1
|
Spencer DA, Goldberg BS, Pandey S, Ordonez T, Dufloo J, Barnette P, Sutton WF, Henderson H, Agnor R, Gao L, Bruel T, Schwartz O, Haigwood NL, Ackerman ME, Hessell AJ. Phagocytosis by an HIV antibody is associated with reduced viremia irrespective of enhanced complement lysis. Nat Commun 2022; 13:662. [PMID: 35115533 PMCID: PMC8814042 DOI: 10.1038/s41467-022-28250-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/12/2022] [Indexed: 12/19/2022] Open
Abstract
Increasingly, antibodies are being used to treat and prevent viral infections. In the context of HIV, efficacy is primarily attributed to dose-dependent neutralization potency and to a lesser extent Fc-mediated effector functions. It remains unclear whether augmenting effector functions of broadly neutralizing antibodies (bNAbs) may improve their clinical potential. Here, we use bNAb 10E8v4 targeting the membrane external proximal region (MPER) to examine the role of antibody-mediated effector and complement (C’) activity when administered prophylactically against SHIV challenge in rhesus macaques. With sub-protective dosing, we find a 78–88% reduction in post-acute viremia that is associated with 10E8v4-mediated phagocytosis acting at the time of challenge. Neither plasma nor tissue viremic outcomes in vivo is improved with an Fc-modified variant of 10E8v4 enhanced for C’ functions as determined in vitro. These results suggest that effector functions inherent to unmodified 10E8v4 contribute to efficacy against SHIVSF162P3 in the absence of plasma neutralizing titers, while C’ functions are dispensable in this setting, informing design of bNAb modifications for improving protective efficacy. While antibodies neutralize HIV via Fab recognition of viral surface antigens, antibody Fc domains mediate effector functions, including antibody-dependent cellular phagocytosis (ADCP) and cytotoxicity (ADCC), and complement (C') activity. Here, Spencer et al. modify bNAb 10E8v4 to enhance C'-mediated potency in SHIV challenged rhesus macaques to probe its function in protection, showing that in the absence of neutralization, enhancing C' activities in vitro adds no value toward reducing viremia in either blood or tissue.
Collapse
Affiliation(s)
- David A Spencer
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.,Absci Corp, 1810 SE Mill Plain Blvd., Vancouver, WA, 98683, USA
| | | | - Shilpi Pandey
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Tracy Ordonez
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Jérémy Dufloo
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,Institute for Integrative Systems Biology, University of Valencia-CSIC, Calle Catedràtic Agustín Escardino Benlloch 9, 46980, Paterna, Valencia, Spain
| | - Philip Barnette
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - William F Sutton
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Heidi Henderson
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Rebecca Agnor
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Lina Gao
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Timothée Bruel
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,Vaccine Research Institute, Creteil, France
| | - Olivier Schwartz
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,Vaccine Research Institute, Creteil, France
| | - Nancy L Haigwood
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.,Department of Molecular Microbiology & Immunology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | | | - Ann J Hessell
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.
| |
Collapse
|
2
|
Jennewein MF, Mabuka J, Papia CL, Boudreau CM, Dong KL, Ackerman ME, Ndung'u T, Alter G. Tracking the Trajectory of Functional Humoral Immune Responses Following Acute HIV Infection. Front Immunol 2020; 11:1744. [PMID: 32849622 PMCID: PMC7426367 DOI: 10.3389/fimmu.2020.01744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence points to a role for antibody-mediated effector functions in preventing and controlling HIV infection. However, less is known about how these antibody effector functions evolve following infection. Moreover, how the humoral immune response is naturally tuned to recruit the antiviral activity of the innate immune system, and the extent to which these functions aid in the control of infection, are poorly understood. Using plasma samples from 10 hyper-acute HIV-infected South African women, identified in Fiebig stage I (the FRESH cohort), systems serology was performed to evaluate the functional and biophysical properties of gp120-, gp41-, and p24- specific antibody responses during the first year of infection. Significant changes were observed in both the functional and biophysical characteristics of the humoral immune response following acute HIV infection. Antibody Fc-functionality increased over the course of infection, with increases in antibody-mediated phagocytosis, NK activation, and complement deposition occurring in an antigen-specific manner. Changes in both antibody subclass and antibody Fc-glycosylation drove the evolution of antibody effector activity, highlighting natural modifications in the humoral immune response that may enable the directed recruitment of the innate immune system to target and control HIV. Moreover, enhanced antibody functionality, particularly gp120-specific polyfunctionality, was tied to improvements in clinical course of infection, supporting a role for functional antibodies in viral control.
