1
|
Tanshee RR, Mahmud Z, Nabi AHMN, Sayem M. A comprehensive in silico investigation into the pathogenic SNPs in the RTEL1 gene and their biological consequences. PLoS One 2024; 19:e0309713. [PMID: 39240887 PMCID: PMC11379182 DOI: 10.1371/journal.pone.0309713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/16/2024] [Indexed: 09/08/2024] Open
Abstract
The Regulator of Telomere Helicase 1 (RTEL1) gene encodes a critical DNA helicase intricately involved in the maintenance of telomeric structures and the preservation of genomic stability. Germline mutations in the RTEL1 gene have been clinically associated with Hoyeraal-Hreidarsson syndrome, a more severe version of Dyskeratosis Congenita. Although various research has sought to link RTEL1 mutations to specific disorders, no comprehensive investigation has yet been conducted on missense mutations. In this study, we attempted to investigate the functionally and structurally deleterious coding and non-coding SNPs of the RTEL1 gene using an in silico approach. Initially, out of 1392 nsSNPs, 43 nsSNPs were filtered out through ten web-based bioinformatics tools. With subsequent analysis using nine in silico tools, these 43 nsSNPs were further shortened to 11 most deleterious nsSNPs. Furthermore, analyses of mutated protein structures, evolutionary conservancy, surface accessibility, domains & PTM sites, cancer susceptibility, and interatomic interaction revealed the detrimental effect of these 11 nsSNPs on RTEL1 protein. An in-depth investigation through molecular docking with the DNA binding sequence demonstrated a striking change in the interaction pattern for F15L, M25V, and G706R mutant proteins, suggesting the more severe consequences of these mutations on protein structure and functionality. Among the non-coding variants, two had the highest likelihood of being regulatory variants, whereas one variant was predicted to affect the target region of a miRNA. Thus, this study lays the groundwork for extensive analysis of RTEL1 gene variants in the future, along with the advancement of precision medicine and other treatment modalities.
Collapse
Affiliation(s)
- Rifah Rownak Tanshee
- Department of Mathematics and Natural Sciences, BRAC University, Badda, Dhaka, Bangladesh
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - A H M Nurun Nabi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Mohammad Sayem
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
2
|
Lira SS, Ahammad I. A comprehensive in silico investigation into the nsSNPs of Drd2 gene predicts significant functional consequences in dopamine signaling and pharmacotherapy. Sci Rep 2021; 11:23212. [PMID: 34853389 PMCID: PMC8636637 DOI: 10.1038/s41598-021-02715-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 11/18/2021] [Indexed: 01/01/2023] Open
Abstract
DRD2 is a neuronal cell surface protein involved in brain development and function. Variations in the Drd2 gene have clinical significance since DRD2 is a pharmacotherapeutic target for treating psychiatric disorders like ADHD and schizophrenia. Despite numerous studies on the disease association of single nucleotide polymorphisms (SNPs) in the intronic regions, investigation into the coding regions is surprisingly limited. In this study, we aimed at identifying potential functionally and pharmaco-therapeutically deleterious non-synonymous SNPs of Drd2. A wide array of bioinformatics tools was used to evaluate the impact of nsSNPs on protein structure and functionality. Out of 260 nsSNPs retrieved from the dbSNP database, initially 9 were predicted as deleterious by 15 tools. Upon further assessment of their domain association, conservation profile, homology models and inter-atomic interaction, the mutant F389V was considered as the most impactful. In-depth analysis of F389V through Molecular Docking and Dynamics Simulation revealed a decline in affinity for its native agonist dopamine and an increase in affinity for the antipsychotic drug risperidone. Remarkable alterations in binding interactions and stability of the protein-ligand complex in simulated physiological conditions were also noted. These findings will improve our understanding of the consequence of nsSNPs in disease-susceptibility and therapeutic efficacy.
Collapse
Affiliation(s)
- Samia Sultana Lira
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Ishtiaque Ahammad
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, 1349, Bangladesh.
