1
|
Fombellida-Lopez C, Berkhout B, Darcis G, Pasternak AO. Persistent HIV-1 transcription during ART: time to reassess its significance? Curr Opin HIV AIDS 2024; 19:124-132. [PMID: 38502547 PMCID: PMC10990031 DOI: 10.1097/coh.0000000000000849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
PURPOSE OF REVIEW Despite suppressive antiretroviral therapy (ART), HIV-1 reservoirs persist and reignite viral replication if therapy is interrupted. Persistence of the viral reservoir in people with HIV-1 (PWH) is the main obstacle to an HIV-1 cure. The reservoirs are not transcriptionally silent, and viral transcripts can be detected in most ART-treated individuals. Here, we review the recent progress in the characterization of persistent HIV-1 transcription during ART. RECENT FINDINGS Evidence from several studies indicates that, although cell-associated unspliced (US) HIV-1 RNA is abundantly expressed in ART-treated PWH, intact full-length US transcripts are rare and most US RNA is derived from defective proviruses. The transcription- and translation-competent defective proviruses, previously considered irrelevant, are increasingly being linked to residual HIV-1 pathogenesis under suppressive ART. Recent data suggest a continuous crosstalk between the residual HIV-1 activity under ART and the immune system. Persistent HIV-1 transcription on ART, despite being mostly derived from defective proviruses, predicts viral rebound upon therapy interruption, suggesting its role as an indicator of the strength of the host antiviral immune response that is shaping the viral rebound. SUMMARY In light of the recent findings, the significance of persistent HIV-1 transcription during ART for the long-term health of PWH and the cure research should be reassessed.
Collapse
Affiliation(s)
- Céline Fombellida-Lopez
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Immunology and Infectious Diseases, GIGA-Institute, University of Liège
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Gilles Darcis
- Laboratory of Immunology and Infectious Diseases, GIGA-Institute, University of Liège
- Department of General Internal Medicine and Infectious Diseases, University Hospital of Liège, Liège, Belgium
| | - Alexander O. Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Li JZ, Melberg M, Kittilson A, Abdel-Mohsen M, Li Y, Aga E, Bosch RJ, Wonderlich ER, Kinslow J, Giron LB, Di Germanio C, Pilkinton M, MacLaren L, Keefer M, Fox L, Barr L, Acosta E, Ananworanich J, Coombs R, Mellors J, Deeks S, Gandhi RT, Busch M, Landay A, Macatangay B, Smith DM. Predictors of HIV rebound differ by timing of antiretroviral therapy initiation. JCI Insight 2024; 9:e173864. [PMID: 38329130 PMCID: PMC10967395 DOI: 10.1172/jci.insight.173864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/19/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUNDIdentifying factors that predict the timing of HIV rebound after treatment interruption will be crucial for designing and evaluating interventions for HIV remission.METHODSWe performed a broad evaluation of viral and immune factors that predict viral rebound (AIDS Clinical Trials Group A5345). Participants initiated antiretroviral therapy (ART) during chronic (N = 33) or early (N = 12) HIV infection with ≥ 2 years of suppressive ART and restarted ART if they had 2 viral loads ≥ 1,000 copies/mL after treatment interruption.RESULTSCompared with chronic-treated participants, early-treated individuals had smaller and fewer transcriptionally active HIV reservoirs. A higher percentage of HIV Gag-specific CD8+ T cell cytotoxic response was associated with lower intact proviral DNA. Predictors of HIV rebound timing differed between early- versus chronic-treated participants, as the strongest reservoir predictor of time to HIV rebound was level of residual viremia in early-treated participants and intact DNA level in chronic-treated individuals. We also identified distinct sets of pre-treatment interruption viral, immune, and inflammatory markers that differentiated participants who had rapid versus slow rebound.CONCLUSIONThe results provide an in-depth overview of the complex interplay of viral, immunologic, and inflammatory predictors of viral rebound and demonstrate that the timing of ART initiation modifies the features of rapid and slow viral rebound.TRIAL REGISTRATIONClinicalTrials.gov NCT03001128FUNDINGNIH National Institute of Allergy and Infectious Diseases, Merck.
Collapse
Affiliation(s)
- Jonathan Z. Li
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Meghan Melberg
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Autumn Kittilson
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Yijia Li
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Evgenia Aga
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ronald J. Bosch
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | | | | | - Clara Di Germanio
- University of California, San Francisco, San Francisco, California, USA
- Vitalant Research Institute, San Francisco, California, USA
| | - Mark Pilkinton
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | - Lawrence Fox
- National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, USA
| | - Liz Barr
- AIDS Clinical Trials Group Community Scientific Subcommittee, Los Angeles, California, USA
| | | | | | | | - John Mellors
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven Deeks
- University of California, San Francisco, San Francisco, California, USA
| | - Rajesh T. Gandhi
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Busch
- Vitalant Research Institute, San Francisco, California, USA
| | - Alan Landay
- Rush University Medical Center, Chicago, Illinois, USA
| | | | - Davey M. Smith
- University of California, San Diego, San Diego, California, USA
| | | |
Collapse
|
3
|
Pasternak AO, Berkhout B. HIV persistence: silence or resistance? Curr Opin Virol 2023; 59:101301. [PMID: 36805974 DOI: 10.1016/j.coviro.2023.101301] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 02/19/2023]
Abstract
Despite decades of suppressive antiretroviral therapy, human immunodeficiency virus (HIV) reservoirs in infected individuals persist and fuel viral rebound once therapy is interrupted. The persistence of viral reservoirs is the main obstacle to achieving HIV eradication or a long-term remission. The last decade has seen a profound change in our understanding of the mechanisms behind HIV persistence, which appears to be much more complex than originally assumed. In addition to the persistence of transcriptionally silent proviruses in a stable latent reservoir that is invisible to the immune system, HIV is increasingly recognized to persist by resistance to the immune clearance, which appears to play a surprisingly prominent role in shaping the reservoir. In this review, we discuss some emerging insights into the mechanisms of HIV persistence, as well as their implications for the development of strategies towards an HIV cure.
Collapse
Affiliation(s)
- Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|