Collapse
Affiliation(s)
- Madeleine F Jennewein
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Jennifer Mabuka
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States.,Africa Health Research Institute, Durban, South Africa.,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Cassidy L Papia
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Carolyn M Boudreau
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Krista L Dong
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | | | - Thumbi Ndung'u
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States.,Africa Health Research Institute, Durban, South Africa.,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Max Planck Institute for Infection Biology, Berlin, Germany.,Division of Infection and Immunity, University College London, London, United Kingdom
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| |
Collapse
|
3
|
Martin JT, Cottrell CA, Antanasijevic A, Carnathan DG, Cossette BJ, Enemuo CA, Gebru EH, Choe Y, Viviano F, Fischinger S, Tokatlian T, Cirelli KM, Ueda G, Copps J, Schiffner T, Menis S, Alter G, Schief WR, Crotty S, King NP, Baker D, Silvestri G, Ward AB, Irvine DJ. Targeting HIV Env immunogens to B cell follicles in nonhuman primates through immune complex or protein nanoparticle formulations. NPJ Vaccines 2020; 5:72. [PMID: 32802411 PMCID: PMC7406516 DOI: 10.1038/s41541-020-00223-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/11/2020] [Indexed: 01/26/2023] Open
Abstract
Following immunization, high-affinity antibody responses develop within germinal centers (GCs), specialized sites within follicles of the lymph node (LN) where B cells proliferate and undergo somatic hypermutation. Antigen availability within GCs is important, as B cells must acquire and present antigen to follicular helper T cells to drive this process. However, recombinant protein immunogens such as soluble human immunodeficiency virus (HIV) envelope (Env) trimers do not efficiently accumulate in follicles following traditional immunization. Here, we demonstrate two strategies to concentrate HIV Env immunogens in follicles, via the formation of immune complexes (ICs) or by employing self-assembling protein nanoparticles for multivalent display of Env antigens. Using rhesus macaques, we show that within a few days following immunization, free trimers were present in a diffuse pattern in draining LNs, while trimer ICs and Env nanoparticles accumulated in B cell follicles. Whole LN imaging strikingly revealed that ICs and trimer nanoparticles concentrated in as many as 500 follicles in a single LN within two days after immunization. Imaging of LNs collected seven days postimmunization showed that Env nanoparticles persisted on follicular dendritic cells in the light zone of nascent GCs. These findings suggest that the form of antigen administered in vaccination can dramatically impact localization in lymphoid tissues and provides a new rationale for the enhanced immune responses observed following immunization with ICs or nanoparticles.
