 0.05). Beclin-1 expression was associated only with the Ann Arbor stage (p < 0.05), whereas p62 expression was associated with the Ann Arbor stage, IPI score, extranodal involvement, and Ki-67 index (p < 0.05). Beclin-1 and p62 levels were not associated with short-term treatment efficacy in DLBCL patients. Survival analysis showed that Beclin-1 expression had no significant effect on 2-year progression-free survival (PFS) or overall survival (OS) (p > 0.05). However, high p62 expression in DLBCL patients was associated with reduced 2-year PFS compared with that of patients with low p62 expression (p < 0.05); the 2-year OS was not affected (p > 0.05). Our results demonstrate that autophagic activity affects the prognosis of DLBCL patients; the lower the autophagic activity, the shorter the PFS. Targeted p62 knockout may be a novel therapeutic strategy for the treatment of DLBCL patients.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/therapy
- Male
- Female
- Autophagy
- Middle Aged
- Beclin-1/metabolism
- Beclin-1/genetics
- Aged
- Adult
- Down-Regulation
- Prognosis
- Treatment Outcome
- Aged, 80 and over
- Sequestosome-1 Protein/metabolism
- Sequestosome-1 Protein/genetics
- Immunotherapy
Collapse
Affiliation(s)
- Ya-Li Zhang
- Department of General Medical, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Meng-Xue Ma
- Department of Hematology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Li-Na Xing
- Department of Hematology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jing-Nan Zhang
- Department of Hematology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiao-Nan Guo
- Department of Hematology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shu-Kai Qiao
- Department of Hematology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
6
|
Xing F, Liu N, Wang C, Wang XD. Caffeic acid phenethyl ester promotes oxaliplatin sensitization in colon cancer by inhibiting autophagy. Sci Rep 2024; 14:14624. [PMID: 38918541 PMCID: PMC11199620 DOI: 10.1038/s41598-024-65409-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
Colon cancer ranks as the third most prevalent form of cancer globally, with chemotherapy remaining the primary treatment modality. To mitigate drug resistance and minimize adverse effects associated with chemotherapy, selection of appropriate adjuvants assumes paramount importance. Caffeic acid phenethyl ester (CAPE), a naturally occurring compound derived from propolis, exhibits a diverse array of biological activities. We observed that the addition of CAPE significantly augmented the drug sensitivity of colon cancer cells to oxaliplatin. In SW480 and HCT116 cells, oxaliplatin combined with 10 µM CAPE reduced the IC50 of oxaliplatin from 14.24 ± 1.03 and 84.16 ± 3.02 µM to 2.11 ± 0.15 and 3.92 ± 0.17 µM, respectively. We then used proteomics to detect differentially expressed proteins in CAPE-treated SW480 cells and found that the main proteins showing changes in expression after CAPE treatment were p62 (SQSTM1) and LC3B (MAP1LC3B). Gene ontology analysis revealed that CAPE exerted antitumor and chemotherapy-sensitization effects through the autophagy pathway. We subsequently verified the differentially expressed proteins using immunoblotting. Simultaneously, the autophagy inhibitor bafilomycin A1 and the mCherry-EGFP-LC3 reporter gene were used as controls to detect the effect of CAPE on autophagy levels. Collectively, the results indicate that CAPE may exert antitumor and chemotherapy-sensitizing effects by inhibiting autophagy, offering novel insights for the development of potential chemosensitizing agents.
Collapse
Affiliation(s)
- Fei Xing
- Department of Gastrointestinal Nutrition Surgery, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Ning Liu
- Academic Center, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Can Wang
- Department of Gastrointestinal Nutrition Surgery, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Xu-Dong Wang
- Department of Gastrointestinal Nutrition Surgery, The Second Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
7
|
Gadallah MS, Dawoud M, Abdou A. The Role of Beclin 1 and HER2 in Colorectal Carcinoma; An Immunohistochemical Study. Asian Pac J Cancer Prev 2024; 25:617-626. [PMID: 38415549 PMCID: PMC11077107 DOI: 10.31557/apjcp.2024.25.2.617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/18/2024] [Indexed: 02/29/2024] Open
Abstract
OBJECTIVE This study aimed to evaluate the expression of Beclin 1 and HER2 proteins using immunohistochemistry in CRC tissues compared to colonic adenoma, and to investigate the correlation of their expression with clinicopathological parameters and survival outcomes in CRC patients. METHODS The study utilized paraffin-embedded blocks from 17 colonic adenoma and 81 CRC cases. Immunohistochemical analysis was performed to assess the expression of Beclin 1 and HER2 proteins. RESULTS The cytoplasmic expression of Beclin 1 was significantly higher in CRC tissues compared to adenoma specimens (P=0.051). High Beclin 1 expression was significantly associated with distal colon location (P=0.028). High HER2 cytoplasmic expression was significantly associated with vascular invasion (P=0.05), perineural invasion (P=0.03), and shorter overall survival (P=0.035). CONCLUSIONS The findings suggest that Beclin 1 plays a role in colorectal carcinogenesis, with higher expression observed in CRC cases compared to adenoma cases. Furthermore, HER2 carries poor prognostic impact in CRC cases.
Collapse
Affiliation(s)
- Marwa Salah Gadallah
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt.
| | | | | |
Collapse
|
8
|
Luo D, Li S, Guo J, Yue H, Shi L, Liu R, Wang J, Shi X. The role and mechanism of AZD5363 anti-leukemia activity in T-cell acute lymphoblastic leukemia. Eur J Pharmacol 2024; 963:176268. [PMID: 38096965 DOI: 10.1016/j.ejphar.2023.176268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive and heterogeneous hematologic malignancy. Chemotherapy resistance and refractory relapses are the most important challenges in T-ALL. PI3K/Akt/mTOR pathway has been implicated in regulating cell survival, T-ALL development and resistance to chemotherapy. We explored the effects of AZD5363 (a potent pan-Akt inhibitor) alone and in combination with autophagy inhibitor hydroxycholoroquine sulfate (HCQ) in cultured CCRF-CEM, Jurkat and PF382 cells and a T-ALL xenograft mouse model. METHODS A xenograft mouse model was used to investigate the effect of AZD5363 on T-ALL progression. MTT assay, flow cytometry, siRNA, transmission electron microscopy and western blotting were performed in cultured CCRF-CEM, Jurkat and PF382 cells. The interaction between AZD5363 and HCQ was explored by molecular docking. RESULTS AZD5363 delayed T-ALL progression and increased the expression of cleaved caspase-3 and LC3B-II in mice. AZD5363 decreased cells viability by arresting cell cycle in the G1 phase and inducing apoptosis, and, significantly increased the number of autophagosomes (p < 0.01). The increased expression of cleaved caspase-3 and LC3B-II, and phosphorylation of Akt and mTOR were significantly, inhibited by AZD5363. HCQ blocked AZD5363-induced autophagy and enhanced AZD5363-induced cell death (p < 0.01). CONCLUSIONS AZD5363 suppressed T-ALL progression and its anti-leukemia activity was enhanced by HCQ in T-ALL cells, which might provide a potential therapeutic strategy for human T-ALL.