| |
Collapse
|
3
|
Hassan AS, Hare J, Gounder K, Nazziwa J, Karlson S, Olsson L, Streatfield C, Kamali A, Karita E, Kilembe W, Price MA, Borrow P, Björkman P, Kaleebu P, Allen S, Hunter E, Ndung'u T, Gilmour J, Rowland-Jones S, Esbjörnsson J, Sanders EJ. A Stronger Innate Immune Response During Hyperacute Human Immunodeficiency Virus Type 1 (HIV-1) Infection Is Associated With Acute Retroviral Syndrome. Clin Infect Dis 2021; 73:832-841. [PMID: 33588436 PMCID: PMC8423478 DOI: 10.1093/cid/ciab139] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Acute retroviral syndrome (ARS) is associated with human immunodeficiency virus type 1 (HIV-1) subtype and disease progression, but the underlying immunopathological pathways are poorly understood. We aimed to elucidate associations between innate immune responses during hyperacute HIV-1 infection (hAHI) and ARS. METHODS Plasma samples obtained from volunteers (≥18.0 years) before and during hAHI, defined as HIV-1 antibody negative and RNA or p24 antigen positive, from Kenya, Rwanda, Uganda, Zambia, and Sweden were analyzed. Forty soluble innate immune markers were measured using multiplexed assays. Immune responses were differentiated into volunteers with stronger and comparatively weaker responses using principal component analysis. Presence or absence of ARS was defined based on 11 symptoms using latent class analysis. Logistic regression was used to determine associations between immune responses and ARS. RESULTS Of 55 volunteers, 31 (56%) had ARS. Volunteers with stronger immune responses (n = 36 [65%]) had increased odds of ARS which was independent of HIV-1 subtype, age, and risk group (adjusted odds ratio, 7.1 [95% confidence interval {CI}: 1.7-28.8], P = .003). Interferon gamma-induced protein (IP)-10 was 14-fold higher during hAHI, elevated in 7 of the 11 symptoms and independently associated with ARS. IP-10 threshold >466.0 pg/mL differentiated stronger immune responses with a sensitivity of 84.2% (95% CI: 60.4-96.6) and specificity of 100.0% (95% CI]: 90.3-100.0). CONCLUSIONS A stronger innate immune response during hAHI was associated with ARS. Plasma IP-10 may be a candidate biomarker of stronger innate immunity. Our findings provide further insights on innate immune responses in regulating ARS and may inform the design of vaccine candidates harnessing innate immunity.
Collapse
Affiliation(s)
- Amin S Hassan
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya.,Department of Translational Medicine, Lund University, Sweden
| | - Jonathan Hare
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom.,IAVI, New York, New York, USA, and Nairobi, Kenya
| | - Kamini Gounder
- Africa Health Research Institute, Durban, South Africa.,HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Jamirah Nazziwa
- Department of Translational Medicine, Lund University, Sweden
| | - Sara Karlson
- Department of Translational Medicine, Lund University, Sweden
| | - Linnéa Olsson
- Department of Internal Medicine, Helsingborg Hospital, Helsingborg, Sweden
| | | | | | - Etienne Karita
- Rwanda/Zambia HIV Research Group, Kigali, Rwanda and Lusaka, Zambia
| | - William Kilembe
- Rwanda/Zambia HIV Research Group, Kigali, Rwanda and Lusaka, Zambia
| | - Matt A Price
- IAVI, New York, New York, USA, and Nairobi, Kenya.,UCSF Department of Epidemiology and Biostatistics, San Francisco,California, USA
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Per Björkman
- Department of Translational Medicine, Lund University, Sweden
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute, Uganda, and London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Susan Allen
- Rwanda/Zambia HIV Research Group, Kigali, Rwanda and Lusaka, Zambia.,Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Eric Hunter
- Rwanda/Zambia HIV Research Group, Kigali, Rwanda and Lusaka, Zambia.,Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Thumbi Ndung'u
- Africa Health Research Institute, Durban, South Africa.,HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Max Planck Institute for Infection Biology, Berlin, Germany.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA.,Division of Infection and Immunity, University College London, London, United Kingdom
| | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Sarah Rowland-Jones
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Joakim Esbjörnsson
- Department of Translational Medicine, Lund University, Sweden.,Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Eduard J Sanders
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya.,Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Kockler ZW, Gordenin DA. From RNA World to SARS-CoV-2: The Edited Story of RNA Viral Evolution. Cells 2021; 10:1557. [PMID: 34202997 PMCID: PMC8234929 DOI: 10.3390/cells10061557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
The current SARS-CoV-2 pandemic underscores the importance of understanding the evolution of RNA genomes. While RNA is subject to the formation of similar lesions as DNA, the evolutionary and physiological impacts RNA lesions have on viral genomes are yet to be characterized. Lesions that may drive the evolution of RNA genomes can induce breaks that are repaired by recombination or can cause base substitution mutagenesis, also known as base editing. Over the past decade or so, base editing mutagenesis of DNA genomes has been subject to many studies, revealing that exposure of ssDNA is subject to hypermutation that is involved in the etiology of cancer. However, base editing of RNA genomes has not been studied to the same extent. Recently hypermutation of single-stranded RNA viral genomes have also been documented though its role in evolution and population dynamics. Here, we will summarize the current knowledge of key mechanisms and causes of RNA genome instability covering areas from the RNA world theory to the SARS-CoV-2 pandemic of today. We will also highlight the key questions that remain as it pertains to RNA genome instability, mutations accumulation, and experimental strategies for addressing these questions.