Collapse
Affiliation(s)
- Jacob T. Martin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Christopher A. Cottrell
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037 USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Aleksandar Antanasijevic
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037 USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Diane G. Carnathan
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037 USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322 USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Benjamin J. Cossette
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Chiamaka A. Enemuo
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322 USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Etse H. Gebru
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322 USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Yury Choe
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322 USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Federico Viviano
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322 USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Stephanie Fischinger
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139 USA
- University of Duisburg-Essen, 47057 Essen, Germany
| | - Talar Tokatlian
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Kimberly M. Cirelli
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037 USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037 USA
| | - George Ueda
- Department of Biochemistry, University of Washington, Seattle, WA 98195 USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195 USA
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Torben Schiffner
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037 USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Sergey Menis
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037 USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139 USA
| | - William R. Schief
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037 USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139 USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Shane Crotty
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037 USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037 USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037 USA
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, WA 98195 USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195 USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195 USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195 USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 USA
| | - Guido Silvestri
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037 USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322 USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Andrew B. Ward
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037 USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037 USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037 USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139 USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| |
Collapse
|
4
|
Su B, Dispinseri S, Iannone V, Zhang T, Wu H, Carapito R, Bahram S, Scarlatti G, Moog C. Update on Fc-Mediated Antibody Functions Against HIV-1 Beyond Neutralization. Front Immunol 2019; 10:2968. [PMID: 31921207 PMCID: PMC6930241 DOI: 10.3389/fimmu.2019.02968] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 12/03/2019] [Indexed: 12/31/2022] Open
Abstract
Antibodies (Abs) are the major component of the humoral immune response and a key player in vaccination. The precise Ab-mediated inhibitory mechanisms leading to in vivo protection against HIV have not been elucidated. In addition to the desired viral capture and neutralizing Ab functions, complex Ab-dependent mechanisms that involve engaging immune effector cells to clear infected host cells, immune complexes, and opsonized virus have been proposed as being relevant. These inhibitory mechanisms involve Fc-mediated effector functions leading to Ab-dependent cellular cytotoxicity, phagocytosis, cell-mediated virus inhibition, aggregation, and complement inhibition. Indeed, the decreased risk of infection observed in the RV144 HIV-1 vaccine trial was correlated with the production of non-neutralizing inhibitory Abs, highlighting the role of Ab inhibitory functions besides neutralization. Moreover, Ab isotypes and subclasses recognizing specific HIV envelope epitopes as well as pecular Fc-receptor polymorphisms have been associated with disease progression. These findings further support the need to define which Fc-mediated Ab inhibitory functions leading to protection are critical for HIV vaccine design. Herein, based on our previous review Su & Moog Front Immunol 2014, we update the different inhibitory properties of HIV-specific Abs that may potentially contribute to HIV protection.
Collapse
Affiliation(s)
- Bin Su
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Stefania Dispinseri
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Iannone
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Tong Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Raphael Carapito
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Seiamak Bahram
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Christiane Moog
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Vaccine Research Institute (VRI), Créteil, France
| |
Collapse
|
5
|
Tizzot MR, Lidani KCF, Andrade FA, Mendes HW, Beltrame MH, Reiche E, Thiel S, Jensenius JC, de Messias-Reason IJ. Ficolin-1 and Ficolin-3 Plasma Levels Are Altered in HIV and HIV/HCV Coinfected Patients From Southern Brazil. Front Immunol 2018; 9:2292. [PMID: 30349535 PMCID: PMC6187973 DOI: 10.3389/fimmu.2018.02292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/14/2018] [Indexed: 01/03/2023] Open
Abstract
The complement system is a key component of the innate immune system, participating in the surveillance against infectious agents. Once activated by one of the three different pathways, complement mediates cell lysis, opsonization, signalizes pathogens for phagocytosis and induces the adaptive immune response. The lectin pathway is constituted by several soluble and membrane bound proteins, called pattern recognition molecules (PRM), including mannose binding lectin (MBL), Ficolins-1, -2, and -3, and Collectin 11. These PRMs act on complement activation as recognition molecules of pathogen-associated molecular patterns (PAMPs) such as N-acetylated, found in glycoproteins of viral envelopes. In this study, Ficolin-1 and Ficolin-3 plasma levels were evaluated in 178 HIV patients (93 HIV; 85 HIV/HCV) and 85 controls from southern Brazil. Demographic and clinical-laboratory findings were obtained during medical interview and from medical records. All parameters were assessed by logistic regression, adjusted for age, ancestry, and sex. Significantly lower levels of Ficolin-1 were observed in HIV/HCV coinfected when compared to HIV patients (p = 0.005, median = 516 vs. 667 ng/ul, respectively) and to controls (p < 0.0001, 1186 ng/ul). Ficolin-1 levels were lower in males than in females among HIV patients (p = 0.03) and controls (p = 0.0003), but no association of Ficolin-1 levels with AIDS was observed. On the other hand, Ficolin-3 levels were significantly lower in controls when compared to HIV (p < 0.0001, medians 18,240 vs. 44,030 ng/ml, respectively) and HIV/HCV coinfected (p < 0.0001, 40,351 ng/ml) patients. There was no correlation between Ficolin-1 and Ficolin-3 levels and age, HIV viral load or opportunistic infections. However, Ficolin-3 showed a positive correlation with T CD4 cell counts in HIV monoinfected patients (p = 0.007). We provide here the first assessment of Ficolin-1 and-3 levels in HIV and HIV/HCV coinfected patients, which indicates a distinct role for these pattern recognition molecules in both viral infections.