Collapse
Affiliation(s)
- Danqing Luo
- Department of Hematology, The Affiliated of Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Shen Li
- Translational Medicine Laboratory, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jin Guo
- Translational Medicine Laboratory, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Huixuan Yue
- Translational Medicine Laboratory, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Lixiao Shi
- Department of Hematology, The Affiliated of Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Rong Liu
- Department of Hematology, The Affiliated of Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jianhua Wang
- Translational Medicine Laboratory, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Xiaodong Shi
- Department of Hematology, The Affiliated of Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China.
| |
Collapse
|
9
|
Albadari N, Xie Y, Li W. Deciphering treatment resistance in metastatic colorectal cancer: roles of drug transports, EGFR mutations, and HGF/c-MET signaling. Front Pharmacol 2024; 14:1340401. [PMID: 38269272 PMCID: PMC10806212 DOI: 10.3389/fphar.2023.1340401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
In 2023, colorectal cancer (CRC) is the third most diagnosed malignancy and the third leading cause of cancer death worldwide. At the time of the initial visit, 20% of patients diagnosed with CRC have metastatic CRC (mCRC), and another 25% who present with localized disease will later develop metastases. Despite the improvement in response rates with various modulation strategies such as chemotherapy combined with targeted therapy, radiotherapy, and immunotherapy, the prognosis of mCRC is poor, with a 5-year survival rate of 14%, and the primary reason for treatment failure is believed to be the development of resistance to therapies. Herein, we provide an overview of the main mechanisms of resistance in mCRC and specifically highlight the role of drug transports, EGFR, and HGF/c-MET signaling pathway in mediating mCRC resistance, as well as discuss recent therapeutic approaches to reverse resistance caused by drug transports and resistance to anti-EGFR blockade caused by mutations in EGFR and alteration in HGF/c-MET signaling pathway.
Collapse
Affiliation(s)
| | | | - Wei Li
- College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
10
|
Shen N, Wang L, Wu J, Chen X, Hu F, Su Y. Meta‑analysis of the autophagy‑associated protein LC3 as a prognostic marker in colorectal cancer. Exp Ther Med 2023; 26:492. [PMID: 37753301 PMCID: PMC10518644 DOI: 10.3892/etm.2023.12191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/02/2023] [Indexed: 09/28/2023] Open
Abstract
Microtubule-associated protein 1 light chain 3 (LC3) is an autophagy-associated gene, which is involved in the progression of a number of human malignancies. Such as Breast Cancer, Liver Cancer, and Lung Cancer. However, the role of LC3 in colorectal cancer (CC) remains to be fully elucidated. Therefore, the prognostic role of LC3 expression in CC was evaluated in the present study, with an emphasis on the clinicopathology and prognosis. Expression of LC3 in CC was examined using PubMed, Cochrane Library, Excerpta Medica Database, China Knowledge Infrastructure and Wanfang Data. Newcastle-Ottawa scale was used to screen the literature quality, and RevMan 5.4 and STATA 14.0 were used for the meta-analysis. A total of 1,689 patients from 10 studies were included in the present meta-analysis. The findings of the present study suggested that increased LC3 expression levels were associated with histological grade [odds ratio (OR)=0.91, 95% confidence interval (CI) (0.47, 1.77), P<0.001] and TNM stage [OR=0.91, 95% CI (0.47, 1.77), P<0.001], but were not associated with sex [OR=1.14, 95% CI (0.90, 1.51)], age [OR=0.89, 95% CI (0.67, 1.20)], tumor size [OR=0.78, 95% CI (0.30, 2.34)], histological grade [OR=0.82, 95% CI (0.43, 1.95)] and lymph node metastasis [OR=2.05, 95% CI (1.19, 3.60)] in CC. In addition, the increased expression of LC3 was revealed to be a prognostic factor for the overall survival of patients with CC. In conclusion, the autophagy-associated protein LC3 may be a prognostic indicator of human CC.
Collapse
Affiliation(s)
- Ning Shen
- Department of Oncology, Zhangqiu People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Lijuan Wang
- Blood Purification Center, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu 215153, P.R. China
| | - Jingjing Wu
- Department of Oncology, Zhangqiu People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Xuefang Chen
- Blood Purification Center, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu 215153, P.R. China
| | - Fengchao Hu
- Department of Oncology, Zhangqiu People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Yi Su
- Quality Management Office, Zhangqiu People's Hospital, Jinan, Shandong 250200, P.R. China
| |
Collapse
|
11
|
Kumar S, Sherman MY. Resistance to TOP-1 Inhibitors: Good Old Drugs Still Can Surprise Us. Int J Mol Sci 2023; 24:ijms24087233. [PMID: 37108395 PMCID: PMC10138578 DOI: 10.3390/ijms24087233] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Irinotecan (SN-38) is a potent and broad-spectrum anticancer drug that targets DNA topoisomerase I (Top1). It exerts its cytotoxic effects by binding to the Top1-DNA complex and preventing the re-ligation of the DNA strand, leading to the formation of lethal DNA breaks. Following the initial response to irinotecan, secondary resistance is acquired relatively rapidly, compromising its efficacy. There are several mechanisms contributing to the resistance, which affect the irinotecan metabolism or the target protein. In addition, we have demonstrated a major resistance mechanism associated with the elimination of hundreds of thousands of Top1 binding sites on DNA that can arise from the repair of prior Top1-dependent DNA cleavages. Here, we outline the major mechanisms of irinotecan resistance and highlight recent advancements in the field. We discuss the impact of resistance mechanisms on clinical outcomes and the potential strategies to overcome resistance to irinotecan. The elucidation of the underlying mechanisms of irinotecan resistance can provide valuable insights for the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Michael Y Sherman
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| |
Collapse
|
12
|