Collapse
Affiliation(s)
| | - Dmitry A. Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Durham, NC 27709, USA;
| |
Collapse
|
5
|
Gaba A, Flath B, Chelico L. Examination of the APOBEC3 Barrier to Cross Species Transmission of Primate Lentiviruses. Viruses 2021; 13:1084. [PMID: 34200141 PMCID: PMC8228377 DOI: 10.3390/v13061084] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
The transmission of viruses from animal hosts into humans have led to the emergence of several diseases. Usually these cross-species transmissions are blocked by host restriction factors, which are proteins that can block virus replication at a specific step. In the natural virus host, the restriction factor activity is usually suppressed by a viral antagonist protein, but this is not the case for restriction factors from an unnatural host. However, due to ongoing viral evolution, sometimes the viral antagonist can evolve to suppress restriction factors in a new host, enabling cross-species transmission. Here we examine the classical case of this paradigm by reviewing research on APOBEC3 restriction factors and how they can suppress human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). APOBEC3 enzymes are single-stranded DNA cytidine deaminases that can induce mutagenesis of proviral DNA by catalyzing the conversion of cytidine to promutagenic uridine on single-stranded viral (-)DNA if they escape the HIV/SIV antagonist protein, Vif. APOBEC3 degradation is induced by Vif through the proteasome pathway. SIV has been transmitted between Old World Monkeys and to hominids. Here we examine the adaptations that enabled such events and the ongoing impact of the APOBEC3-Vif interface on HIV in humans.
Collapse
Affiliation(s)
- Amit Gaba
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SA S7H 0E5, Canada
| | - Ben Flath
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SA S7H 0E5, Canada
| | - Linda Chelico
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SA S7H 0E5, Canada
| |
Collapse
|
6
|
Shi H, He H, Sun C, Fu J, Ghosh D, Deng C, Sheng Y. Association of toll-like receptor polymorphisms with acquisition of HIV infection and clinical findings: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e23663. [PMID: 33350746 PMCID: PMC7769369 DOI: 10.1097/md.0000000000023663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/04/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To find the relationship between toll-like receptor (TLR) gene variants and human immunodeficiency virus (HIV) infection and clinical findings, which could inform clinical decisions and vaccination strategies. METHOD Four databases were searched for articles that were published on or before Jul.1, 2020. Review Manager 5.3 software was applied to perform meta-analysis to explore. RESULTS A total of 10 studies involving 20 genes, 3697 cases, and 6498 controls were included in this systematic review. TLR2 -196 to -174 Ins/Del (odds ratio [OR] = 1.562; P = .002), TLR4 rs4986790 (OR = 2.05; P = .002), TLR3 rs3775291 (OR = 0.25; P = .03), TLR7 rs179008 (P = .002), TLR7 rs2074109 (OR = 0.27, P = .019) were found associated with HIV infection. TLR2 -196 to -174, TLR4 rs4986790, TLR7 rs179008, TLR8 rs3764880, TLR9 rs352140 were found associated with clinical findings of HIV infection. We identified 5 case-control studies in meta-analysis, involving 695 cases and 729 controls on TLR7 rs179008 polymorphism, totaling 652 cases and 614 controls on TLR9 rs352140 polymorphism. In meta-analysis, we employed various genetic models. The T allele of TLR7 rs179008 was conferred the risk of HIV infection (T vs A: OR = 1.25, PA = .02). An increased risk of HIV infection was found for individuals with the TLR9 rs352140 GG genotype (GG vs AA: OR = 1.50, PA = .04). CONCLUSIONS The systematic review indicated that TLR7 rs179008 T allele provides risk effects for HIV infection. TLR9 rs352140 GG genotype may associate with HIV infection.