Collapse
Affiliation(s)
- Maria Regina Tizzot
- Laboratory of Molecular Immunopathology, Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Kárita Cláudia Freitas Lidani
- Laboratory of Molecular Immunopathology, Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Fabiana Antunes Andrade
- Laboratory of Molecular Immunopathology, Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Hellen Weinschutz Mendes
- Laboratory of Molecular Immunopathology, Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Marcia Holsbach Beltrame
- Laboratory of Molecular Immunopathology, Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Edna Reiche
- Clinic Hospital, Estate University of Londrina, Londrina, Brazil
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Iara J. de Messias-Reason
- Laboratory of Molecular Immunopathology, Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
6
|
Mayr LM, Su B, Moog C. Non-Neutralizing Antibodies Directed against HIV and Their Functions. Front Immunol 2017; 8:1590. [PMID: 29209323 PMCID: PMC5701973 DOI: 10.3389/fimmu.2017.01590] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022] Open
Abstract
B cells produce a plethora of anti-HIV antibodies (Abs) but only few of them exhibit neutralizing activity. This was long considered a profound limitation for the enforcement of humoral immune responses against HIV-1 infection, especially since these neutralizing Abs (nAbs) are extremely difficult to induce. However, increasing evidence shows that additional non-neutralizing Abs play a significant role in decreasing the viral load, leading to partial and sometimes even total protection. Mechanisms suspected to participate in protection are numerous. They involve the Fc domain of Abs as well as their Fab part, and consequently the induced Ab isotype will be determinant for their functions, as well as the quantity and quality of the Fc-receptors (FcRs) expressed on immune cells. Fc-mediated inhibitory functions, such as Ab-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, aggregation, and even immune activation have been proposed. However, as for nAbs, the non-neutralizing activities are limited to a subset of anti-HIV Abs. An improved in-depth characterization of the Abs displaying these functional responses is required for the development of new vaccination strategies, which aim to selectively trigger the B cells able to induce the right functional Ab combinations both at the right place and at the right time. This review summarizes our current knowledge on non-neutralizing functional inhibitory Abs and discusses the potential benefit of inducing them via vaccination. We also provide new insight into the roles of the FcγR-mediated Ab therapeutics in clinical trials for HIV diseases.
Collapse
Affiliation(s)
- Luzia M Mayr
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Christiane Moog
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
7
|
Moreno-Fernandez ME, Aliberti J, Groeneweg S, Köhl J, Chougnet CA. A Novel Role for the Receptor of the Complement Cleavage Fragment C5a, C5aR1, in CCR5-Mediated Entry of HIV into Macrophages. AIDS Res Hum Retroviruses 2016; 32:399-408. [PMID: 26537334 DOI: 10.1089/aid.2015.0099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The complement system is an ancient pattern recognition system that becomes activated during all stages of HIV infection. Previous studies have shown that C5a can enhance the infection of monocyte-derived macrophages and T cells indirectly through the production of interleukin (IL)-6 and tumor necrosis factor (TNF)-α and the attraction of dendritic cells. C5a exerts its multiple biologic functions mainly through activation of C5a receptor 1 (C5aR1). Here, we assessed the role of C5aR1 as an enhancer of CCR5-mediated HIV infection. We determined CCR5 and C5aR1 heterodimer formation in myeloid cells and the impact of C5aR1 blockade on HIV entry and genomic integration. C5aR1/CCR5 heterodimer formation was identified by immunoprecipitation and western blotting. THP-1 cells and monocyte-derived macrophages (MDM) were infected by R5 laboratory strains or HIV pseudotyped for the vesicular stomatitis virus (VSV) envelope. Levels of integrated HIV were measured by quantitative PCR after targeting of C5aR1 by a C5aR antagonist, neutralizing C5aR1 monoclonal antibody (mAb) or hC5a. C5aR1 was also silenced by specific siRNA prior to viral entry. We found that C5aR1 forms heterodimers with the HIV coreceptor CCR5 in myeloid cells. Targeting C5aR1 significantly decreased integration by R5 viruses but not by VSV-pseudotyped viruses, suggesting that C5aR1 is critical for viral entry. The level of inhibition achieved with C5aR1-blocking reagents was comparable to that of CCR5 antagonists. Mechanistically, C5aR1 targeting decreased CCR5 expression. MDM from CCR5Δ32 homozygous subjects expressed levels of C5aR1 similar to CCR5 WT individuals, suggesting that mere C5aR1 expression is not sufficient for HIV infection. HIV appeared to preferentially enter THP-1 cells expressing high levels of both C5aR1 and CCR5. Targeted reduction of C5aR1 expression in such cells reduced HIV infection by ~50%. Our data thus suggest that C5aR1 acts as an enhancer of CCR5-mediated HIV entry into macrophages, the targeting of which may prove useful to reduce HIV infection by R5 strains.