Hu WH, Liu TT, Liu PF, Morgan P, Lin IL, Tsai WL, Cheng YY, Hsieh AT, Hu TH, Shu CW. ATG4B and pS383/392-ATG4B serve as potential biomarkers and therapeutic targets of colorectal cancer. Cancer Cell Int 2023; 23:63. [PMID: 37038218 PMCID: PMC10088137 DOI: 10.1186/s12935-023-02909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/27/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Autophagy related protease 4B (ATG4B) is a protease required for autophagy processing, which is strongly implicated in cancer progression. Phosphorylation of ATG4B is crucial for activation of its protease activity. However, little is known about the relationship of ATG4B and its phosphorylated form at Ser 383 and 392 sites (pS383/392-ATG4B), with clinical outcomes, particularly in colorectal cancer (CRC). METHODS The ATG4B gene expression in CRC patients was obtained from The Cancer Genome Atlas (TCGA) database to analyze its clinical relevance. Tissue microarrays composed of 118 CRC patient specimens were used to determine the associations of ATG4B and pS383/392-ATG4B protein levels with prognosis. The biological functions of ATG4B in CRC cells were inspected with cell proliferation, mobility and spheroid culture assays. RESULTS ATG4B gene expression was elevated in tumor tissues of CRC patients compared to that in adjacent normal tissues and high level of ATG4B expression was associated with poor survival. Similarly, protein levels of ATG4B and pS383/392-ATG4B were highly correlated with worse overall survival and disease-free survival. Stratification analysis results showed that high level of ATG4B had significantly higher risk of mortality in males and elderly patients compared to those female patients and patients 60 years or younger. In contrast, multivariate Cox's regression analysis indicated that high level of pS383/392-ATG4B was significantly linked to unfavorable overall survival and disease-free survival of males and elderly patients, whereas, it had no correlation with female patients and patients 60 years or younger. Moreover, high level of ATG4B was positively associated with increased mortality risk in patients with advanced AJCC stages (III and IV) and lymph node invasion (N1 and N2) for both overall survival and disease-free survival. Nevertheless, high level of pS383/392-ATG4B was positively correlated with increased mortality risk in patients with early AJCC stages (I and II) and without lymph node invasion (N0). In addition, silencing ATG4B attenuated migration, invasion, and further enhanced the cytotoxic effects of chemotherapeutic drugs in two and three-dimensional cultures of CRC cells. CONCLUSIONS Our results suggest that ATG4B and pS383/392-ATG4B might be suitable biomarkers and therapeutic targets for CRC.
Collapse
Affiliation(s)
- Wan-Hsiang Hu
- Department of Colorectal Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83341, Taiwan
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Kaohsiung, 83341, Taiwan
| | - Ting-Ting Liu
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83341, Taiwan
| | - Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Paul Morgan
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - I-Ling Lin
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Wei-Lun Tsai
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Yi-Yun Cheng
- Innovative Incubation Center, Praexisio Taiwain Inc, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ang-Tsen Hsieh
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, No. 70, Lianhai Rd., Gushan Dist, Kaohsiung, 80424, Taiwan
| | - Tsung-Hui Hu
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Chih-Wen Shu
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, No. 70, Lianhai Rd., Gushan Dist, Kaohsiung, 80424, Taiwan.
- Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
13
|
Kasprzak A. Autophagy and the Insulin-like Growth Factor (IGF) System in Colonic Cells: Implications for Colorectal Neoplasia. Int J Mol Sci 2023; 24:ijms24043665. [PMID: 36835075 PMCID: PMC9959216 DOI: 10.3390/ijms24043665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common human malignancies worldwide. Along with apoptosis and inflammation, autophagy is one of three important mechanisms in CRC. The presence of autophagy/mitophagy in most normal mature intestinal epithelial cells has been confirmed, where it has mainly protective functions against reactive oxygen species (ROS)-induced DNA and protein damage. Autophagy regulates cell proliferation, metabolism, differentiation, secretion of mucins and/or anti-microbial peptides. Abnormal autophagy in intestinal epithelial cells leads to dysbiosis, a decline in local immunity and a decrease in cell secretory function. The insulin-like growth factor (IGF) signaling pathway plays an important role in colorectal carcinogenesis. This is evidenced by the biological activities of IGFs (IGF-1 and IGF-2), IGF-1 receptor type 1 (IGF-1R) and IGF-binding proteins (IGF BPs), which have been reported to regulate cell survival, proliferation, differentiation and apoptosis. Defects in autophagy are found in patients with metabolic syndrome (MetS), inflammatory bowel diseases (IBD) and CRC. In neoplastic cells, the IGF system modulates the autophagy process bidirectionally. In the current era of improving CRC therapies, it seems important to investigate the exact mechanisms not only of apoptosis, but also of autophagy in different populations of tumor microenvironment (TME) cells. The role of the IGF system in autophagy in normal as well as transformed colorectal cells still seems poorly understood. Hence, the aim of the review was to summarize the latest knowledge on the role of the IGF system in the molecular mechanisms of autophagy in the normal colon mucosa and in CRC, taking into account the cellular heterogeneity of the colonic and rectal epithelium.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland
| |
Collapse
|
14
|
Pan X, Chen S, Shen R, Liu S, You Y. HOXA11-OS participates in lupus nephritis by targeting miR-124-3p mediating Cyr61 to regulate podocyte autophagy. Mol Med 2022; 28:138. [PMID: 36418932 PMCID: PMC9682779 DOI: 10.1186/s10020-022-00570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The long chain non-coding RNA HOXA11-OS was recently identified. Increasing studies have shown that HOXA11-OS has regulatory effects on genes in gastric cancer, prostate cancer, and various kidney diseases, but research on its role in systemic lupus erythematosus is still lacking. The present study aimed to investigate the role of HOXA11-OS in the regulation of podocyte autophagy in the development of lupus nephritis (LN) and its potential molecular mechanism. METHODS mRNA and protein expression of the target gene (i.e., Cyr61) was detected by quantitative real-time polymerase chain reaction, western blotting, and immunofluorescence. Mouse podocytes were induced using serum immunoglobulin G (IgG) from patients with lupus and their viability was detected using the cell counting kit-8 assay. The interaction of miR-124-3p with HOXA11-OS and Cyr61 was analyzed by double luciferase reporter gene assay. Serum autoantibody levels were detected by enzyme-linked immunosorbent assay. Pathological lesions in the kidney tissue were detected by hematoxylin-eosin and periodate-Schiff staining. The independent samples t-test was used for comparing two groups, and one-way analysis of variance for comparing multiple groups. RESULTS HOXA11-OS was highly expressed in LN tissues, serum, and cells, and the expression of some key autophagy factors and Cyr61 was significantly increased, while miR-124-3p expression was significantly decreased. In vitro, LN-IgG inhibited podocyte activity, increased autophagy and Cyr61 expression, and aggravated podocyte injury in a time- and dose-dependent manner. As a competitive endogenous RNA of miR-124-3p, HOXA11-OS promoted the expression of Cyr61, thus enhancing the autophagy increase induced by LN-IgG and aggravating podocyte injury. Knockdown of HOXA11-OS had the opposite effect. miR-124-3p mimic or Cyr61 knockdown restored the high expression of autophagy factors and Cyr61 induced by HOXA11-OS overexpression and alleviated podocyte injury. Further in vivo experiments showed that injection of sh-HOXA11-OS adeno-associated virus downregulated HOXA11-OS and significantly alleviated renal damage in lupus mice. CONCLUSIONS HOXA11-OS is involved in the occurrence and development of LN by regulating podocyte autophagy through miR-124-3p/Cyr61 sponging, which may provide a good potential therapeutic target for LN.