Collapse
Affiliation(s)
- Han Shi
- Department of Infectious Diseases, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan
| | - Hongyan He
- Experimental Teaching Center, School of Public Health of Southwest Medical University
| | | | - Juan Fu
- Department of Infectious Diseases
| | | | | | - Yunjian Sheng
- Department of Infectious Diseases
- Department of Tuberculosis Diseases
- Infection and Immunity Laboratory, The Affiliated Hospital of Southwest Medical University, LuZhou, China
| |
Collapse
|
7
|
Hossain MS, Roy AS, Islam MS. In silico analysis predicting effects of deleterious SNPs of human RASSF5 gene on its structure and functions. Sci Rep 2020; 10:14542. [PMID: 32884013 PMCID: PMC7471297 DOI: 10.1038/s41598-020-71457-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 07/17/2020] [Indexed: 11/09/2022] Open
Abstract
Ras association domain-containing protein 5 (RASSF5), one of the prospective biomarkers for tumors, generally plays a crucial role as a tumor suppressor. As deleterious effects can result from functional differences through SNPs, we sought to analyze the most deleterious SNPs of RASSF5 as well as predict the structural changes associated with the mutants that hamper the normal protein-protein interactions. We adopted both sequence and structure based approaches to analyze the SNPs of RASSF5 protein. We also analyzed the putative post translational modification sites as well as the altered protein-protein interactions that encompass various cascades of signals. Out of all the SNPs obtained from the NCBI database, only 25 were considered as highly deleterious by six in silico SNP prediction tools. Among them, upon analyzing the effect of these nsSNPs on the stability of the protein, we found 17 SNPs that decrease the stability. Significant deviation in the energy minimization score was observed in P350R, F321L, and R277W. Besides this, docking analysis confirmed that P350R, A319V, F321L, and R277W reduce the binding affinity of the protein with H-Ras, where P350R shows the most remarkable deviation. Protein-protein interaction analysis revealed that RASSF5 acts as a hub connecting two clusters consisting of 18 proteins and alteration in the RASSF5 may lead to disassociation of several signal cascades. Thus, based on these analyses, our study suggests that the reported functional SNPs may serve as potential targets for different proteomic studies, diagnosis and therapeutic interventions.
Collapse
Affiliation(s)
- Md Shahadat Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Arpita Singha Roy
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Sajedul Islam
- Department of Biochemistry and Biotechnology, University of Barishal, Barishal, Bangladesh.
| |
Collapse
|
8
|
Talathi SP, Shaikh NN, Pandey SS, Saxena VA, Mamulwar MS, Thakar MR. FcγRIIIa receptor polymorphism influences NK cell mediated ADCC activity against HIV. BMC Infect Dis 2019; 19:1053. [PMID: 31842762 PMCID: PMC6916223 DOI: 10.1186/s12879-019-4674-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND HIV-specific Antibody Dependent Cell Cytotoxicity (ADCC) has shown to be important in HIV control and resistance. The ADCC is mediated primarily by natural killer cell activated through the binding of FcγRIIIa receptor to the Fc portion of antibody bound to the antigen expressed on the infected cells. However, no data is available on the influence of the polymorphism in FcγRIIIa receptor on HIV-specific ADCC response. METHODS The Sanger's method of sequencing was used to sequence the exon of FcγRIIIa receptor while the ADCC activity was determined using NK cell activation assay. The polymorphism in FcγRIIIa receptor was assessed in HIV-infected Indian individuals with or without HIV-specific ADCC antibodies and its influence on the magnitude of HIV-specific ADCC responses was analyzed. RESULTS Two polymorphisms: V176F (rs396991) and Y158H (rs396716) were observed. The Y158H polymorphism is reported for the first time in Indian population. Both, V176F (V/V genotype) (p = 0.004) and Y158H (Y/H genotype) (p = 0.032) were found to be significantly associated with higher magnitude of HIV-specific ADCC response. CONCLUSION The study underscores the role of polymorphism in the FcγRIIIa receptor on HIV-specific ADCC response and suggests that the screening of the individuals for FcγRIIIa-V176F and Y158H polymorphisms could be useful for prediction of efficient treatment in monoclonal antibody-based therapies aimed at ADCC in HIV infection.
Collapse
Affiliation(s)
- Sneha Pramod Talathi
- Department of Immunology, National AIDS Research Institute, Plot No. 73, G-Block, MIDC, Bhosari, Pune, Maharashtra, 411026, India
| | - Nawaj Najir Shaikh
- Department of Immunology, National AIDS Research Institute, Plot No. 73, G-Block, MIDC, Bhosari, Pune, Maharashtra, 411026, India
| | - Sudhanshu Shekhar Pandey
- Department of Immunology, National AIDS Research Institute, Plot No. 73, G-Block, MIDC, Bhosari, Pune, Maharashtra, 411026, India
| | - Vandana Ashish Saxena
- Department of Immunology, National AIDS Research Institute, Plot No. 73, G-Block, MIDC, Bhosari, Pune, Maharashtra, 411026, India
| | - Megha Sunil Mamulwar
- Department of Epidemiology, National AIDS Research Institute, Pune, 411026, India
| | - Madhuri Rajeev Thakar
- Department of Immunology, National AIDS Research Institute, Plot No. 73, G-Block, MIDC, Bhosari, Pune, Maharashtra, 411026, India.