Collapse
Affiliation(s)
- Maria E. Moreno-Fernandez
- Division of Immunobiology, Cincinnati Children's Hospital and University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Julio Aliberti
- Division of Immunobiology, Cincinnati Children's Hospital and University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Sander Groeneweg
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Division of Immunobiology, Cincinnati Children's Hospital and University of Cincinnati, College of Medicine, Cincinnati, Ohio
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Claire A. Chougnet
- Division of Immunobiology, Cincinnati Children's Hospital and University of Cincinnati, College of Medicine, Cincinnati, Ohio
| |
Collapse
|
8
|
Heesters BA, Lindqvist M, Vagefi PA, Scully EP, Schildberg FA, Altfeld M, Walker BD, Kaufmann DE, Carroll MC. Follicular Dendritic Cells Retain Infectious HIV in Cycling Endosomes. PLoS Pathog 2015; 11:e1005285. [PMID: 26623655 PMCID: PMC4666623 DOI: 10.1371/journal.ppat.1005285] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/27/2015] [Indexed: 01/12/2023] Open
Abstract
Despite the success of antiretroviral therapy (ART), it does not cure Human Immunodeficiency Virus (HIV) and discontinuation results in viral rebound. Follicular dendritic cells (FDC) are in direct contact with CD4+ T cells and they retain intact antigen for prolonged periods. We found that human FDC isolated from patients on ART retain infectious HIV within a non-degradative cycling compartment and transmit infectious virus to uninfected CD4 T cells in vitro. Importantly, treatment of the HIV+ FDC with a soluble complement receptor 2 purges the FDC of HIV virions and prevents viral transmission in vitro. Our results provide an explanation for how FDC can retain infectious HIV for extended periods and suggest a therapeutic strategy to achieve cure in HIV-infected humans. Human immunodeficiency virus (HIV) can lead to acquired immunodeficiency syndrome, or AIDS. Before the introduction of anti retroviral therapy (ART) in the mid-1990s, people with HIV could progress to AIDS in just a few years. Today patients with HIV have a close to normal life expectancy. Worldwide, there are about 2 million new cases of HIV per year. Currently about 35 million people are living with HIV of which around 13 million receive ART. Still an estimated 1.5 million people die from the consequences of HIV each year. Despite the success of ART, it does not cure HIV and discontinuation results in viral rebound. Follicular dendritic cells (FDC), located central to the B cell follicle, are also in direct contact with T cells. FDCs retain intact antigen for prolonged periods. We found that human FDCs isolated from patients on ART retain infectious HIV and can transmit virus to uninfected T cells in vitro. Treatment of the HIV+ FDC with a soluble complement receptor 2 purges the FDC of HIV virions and prevents viral transmission to T cells in vitro. Our results can explain how FDCs retain infectious HIV and suggest a therapeutic strategy to come closer to a cure.
Collapse
Affiliation(s)
- Balthasar A. Heesters
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
- * E-mail:
| | - Madelene Lindqvist
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
- Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
| | - Parsia A. Vagefi
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Eileen P. Scully
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Frank A. Schildberg
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marcus Altfeld
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
- Department of Viral Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Bruce D. Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
- Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
| | - Daniel E. Kaufmann
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
- Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
- Centre de Recherché du CHUM; Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Michael C. Carroll
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|