Collapse
Affiliation(s)
- Xiuhong Pan
- grid.460081.bDepartment of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Road II, Baise, 533000 Guangxi Zhuang Autonomous Region China
| | - Shanshan Chen
- grid.460081.bDepartment of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Road II, Baise, 533000 Guangxi Zhuang Autonomous Region China
| | - Ruiwen Shen
- grid.460081.bDepartment of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Road II, Baise, 533000 Guangxi Zhuang Autonomous Region China
| | - Sen Liu
- grid.460081.bDepartment of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Road II, Baise, 533000 Guangxi Zhuang Autonomous Region China
| | - Yanwu You
- grid.410652.40000 0004 6003 7358Department of Nephrology, People’s Hospital of Guangxi Zhuang Autonomous Region, No. 6 Taoyuan Road, Qingxiu District, Nanning, 530000 China
| |
Collapse
|
15
|
Prieux-Klotz C, Chédotal H, Zoumpoulaki M, Chouzenoux S, Chêne C, Lopez-Sanchez A, Thomas M, Ranjan Sahoo P, Policar C, Batteux F, Bertrand HC, Nicco C, Coriat R. A New Manganese Superoxide Dismutase Mimetic Improves Oxaliplatin-Induced Neuropathy and Global Tolerance in Mice. Int J Mol Sci 2022; 23:12938. [PMID: 36361753 PMCID: PMC9658974 DOI: 10.3390/ijms232112938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
Reactive oxygen species (ROS) are produced by every aerobic cell during mitochondrial oxidative metabolism as well as in cellular response to xenobiotics, cytokines, and bacterial invasion. Superoxide Dismutases (SOD) are antioxidant proteins that convert superoxide anions (O2•-) to hydrogen peroxide (H2O2) and dioxygen. Using the differential in the level of oxidative stress between normal and cancer cells, SOD mimetics can show an antitumoral effect and prevent oxaliplatin-induced peripheral neuropathy. New Pt(IV) conjugate prodrugs (OxPt-x-Mn1C1A (x = 1, 1-OH, 2)), combining oxaliplatin and a Mn SOD mimic (MnSODm Mn1C1A) with a covalent link, were designed. Their stability in buffer and in the presence of sodium ascorbate was studied. In vitro, their antitumoral activity was assessed by the viability and ROS production of tumor cell lines (CT16, HCT 116, KC) and fibroblasts (primary culture and NIH 3T3). In vivo, a murine model of colorectal cancer was created with subcutaneous injection of CT26 cells in Balb/c mice. Tumor size and volume were measured weekly in four groups: vehicle, oxaliplatin, and oxaliplatin associated with MnSODm Mn1C1A and the bis-conjugate OxPt-2-Mn1C1A. Oxaliplatin-induced peripheral neuropathy (OIPN) was assessed using a Von Frey test reflecting chronic hypoalgesia. Tolerance to treatment was assessed with a clinical score including four items: weight loss, weariness, alopecia, and diarrhea. In vitro, Mn1C1A associated with oxaliplatin and Pt(IV) conjugates treatment induced significantly higher production of H2O2 in all cell lines and showed a significant improvement of the antitumoral efficacy compared to oxaliplatin alone. In vivo, the association of Mn1C1A to oxaliplatin did not decrease its antitumoral activity, while OxPt-2-Mn1C1A had lower antitumoral activity than oxaliplatin alone. Mn1C1A associated with oxaliplatin significantly decreased OIPN and also improved global clinical tolerance of oxaliplatin. A neuroprotective effect was observed, associated with a significantly improved tolerance to oxaliplatin without impairing its antitumoral activity.
Collapse
Affiliation(s)
- Caroline Prieux-Klotz
- Institut Cochin, INSERM U 1016 CNRS UMR 8104, Université de Paris, 75005 Paris, France
- Percy Military Hospital, Gastroenterology, 101 Avenue Henri Barbusse, 92140 Clamart, France
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Henri Chédotal
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Martha Zoumpoulaki
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Sandrine Chouzenoux
- Institut Cochin, INSERM U 1016 CNRS UMR 8104, Université de Paris, 75005 Paris, France
| | - Charlotte Chêne
- Institut Cochin, INSERM U 1016 CNRS UMR 8104, Université de Paris, 75005 Paris, France
| | - Alvaro Lopez-Sanchez
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Marine Thomas
- Institut Cochin, INSERM U 1016 CNRS UMR 8104, Université de Paris, 75005 Paris, France
| | - Priya Ranjan Sahoo
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Clotilde Policar
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Frédéric Batteux
- Institut Cochin, INSERM U 1016 CNRS UMR 8104, Université de Paris, 75005 Paris, France
| | - Hélène C. Bertrand
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Carole Nicco
- Institut Cochin, INSERM U 1016 CNRS UMR 8104, Université de Paris, 75005 Paris, France
| | - Romain Coriat
- Institut Cochin, INSERM U 1016 CNRS UMR 8104, Université de Paris, 75005 Paris, France
- Gastroenterology, Cochin Hospital AP-HP, Université de Paris, 75014 Paris, France
| |
Collapse
|
16
|
Hu D, Huo Y, Xue Y, Feng H, Sun W, Wang H, Wu J, Wang X. Clinical application of autophagy proteins as prognostic biomarkers in colorectal cancer: a meta-analysis. Future Oncol 2022; 18:3537-3549. [PMID: 36189673 DOI: 10.2217/fon-2022-0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: To evaluate the prognostic value of autophagy proteins in colorectal cancer (CRC). Methods: Six potential autophagy proteins were analyzed (Beclin-1, LC3A, LC3B, ULK1, ATG10 and p62). Hazard ratios (HRs) and 95% CIs for overall survival (OS) of CRC patients were calculated. Results: A total of 20 studies were included. High expression of LC3B and p62 was associated with favorable OS (HR: 0.56, 95% CI: 0.40-0.80; HR: 0.76, 95% CI: 0.61-0.96), whereas high expression of Beclin-1 (HR: 1.47, 95% CI: 1.05-2.06) and ULK1 (HR: 1.92. 95% CI: 1.05-3.53) might predict worse OS in CRC patients. Conclusion: Beclin-1, LC3B and p62 might act as promising prognostic biomarkers for CRC. High LC3 and p62 expression can be reliable tools for metastasis prediction.