| |
Collapse
|
9
|
Mehlotra RK. Human Genetic Variation and HIV/AIDS in Papua New Guinea: Time to Connect the Dots. Curr HIV/AIDS Rep 2019; 15:431-440. [PMID: 30218255 DOI: 10.1007/s11904-018-0417-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Human genetic polymorphisms known to influence HIV acquisition and disease progression occur in Papua New Guinea (PNG). However, no genetic association study has been reported so far. In this article, we review research findings, with a view to stimulate genotype-to-phenotype research. RECENT FINDINGS PNG, a country in Oceania, has a high prevalence of HIV and many sexually transmitted infections. While limited data is available from this country regarding the distribution of human genetic polymorphisms known to influence clinical outcomes of HIV/AIDS, genetic association studies are lacking. Our studies, in the past decade, have revealed that polymorphisms in chemokine receptor-ligand (CCR2-CCR5, CXCL12), innate immune (Toll-like receptor, β-defensin), and antiretroviral drug-metabolism enzyme (CYP2B6, UGT2B7) genes are prevalent in PNG. Although our results need to be validated in further studies, it is urgent to pursue large-scale, comprehensive genetic association studies that include these as well as additional genetic polymorphisms.
Collapse
Affiliation(s)
- Rajeev K Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Biomedical Research Building, #409A, 2109 Adelbert Rd., Cleveland, OH, 44106, USA.
| |
Collapse
|
10
|
Akhtar M, Jamal T, Jamal H, Din JU, Jamal M, Arif M, Arshad M, Jalil F. Identification of most damaging nsSNPs in human CCR6 gene: In silico analyses. Int J Immunogenet 2019; 46:459-471. [PMID: 31364806 DOI: 10.1111/iji.12449] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/05/2019] [Accepted: 06/12/2019] [Indexed: 12/30/2022]
Abstract
Single nucleotide polymorphisms in CCR6 (C-C chemokine receptor type 6) gene have been found to be the possible cause of many diseases like rheumatoid arthritis, psoriasis, lupus nephritis and systemic sclerosis and other autoimmune diseases. Therefore, identification of structurally and functionally important polymorphisms in CCR6 is important in order to study its potential malfunctioning and discovering therapeutic targets. Several bioinformatics tools were used to identify most damaging nsSNPs that might be vital for CCR6 structure and function. The in silico tools included PROVEAN, SIFT, SNP&GO and PolyPhen2 followed by I-Mutant MutPred and ConSurf. Phyre2 and I-TASSER were used for protein 3-D Modelling while gene-gene interaction was predicted by STRING and GeneMANIA. Our study suggested that three nsSNPs rs1376162684, rs751102128 and rs1185426631 are the most damaging in CCR6 gene while 7 missense SNPs rs1438637216, rs139697820, rs768420505, rs1282264186, rs1394647982, rs769360638 and rs1263402382 are found to revert into stop codons. Prediction of post-transcriptional modifications highlighted the significance of rs1376162684 because it effected potential phosphorylation site. Gene-gene interactions showed relation of CCR6 with other genes depicting its importance in several pathways and co-expressions. In future, studying diseases related to CCR6 should include investigation of these 10 nsSNPs. Being the first of its type, this study also proposes future perspectives that will help in precision medicines. For such purposes, CCR6 proteins from patients of autoimmune diseases should be explored. Animal models can also be of significance find out the effects of CCR6 in diseases.
Collapse
Affiliation(s)
- Mehran Akhtar
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Tazkira Jamal
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | | | - Jalal Ud Din
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Arif
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Maria Arshad
- Attaur Rahman School of Applied Biosciences, NUST, Islamabad, Pakistan
| | - Fazal Jalil
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
11
|
Arshad M, Bhatti A, John P. Identification and in silico analysis of functional SNPs of human TAGAP protein: A comprehensive study. PLoS One 2018; 13:e0188143. [PMID: 29329296 PMCID: PMC5766082 DOI: 10.1371/journal.pone.0188143] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/01/2017] [Indexed: 12/02/2022] Open
Abstract
Genetic polymorphisms in TAGAP gene have been associated with many diseases including rheumatoid arthritis, multiple sclerosis and other autoimmune disorders. Identifying functional SNPs in such disease associated genes is an uphill task hence before planning larger population study, it is better to scrutinize putative functional SNPs. In this study we used various computational approaches to identify nsSNPs which are deleterious to the structure and/or function of TAGAP protein that might be causing these diseases. Computational analysis was performed by five different in silico tools including SIFT, PROVEAN, PolyPhen-2, PhD-SNP and SNPs&GO. The study concludes that mutations of Glycine → Glutamic Acid at position 120, Glycine → Tryptophan at position 141 and Valine → Methionine at position 151 are major mutations in native TAGAP protein which might contribute to its malfunction and ultimately causing disease. The study also proposed 3D structures of native TAGAP protein and its three mutants. Future studies should consider these nsSNPs as main target mutations in various diseases involving TAGAP malfunction. This is the first comprehensive study, where TAGAP gene variants were analyzed using in silico tools hence will be of great help while considering large scale studies and also in developing precision medicines for cure of diseases related to these polymorphisms. Furthermore, animal models of various autoimmune diseases and having these mutations might be of help in exploring their precise roles.