Collapse
Affiliation(s)
- Dongqing Hu
- Department of Healthcare Security Management, Wangjing Hospital, China Academy of Chinese Medical Sciences, No. 6, Huajiadi Road, Chaoyang District, Beijing, 100102, China.,Tibetan Medicine Administration of Tibet Autonomous Region, Chengguan District, Lhasa, China.,Department of Digestive Endoscopy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhua West Road, Jinan, Shandong Province, 250011, China
| | - Yanming Huo
- Cardiovascular Medicine Department, Wangjing Hospital, China Academy of Chinese Medical Sciences, No. 6, Huajiadi Road, Chaoyang District, Beijing, 100102, China
| | - Ye Xue
- Department of Digestive Endoscopy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhua West Road, Jinan, Shandong Province, 250011, China
| | - Haixia Feng
- Department of Infection Management, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhua West Road, Jinan, Shandong Province, 250011, China
| | - Wei Sun
- Cardiovascular Medicine Department, Wangjing Hospital, China Academy of Chinese Medical Sciences, No. 6, Huajiadi Road, Chaoyang District, Beijing, 100102, China
| | - Huiqi Wang
- Cardiovascular Medicine Department, Wangjing Hospital, China Academy of Chinese Medical Sciences, No. 6, Huajiadi Road, Chaoyang District, Beijing, 100102, China
| | - Jing Wu
- Cardiovascular Medicine Department, Wangjing Hospital, China Academy of Chinese Medical Sciences, No. 6, Huajiadi Road, Chaoyang District, Beijing, 100102, China
| | - Xiaoyan Wang
- Department of Healthcare Security Management, Wangjing Hospital, China Academy of Chinese Medical Sciences, No. 6, Huajiadi Road, Chaoyang District, Beijing, 100102, China.,Tibetan Medicine Administration of Tibet Autonomous Region, Chengguan District, Lhasa, China
| |
Collapse
|
17
|
Drug Resistance in Colorectal Cancer: From Mechanism to Clinic. Cancers (Basel) 2022; 14:cancers14122928. [PMID: 35740594 PMCID: PMC9221177 DOI: 10.3390/cancers14122928] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of death worldwide. The 5-year survival rate is 90% for patients with early CRC, 70% for patients with locally advanced CRC, and 15% for patients with metastatic CRC (mCRC). In fact, most CRC patients are at an advanced stage at the time of diagnosis. Although chemotherapy, molecularly targeted therapy and immunotherapy have significantly improved patient survival, some patients are initially insensitive to these drugs or initially sensitive but quickly become insensitive, and the emergence of such primary and secondary drug resistance is a significant clinical challenge. The most direct cause of resistance is the aberrant anti-tumor drug metabolism, transportation or target. With more in-depth research, it is found that cell death pathways, carcinogenic signals, compensation feedback loop signal pathways and tumor immune microenvironment also play essential roles in the drug resistance mechanism. Here, we assess the current major mechanisms of CRC resistance and describe potential therapeutic interventions.
Collapse
|
18
|
Boo SJ, Piao MJ, Kang KA, Zhen AX, Fernando PDSM, Herath HMUL, Lee SJ, Song SE, Hyun JW. Comparative Study of Autophagy in Oxaliplatin-Sensitive and Resistant SNU-C5 Colon Cancer Cells. Biomol Ther (Seoul) 2022; 30:447-454. [PMID: 35611548 PMCID: PMC9424339 DOI: 10.4062/biomolther.2022.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
Few studies have evaluated the role of autophagy in the development of oxaliplatin (OXT) resistance in colon cancer cells. In this study, we compared the role of autophagy between SNU-C5 colon cancer cells and OXT-resistant SNU-C5 (SNU-C5/OXTR) cells. At the same concentration of OXT, the cytotoxicity of OXT or apoptosis was significantly reduced in SNU-C5/OXTR cells compared with that in SNU-C5 cells. Compared with SNU-C5 cells, SNU-C5/OXTR cells exhibited low levels of autophagy. The expression level of important autophagy proteins, such as autophagy-related protein 5 (Atg5), beclin-1, Atg7, microtubule-associated proteins 1A/1B light chain 3B I (LC3-I), and LC3-II, was significantly lower in SNU-C5/OXTR cells than that in SNU-C5 cells. The expression level of the autophagy-essential protein p62 was also lower in SNU-C5/OXTR cells than in SNU-C5 cells. In SNU-C5/OXTR cells, the production of intracellular reactive oxygen species (ROS) was significantly higher than that in SNU-C5 cells, and treatment with the ROS scavenger N-acetylcysteine restored the reduced autophagy levels. Furthermore, the expression of antioxidant-related nuclear factor erythroid 2-related factor 2 transcription factor, heme oxygenase-1, and Cu/Zn superoxide dismutase were also significantly increased in SNU-C5/OXTR cells. These findings suggest that autophagy is significantly reduced in SNU-C5/OXTR cells compared with SNU-C5 cells, which may be related to the production of ROS in OXT-resistant cells.
Collapse
Affiliation(s)
- Sun-Jin Boo
- Department of Internal Medicine, Jeju National University Hospital, College of Medicine, Jeju National University, Jeju 63241, Republic of Korea
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea.,Jeju Natural Medicine Research Center, Jeju National University, Jeju 63243, Republic of Korea
| | - Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea.,Jeju Natural Medicine Research Center, Jeju National University, Jeju 63243, Republic of Korea
| | - Ao Xuan Zhen
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | | | | | - Seung Joo Lee
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Seung Eun Song
- Department of Anesthesiology, Jeju National University Hospital, College of Medicine, Jeju National University, Jeju 63241, Republic of Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea.,Jeju Natural Medicine Research Center, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
19
|
Zhao L, Chen H, Zhang Q, Ma J, Hu H, Xu L. ATF4-mediated microRNA-145/HDAC4/p53 axis affects resistance of colorectal cancer cells to 5-fluorouracil by regulating autophagy. Cancer Chemother Pharmacol 2022; 89:595-607. [PMID: 35312836 DOI: 10.1007/s00280-021-04393-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/21/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND The impact of activating transcription factor 4 (ATF4), differentially expressed in colorectal cancer (CRC), on 5-Fluorouracil (5-FU) chemoresistance has not been fully explained. The purpose of this study is to evaluate the clinical significance of ATF4-mediated microRNA-145 (miR-145)/histone deacetylase 4 (HDAC4)/p53 axis in CRC. METHODS Initially, the expression of ATF4, miR-145, HDAC4, and p53 in CRC tissues and cells was quantified by RT-qPCR and immunoblotting. Next, luciferase activity and chromatin immunoprecipitation assays were performed to verify the binding affinity among miR-145, ATF4, and HDAC4. Moreover, proliferation, clone formation, and apoptosis in CRC cells treated with 5-FU were assessed after gain- or loss-of-function of ATF4, miR-145, and/or HDAC4. Furthermore, the tumorigenicity and chemoresistance of CRC cells in mice were assayed for validating the in vitro findings. RESULTS ATF4 and HDAC4 were highly expressed, while miR-145 and p53 were poorly expressed in CRC tissues and cells. miR-145 targeted and negatively regulated HDAC4 to activate p53, and miR-145 expression was suppressed by ATF4. Of note, ATF4 facilitated cell proliferation and clone formation ability and repressed apoptosis to promote autophagy and chemoresistance of CRC cells by regulating the miR-145/HDAC4/p53 axis. In vivo experiment elucidated that ATF4-mediated miR-145/HDAC4/p53 axis enhanced tumorigenesis and resistance of CRC cells to 5-FU. CONCLUSION In conclusion, ATF4-mediated miR-145 inhibition accelerated autophagy of CRC cells and boosted their resistance to 5-FU via the HDAC4/p53 axis.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215006, Jiangsu, China
- Department of General Surgery, Mudanjiang First People's Hospital, Mudanjiang, 157011, China
| | - Hong Chen
- Department of General Surgery, Suzhou Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215000, China
| | - QingYi Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215006, Jiangsu, China
| | - Jin Ma
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215006, Jiangsu, China
| | - Hao Hu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215006, Jiangsu, China.
| | - Lu Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
20
|
Chen L, He M, Zhang M, Sun Q, Zeng S, Zhao H, Yang H, Liu M, Ren S, Meng X, Xu H. The Role of non-coding RNAs in colorectal cancer, with a focus on its autophagy. Pharmacol Ther 2021; 226:107868. [PMID: 33901505 DOI: 10.1016/j.pharmthera.2021.107868] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of malignant afflictions burdening people worldwide, mainly caused by shortages of effective medical intervention and poorly mechanistic understanding of the pathogenesis of CRC. Non-coding RNAs (ncRNAs) are a type of heterogeneous transcripts without the capability of coding protein, but have the potency of regulating protein-coding gene expression. Autophagy is an evolutionarily conserved catabolic process in which cytoplasmic contents are delivered to cellular lysosomes for degradation, resulting in the turnover of cellular components and producing energy for cell functions. A growing body of evidence reveals that ncRNAs, autophagy, and the crosstalks of ncRNAs and autophagy play intricate roles in the initiation, progression, metastasis, recurrence and therapeutic resistance of CRC, which confer ncRNAs and autophagy to serve as clinical biomarkers and therapeutic targets for CRC. In this review, we sought to delineate the complicated roles of ncRNAs, mainly including miRNAs, lncRNAs and circRNAs, in the pathogenesis of CRC, particularly focus on the regulatory role of ncRNAs in CRC-related autophagy, attempting to shed light on the complex pathological mechanisms, involving ncRNAs and autophagy, responsible for CRC tumorigenesis and development, so as to underpin the ncRNAs- and autophagy-based therapeutic strategies for CRC in clinical setting.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Man He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
21
|
Wang Y, Zhao Z, Zhuang J, Wu X, Wang Z, Zhang B, Gao G, Zhang Y, Guo C, Xia Q. Prognostic Value of Autophagy, Microsatellite Instability, and KRAS Mutations in Colorectal Cancer. J Cancer 2021; 12:3515-3528. [PMID: 33995628 PMCID: PMC8120188 DOI: 10.7150/jca.51430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction: Autophagy plays pivotal role in various tumors, including colorectal cancer (CRC). Microsatellite instability (MSI) and KRAS mutations are also involved in response to the adjuvant therapy of CRC. We aimed to investigate the relationships among autophagy, KRAS mutations, MSI, clinicopathological parameters, and prognosis in CRC patients. Methods and Results: We tested 200 CRC tumors for autophagy-related protein expression (Beclin 1 and LC3), MSI status, and KRAS mutations. Results: Expression of Beclin 1 and LC3 was higher in CRC, with Beclin 1 significantly correlating with the depth of invasion, whereas LC3 was not associated with clinicopathological parameters. Patients expressing the LC3 proteins experienced a shorter overall survival (OS) after surgery with adjuvant therapy, especially in the MSS/L-CRC subgroup and the mutated KRAS subgroup. MSS/L-CRC patients with KRAS mutations positively expressed the LC3 protein and suffered a shorter OS than LC3 non-expressing patients. In CRC patients who received either capecitabine or capecitabine combined with oxaliplatin post-surgery, the positive expression of LC3 correlated with worse OS compared to patients who did not express LC3. Sequencing showed BRCA1/2 as the most variant genes in all patients. Nevertheless, deleterious variations were more frequent in patients with MSI-H CRC. Conclusions: High LC3 protein expression shows a certain prognostic value in CRC patients. LC3, the MSI status, and KRAS mutations must be considered when selecting an adjuvant therapy for CRC. The detection of these indexes is of great significance to identify high-risk patients who would benefit from autophagy-related anticancer drugs or help to explore more effective treatment options for patients who are resistant to conventional chemotherapy or relapse.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127 Dongming Road, Zhengzhou 450008, China
| | - Zhi Zhao
- Department of Pathology, Yihe Hospital, Henan University, No. 69 Agriculture East Road, Zhengzhou 450008, China
| | - Jing Zhuang
- Department of General Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127 Dongming Road, Zhengzhou 450008, China
| | - Xinxin Wu
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127 Dongming Road, Zhengzhou 450008, China
| | - Zhizhong Wang
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127 Dongming Road, Zhengzhou 450008, China
| | - Bing Zhang
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127 Dongming Road, Zhengzhou 450008, China
| | - Ge Gao
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127 Dongming Road, Zhengzhou 450008, China
| | - Yinping Zhang
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127 Dongming Road, Zhengzhou 450008, China
| | - Caili Guo
- Department of Critical Care Medicine, Affiliated Children's Hospital of Zhengzhou University, No. 255 Gangdu Road, Dongsan Street, Zhengzhou 450008, China
| | - Qingxin Xia
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127 Dongming Road, Zhengzhou 450008, China
| |
Collapse
|
22
|
Wang L, Jiang X, Zhang X, Shu P. Prognostic implications of an autophagy-based signature in colorectal cancer. Medicine (Baltimore) 2021; 100:e25148. [PMID: 33787596 PMCID: PMC8021367 DOI: 10.1097/md.0000000000025148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The heterogeneity of colorectal cancer (CRC) poses a significant challenge to the precise treatment of patients. CRC has been divided into 4 consensus molecular subtypes (CMSs) with distinct biological and clinical characteristics, of which CMS4 has the mesenchymal identity and the highest relapse rate. Autophagy plays a vital role in CRC development and therapeutic response. METHODS The gene expression profiles collected from 6 datasets were applied to this study. Network analysis was applied to integrate the subtype-specific molecular modalities and autophagy signature to establish an autophagy-based prognostic signature for CRC (APSCRC). RESULTS Network analysis revealed that 6 prognostic autophagy genes (VAMP7, DLC1, FKBP1B, PEA15, PEX14, and DNAJB1) predominantly regulated the mesenchymal modalities of CRC. The APSCRC was constructed by these 6 core genes and applied for risk calculation. Patients were divided into high- and low-risk groups based on APSCRC score in all cohorts. Patients within the high-risk group showed an unfavorable prognosis. In multivariate analysis, the APSCRC remained an independent predictor of prognosis. Moreover, the APSCRC achieved higher prognostic power than commercialized multigene signatures. CONCLUSIONS We proposed and validated an autophagy-based signature, which is a promising prognostic biomarker of CRC patients. Further prospective studies are warranted to test and validate its efficiency for clinical application.