Collapse
Affiliation(s)
- Maria Arshad
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| | - Attya Bhatti
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| | - Peter John
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| |
Collapse
|
12
|
Coskran TM, Jiang Z, Klaunig JE, Mager DL, Obert L, Robertson A, Tsinoremas N, Wang Z, Gosink M. Induction of endogenous retroelements as a potential mechanism for mouse-specific drug-induced carcinogenicity. PLoS One 2017; 12:e0176768. [PMID: 28472135 PMCID: PMC5417610 DOI: 10.1371/journal.pone.0176768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/17/2017] [Indexed: 11/23/2022] Open
Abstract
A number of chemical compounds have been shown to induce liver tumors in mice but not in other species. While several mechanisms for this species-specific tumorigenicity have been proposed, no definitive mechanism has been established. We examined the effects of the nongenotoxic rodent hepatic carcinogen, WY-14,643, in male mice from a high liver tumor susceptible strain (C3H/HeJ), and from a low tumor susceptible strain (C57BL/6). WY-14,643, a PPARα activator induced widespread increases in the expression of some endogenous retroelements, namely members of LTR and LINE elements in both strains. The expression of a number of known retroviral defense genes was also elevated. We also demonstrated that basal immune-mediated viral defense was elevated in C57BL/6 mice (the resistant strain) and that WY-14,643 further activated those immuno-defense processes. We propose that the previously reported >100X activity of retroelements in mice drives mouse-specific tumorigenicity. We also propose that C57BL/6's competent immune to retroviral activation allows it to remove cells before the activation of these elements can result in significant chromosomal insertions and mutation. Finally, we showed that WY-14,643 treatment induced gene signatures of DNA recombination in the sensitive C3H/HeJ strain.
Collapse
Affiliation(s)
- Timothy M. Coskran
- Drug Safety Research & Development, Pfizer Inc., Groton, Connecticut, United States of America
| | - Zhijie Jiang
- Department of Computer Science, University of Miami, Miami, Florida, United States of America
| | - James E. Klaunig
- Environmental Health, Indiana University, Bloomington, Indiana, United States of America
| | - Dixie L. Mager
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Leslie Obert
- GlaxoSmithKline plc, King of Prussia, Pennsylvania, United States of America
| | - Andrew Robertson
- Drug Safety Research & Development, Pfizer Inc., Groton, Connecticut, United States of America
| | - Nicholas Tsinoremas
- Department of Computer Science, University of Miami, Miami, Florida, United States of America
| | - Zemin Wang
- Environmental Health, Indiana University, Bloomington, Indiana, United States of America
| | - Mark Gosink
- Drug Safety Research & Development, Pfizer Inc., Groton, Connecticut, United States of America
| |
Collapse
|
13
|
Stavrou S, Ross SR. APOBEC3 Proteins in Viral Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:4565-70. [PMID: 26546688 PMCID: PMC4638160 DOI: 10.4049/jimmunol.1501504] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Apolipoprotein B editing complex 3 family members are cytidine deaminases that play important roles in intrinsic responses to infection by retroviruses and have been implicated in the control of other viruses, such as parvoviruses, herpesviruses, papillomaviruses, hepatitis B virus, and retrotransposons. Although their direct effect on modification of viral DNA has been clearly demonstrated, whether they play additional roles in innate and adaptive immunity to viruses is less clear. We review the data regarding the various steps in the innate and adaptive immune response to virus infection in which apolipoprotein B editing complex 3 proteins have been implicated.