Collapse
Affiliation(s)
- Liangbin Wang
- Department of Anorectal Surgery, Beilun People's Hospital, Ningbo
| | - Xinlei Jiang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin
| | - Xingguo Zhang
- Molecular Laboratory, Beilun People's Hospital, Ningbo, P.R. China
| | - Peng Shu
- Molecular Laboratory, Beilun People's Hospital, Ningbo, P.R. China
| |
Collapse
|
23
|
Koustas E, Sarantis P, Karamouzis MV, Vielh P, Theocharis S. The Controversial Role of Autophagy in Ewing Sarcoma Pathogenesis-Current Treatment Options. Biomolecules 2021; 11:biom11030355. [PMID: 33652741 PMCID: PMC7996923 DOI: 10.3390/biom11030355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Ewing Sarcoma (ES) is a rare, aggressive, and highly metastasizing cancer in children and young adults. Most ES cases carry the fusion of the Ewing Sarcoma Breakpoint Region 1 (EWSR1) and FLI1 (Friend leukemia virus integration site 1) genes, leading to an EWS-FLI1 fused protein, which is associated with autophagy, a homeostatic and catabolic mechanism under normal and pathological conditions. Following such interesting and controversial data regarding autophagy in ES, many clinical trials using modulators of autophagy are now underway in this field. In the present review, we summarize current data and clinical trials that associate autophagy with ES. In vitro studies highlight the controversial role of autophagy as a tumor promoter or a tumor suppressor mechanism in ES. Clinical and in vitro studies on ES, together with the autophagy modulators, suggest that caution should be adopted in the application of autophagy as a therapeutic target. Monitoring and targeting autophagy in every ES patient could eliminate the need for targeting multiple pathways in order to achieve the maximum beneficial effect. Future studies are required to focus on which ES patients are affected by autophagy modulators in order to provide novel and more efficient therapeutic protocols for patients with ES based on the current autophagy status of the tumors.
Collapse
Affiliation(s)
- Evangelos Koustas
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (P.S.)
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Panagiotis Sarantis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (P.S.)
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Michalis V. Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Philippe Vielh
- Medipath & American Hospital of Paris, 17 rue Gazan, 75014 Paris, France;
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (P.S.)
- Correspondence: or ; Tel.: +30-210-7462267; Fax: +30-2107462157
| |
Collapse
|
24
|
Zamame Ramirez JA, Romagnoli GG, Kaneno R. Inhibiting autophagy to prevent drug resistance and improve anti-tumor therapy. Life Sci 2020; 265:118745. [PMID: 33186569 DOI: 10.1016/j.lfs.2020.118745] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/29/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023]
Abstract
Cytotoxic drugs remain the first-line option for cancer therapy but the development of drug-resistance by tumor cells represents a primary obstacle for successful chemotherapy. Autophagy is a physiological mechanism of cell survival efficiently used by tumor cells to avoid cell death and to induce drug-resistance. It is a macromolecular process, in which cells degrade and recycle intracellular substrates and damaged organelles to alleviate cell stress caused by nutritional deprivation, hypoxia, irradiation, and cytotoxic agents, as well. There is evidence that autophagy prevents cancer during the early steps of carcinogenesis, but once transformed, these cells show enhanced autophagy capacity and use it to survive, grow, and facilitate metastasis. Current basic studies and clinical trials show the feasibility of using pharmacological or molecular blockage of autophagy to improve the anticancer therapy efficiency. In this review, we overviewed the pathways and molecular aspects of autophagy, its role in carcinogenesis, and the evidence for its role in cancer adaptation and drug-resistance. Finally, we reviewed the clinical findings on how the autophagy interference helps to improve conventional anticancer therapy.
Collapse
Affiliation(s)
- Jofer Andree Zamame Ramirez
- São Paulo State University - UNESP, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, Botucatu, SP, Brazil; São Paulo State University - UNESP, Department of Pathology, School of Medicine of Botucatu, Botucatu, SP, Brazil
| | - Graziela Gorete Romagnoli
- São Paulo State University - UNESP, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, Botucatu, SP, Brazil; São Paulo State University - UNESP, Department of Pathology, School of Medicine of Botucatu, Botucatu, SP, Brazil; Oeste Paulista University - UNOESTE, Department of Health Sciences, Jaú, SP, Brazil
| | - Ramon Kaneno
- São Paulo State University - UNESP, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, Botucatu, SP, Brazil.