Collapse
Affiliation(s)
- Spyridon Stavrou
- Department of Microbiology, Abramson Cancer Center, Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6142
| | - Susan R Ross
- Department of Microbiology, Abramson Cancer Center, Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6142
| |
Collapse
|
14
|
Chin'ombe N, Ruhanya V. HIV/AIDS vaccines for Africa: scientific opportunities, challenges and strategies. Pan Afr Med J 2015; 20:386. [PMID: 26185576 PMCID: PMC4499268 DOI: 10.11604/pamj.2015.20.386.4660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 04/13/2015] [Indexed: 01/01/2023] Open
Abstract
More than decades have already elapsed since human immunodeficiency virus (HIV) was identified as the causative agent of acquired immunodeficiency syndrome (AIDS). The HIV has since spread to all parts of the world with devastating effects. In sub-saharan Africa, the HIV/AIDS epidemic has reached unprecedented proportions. Safe, effective and affordable HIV/AIDS vaccines for Africans are therefore urgently needed to contain this public health problem. Although, there are challenges, there are also scientific opportunities and strategies that can be exploited in the development of HIV/AIDS vaccines for Africa. The recent RV144 Phase III trial in Thailand has demonstrated that it is possible to develop a vaccine that can potentially elicit modest protective immunity against HIV infection. The main objective of this review is to outline the key scientific opportunities, challenges and strategies in HIV/AIDS vaccine development in Africa.
Collapse
Affiliation(s)
- Nyasha Chin'ombe
- Department of Medical Microbiology, College of Health Sciences, University of Zimbabwe, P O Box A178, Avondale, Harare, Zimbabwe
| | - Vurayai Ruhanya
- Department of Medical Microbiology, College of Health Sciences, University of Zimbabwe, P O Box A178, Avondale, Harare, Zimbabwe
| |
Collapse
|
15
|
Mackelprang RD, Carrington M, Thomas KK, Hughes JP, Baeten JM, Wald A, Farquhar C, Fife K, Campbell MS, Kapiga S, Gao X, Mullins JI, Lingappa JR. Host genetic and viral determinants of HIV-1 RNA set point among HIV-1 seroconverters from sub-saharan Africa. J Virol 2015; 89:2104-11. [PMID: 25473042 PMCID: PMC4338863 DOI: 10.1128/jvi.01573-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 11/25/2014] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED We quantified the collective impact of source partner HIV-1 RNA levels, human leukocyte antigen (HLA) alleles, and innate responses through Toll-like receptor (TLR) alleles on the HIV-1 set point. Data came from HIV-1 seroconverters in African HIV-1 serodiscordant couple cohorts. Linear regression was used to determine associations with set point and R(2) to estimate variation explained by covariates. The strongest predictors of set point were HLA alleles (B*53:01, B*14:01, and B*27:03) and plasma HIV-1 levels of the transmitting partner, which explained 13% and 10% of variation in set point, respectively. HLA-A concordance between partners and TLR polymorphisms (TLR2 rs3804100 and TLR7 rs179012) also were associated with set point, explaining 6% and 5% of the variation, respectively. Overall, these factors and genital factors of the transmitter (i.e., male circumcision, bacterial vaginosis, and use of acyclovir) explained 46% of variation in set point. We found that both innate and adaptive immune responses, together with plasma HIV-1 levels of the transmitting partner, explain almost half of the variation in viral load set point. IMPORTANCE After HIV-1 infection, uncontrolled virus replication leads to a rapid increase in HIV-1 concentrations. Once host immune responses develop, however, HIV-1 levels reach a peak and subsequently decline until they reach a stable level that may persist for years. This stable HIV-1 set point represents an equilibrium between the virus and host responses and is predictive of later disease progression and transmission potential. Understanding how host and virus factors interact to determine HIV-1 set point may elucidate novel mechanisms or biological pathways for treating HIV-1 infection. We identified host and virus factors that predict HIV-1 set point in people who recently acquired HIV-1, finding that both innate and adaptive immune responses, along with factors that likely influence HIV-1 virulence and inoculum, explain ∼46% of the variation in HIV-1 set point.