| |
Collapse
|
25
|
Abdelmaksoud A, Goldust M, Ebik B. Comment on “Cheilitis with hemorrhagic crusts of the vermilion lips”. Int J Dermatol 2020; 59:e244-e245. [DOI: 10.1111/ijd.14856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/18/2020] [Accepted: 02/28/2020] [Indexed: 11/28/2022]
Affiliation(s)
| | - Mohamad Goldust
- Department of Dermatology University of Rome G. Marconi Rome Italy
- Department of Dermatology University Medical Center Mainz Mainz Germany
- Department of Dermatology University Hospital Basel Basel Switzerland
| | - Berat Ebik
- Division of Gastroenterology Dicle University Faculty of Medicine Diyarbakir Turkey
| |
Collapse
|
26
|
Kontar S, Imrichova D, Bertova A, Mackova K, Poturnayova A, Sulova Z, Breier A. Cell Death Effects Induced by Sulforaphane and Allyl Isothiocyanate on P-Glycoprotein Positive and Negative Variants in L1210 Cells. Molecules 2020; 25:molecules25092093. [PMID: 32365761 PMCID: PMC7249010 DOI: 10.3390/molecules25092093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022] Open
Abstract
Variants of L1210 leukemia cells-namely, parental P-glycoprotein-negative S cells and R and T cells expressing P-glycoprotein, due to selection with vincristine and transfection with the human p-glycoprotein gene, respectively-were used. The responses of these cell variants to two naturally occurring isothiocyanates-sulforaphane (SFN, from cruciferous vegetables) and allyl isothiocyanate (AITC, from mustard, radish, horseradish and wasabi)-were studied. We obtained conflicting results for the cell death effects induced by isothiocyanates, as measured by i. cell counting, which showed inhibited proliferation, and ii. cell metabolic activity via an MTS assay, which showed an increased MTS signal. These results indicated the hyperactivation of cell metabolism induced by treatment with isothiocyanates. In more detailed study, we found that, depending on the cell variants and the isothiocyanate used in treatment, apoptosis and necrosis (detected by annexin-V cells and propidium iodide staining), as well as autophagy (detected with monodansylcadaverine), were involved in cell death. We also determined the cell levels/expression of Bcl-2 and Bax as representative anti- and pro-apoptotic proteins of the Bcl-2 family, the cell levels/expression of members of the canonical and noncanonical NF-κB pathways, and the cell levels of 16 and 18 kDa fragments of LC3B protein as markers of autophagy.
Collapse
Affiliation(s)
- Szilvia Kontar
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia; (S.K.); (A.B.); (K.M.); (A.P.)
| | - Denisa Imrichova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia; (S.K.); (A.B.); (K.M.); (A.P.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
- Correspondence: (D.I.); (Z.S.); (A.B.); Tel.: +421-2-322-95-510 (Z.S.); +421-2-593-25-514 (A.B.)
| | - Anna Bertova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia; (S.K.); (A.B.); (K.M.); (A.P.)
| | - Katarina Mackova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia; (S.K.); (A.B.); (K.M.); (A.P.)
| | - Alexandra Poturnayova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia; (S.K.); (A.B.); (K.M.); (A.P.)
| | - Zdena Sulova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia; (S.K.); (A.B.); (K.M.); (A.P.)
- Correspondence: (D.I.); (Z.S.); (A.B.); Tel.: +421-2-322-95-510 (Z.S.); +421-2-593-25-514 (A.B.)
| | - Albert Breier
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia; (S.K.); (A.B.); (K.M.); (A.P.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
- Correspondence: (D.I.); (Z.S.); (A.B.); Tel.: +421-2-322-95-510 (Z.S.); +421-2-593-25-514 (A.B.)
| |
Collapse
|
27
|
Koustas E, Sarantis P, Papavassiliou AG, Karamouzis MV. The Resistance Mechanisms of Checkpoint Inhibitors in Solid Tumors. Biomolecules 2020; 10:E666. [PMID: 32344837 PMCID: PMC7277892 DOI: 10.3390/biom10050666] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 02/08/2023] Open
Abstract
The emergence of cancer immunotherapy has already shown some remarkable results, having changed the treatment strategy in clinical practice for solid tumors. Despite these promising long-term responses, patients seem to lack the ability to respond to immune checkpoint inhibitors, thus demonstrating a primary resistance to immunotherapy. Moreover, a significant number of patients who initially respond to treatment eventually acquire resistance to immunotherapy. Both resistance mechanisms are a result of a complex interaction among different molecules, pathways, and cellular processes. Several resistance mechanisms, such as tumor microenvironment modification, autophagy, genetic and epigenetic alterations, tumor mutational burden, neo-antigens, and modulation of gut microbiota have already been identified, while more continue to be uncovered. In this review, we discuss the latest milestones in the field of immunotherapy, resistance mechanisms against this type of therapy as well as putative therapeutic strategies to overcome resistance in solid tumors.
Collapse
Affiliation(s)
- Evangelos Koustas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (P.S.); (A.G.P.)
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (P.S.); (A.G.P.)
| | - Athanasios G. Papavassiliou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (P.S.); (A.G.P.)
| | - Michalis V. Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (P.S.); (A.G.P.)
- First Department of Internal Medicine, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
28
|
The Prognostic Value of Autophagy-Related Markers Bclin-1 and LC-3 in Colorectal Cancers: A Systematic Review and Meta-analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8475840. [PMID: 32280357 PMCID: PMC7125475 DOI: 10.1155/2020/8475840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
Objective At present, the relationship between autophagosomes and the prognosis of various cancers has become a subject of active investigation. A series of studies have demonstrated the correlation between autophagy microtubule-associated protein light chain 3 (LC-3), Beclin-1, and colorectal cancer (CRC). Since autophagy has dual regulatory roles in tumors, the results of this correlation are also uncertain. Hence, we summarized the relationship between Beclin-1, LC-3, and CRC using systematic reviews and meta-analysis to clarify their prognostic significance in it. Methods PubMed, EMBASE, Cochrane Library, and Web of Science databases were searched online up to April 1, 2019. The quality of the involving studies was assessed against the Newcastle-Ottawa Scale (NOS). Pooled hazard ratio (HR) and 95% confidence interval (CI) in a fixed or random effects model were used to assess the strength of correlation between Beclin-1, LC-3, and CRC. Results A total of 9 articles were collected, involving 2,297 patients. Most literatures scored more than 6 points, suggesting that the quality of our including research was acceptable. Our finding suggested that the expression of Beclin-1 was not associated with overall survival (HR = 0.68, 95% CI (0.31–1.52), P=0.351). Nonetheless, LC-3 expression exerted significant impact on OS (HR = 0.51, 95% CI (0.35–0.74), P < 0.05). Subgroup analysis exhibited that Beclin-1 expression was associated with OS at TNM stage III (HR = 0.04, 95% CI = 0.02–0.08, P < 0.05), surgical treatment (HR = 1.53, 95% CI (1.15–2.02), P=0.003), and comprehensive treatment (HR = 0.27 95% CI (0.08–0.92), P=0.036), respectively. Similarly, the results showed the increased LC-3 expression in CRC was related to OS in multivariate analyses (HR = 0.44, 95% CI (0.34–0.57), P < 0.05), stages (HR = 0.51, 95% CI (0.35–0.74), P < 0.05), and comprehensive treatment (HR = 0.44, 95% CI (0.34–0.57), P < 0.05). Conclusions Autophagy-related proteins of LC-3 might be an important marker of CRC progression. However, since the number of the original studies was limited, more well-designed, large-scale, high-quality studies are warranted to provide more convincing and reliable information.
Collapse
|