Collapse
Affiliation(s)
- Romel D Mackelprang
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Inc., Frederick National Laboratories for Cancer Research, Frederick, Maryland, USA Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Katherine K Thomas
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - James P Hughes
- Department of Biostatistics, University of Washington, Seattle, Washington, USA Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jared M Baeten
- Department of Global Health, University of Washington, Seattle, Washington, USA Department of Epidemiology, University of Washington, Seattle, Washington, USA Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Anna Wald
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA Department of Epidemiology, University of Washington, Seattle, Washington, USA Department of Medicine, University of Washington, Seattle, Washington, USA Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Carey Farquhar
- Department of Global Health, University of Washington, Seattle, Washington, USA Department of Epidemiology, University of Washington, Seattle, Washington, USA Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Kenneth Fife
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA Department of Microbiology and Immunology, Indiana University, Indianapolis, Indiana, USA Department of Pathology, Indiana University, Indianapolis, Indiana, USA
| | - Mary S Campbell
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Saida Kapiga
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Xiaojiang Gao
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Inc., Frederick National Laboratories for Cancer Research, Frederick, Maryland, USA
| | - James I Mullins
- Department of Medicine, University of Washington, Seattle, Washington, USA Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Jairam R Lingappa
- Department of Global Health, University of Washington, Seattle, Washington, USA Department of Medicine, University of Washington, Seattle, Washington, USA Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
16
|
Association of Toll-like receptor polymorphisms with HIV status in North Americans. Genes Immun 2014; 15:569-77. [PMID: 25253287 PMCID: PMC4257894 DOI: 10.1038/gene.2014.54] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/11/2014] [Accepted: 08/22/2014] [Indexed: 12/11/2022]
Abstract
Single nucleotide polymorphisms (SNPs) in toll-like receptor (TLR) genes TLR2-4 and TLR7-9, but not in TLR1 and TLR6, have been previously evaluated regarding HIV acquisition and disease progression in various populations, most of which were European. In the present study, we examined associations between a total of 41 SNPs in 8 TLR genes (TLR1-4, TLR6-9) and HIV status in North American subjects (total n = 276 [Caucasian, n = 102; African American, n = 150; other, n = 24]). Stratification of the data by self-identified race revealed that a total of 9 SNPs in TLR1, TLR4, TLR6, and TLR8 in Caucasians, and 2 other SNPs, one each in TLR4 and TLR8, in African Americans were significantly associated with HIV status at P < 0.05. Concordant with the odds ratios of these SNPs, significant differences were observed in the SNP allele frequencies between HIV+ and HIV− subjects. Finally, in Caucasians, certain haplotypes of single (TLR1, TLR4) and heterodimer (TLR2_TLR6) genes may be inferred as “susceptible” or “protective”. Our study provides in-depth insight into the associations between TLR variants, particularly TLR1 and TLR6, and HIV status in North Americans, and suggests that these associations may be race-specific.
Collapse
|
17
|
Kelly JN, Barr SD. In silico analysis of functional single nucleotide polymorphisms in the human TRIM22 gene. PLoS One 2014; 9:e101436. [PMID: 24983760 PMCID: PMC4077803 DOI: 10.1371/journal.pone.0101436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/06/2014] [Indexed: 01/18/2023] Open
Abstract
Tripartite motif protein 22 (TRIM22) is an evolutionarily ancient protein that plays an integral role in the host innate immune response to viruses. The antiviral TRIM22 protein has been shown to inhibit the replication of a number of viruses, including HIV-1, hepatitis B, and influenza A. TRIM22 expression has also been associated with multiple sclerosis, cancer, and autoimmune disease. In this study, multiple in silico computational methods were used to identify non-synonymous or amino acid-changing SNPs (nsSNP) that are deleterious to TRIM22 structure and/or function. A sequence homology-based approach was adopted for screening nsSNPs in TRIM22, including six different in silico prediction algorithms and evolutionary conservation data from the ConSurf web server. In total, 14 high-risk nsSNPs were identified in TRIM22, most of which are located in a protein interaction module called the B30.2 domain. Additionally, 9 of the top high-risk nsSNPs altered the putative structure of TRIM22's B30.2 domain, particularly in the surface-exposed v2 and v3 regions. These same regions are critical for retroviral restriction by the closely-related TRIM5α protein. A number of putative structural and functional residues, including several sites that undergo post-translational modification, were also identified in TRIM22. This study is the first extensive in silico analysis of the highly polymorphic TRIM22 gene and will be a valuable resource for future targeted mechanistic and population-based studies.
Collapse
Affiliation(s)
- Jenna N. Kelly
- Western University, Schulich School of Medicine and Dentistry, Center for Human Immunology, Department of Microbiology and Immunology, Dental Sciences Building, London, Ontario, Canada
| | - Stephen D. Barr
- Western University, Schulich School of Medicine and Dentistry, Center for Human Immunology, Department of Microbiology and Immunology, Dental Sciences Building, London, Ontario, Canada
| |
Collapse
|
18
|
Kelly JN, Woods MW, Xhiku S, Barr SD. Ancient and Recent Adaptive Evolution in the AntiviralTRIM22Gene: Identification of a Single-Nucleotide Polymorphism That Impacts TRIM22 Function. Hum Mutat 2014; 35:1072-81. [DOI: 10.1002/humu.22595] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/13/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Jenna N. Kelly
- Department of Microbiology and Immunology; Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University; London Ontario Canada
| | - Matthew W. Woods
- Department of Microbiology and Immunology; Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University; London Ontario Canada
| | - Sintia Xhiku
- Department of Microbiology and Immunology; Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University; London Ontario Canada
| | - Stephen D. Barr
- Department of Microbiology and Immunology; Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University; London Ontario Canada
| |
Collapse
|
19
|
Gene polymorphisms in CCR5, CCR2, SDF1 and RANTES among Chinese Han population with HIV-1 infection. INFECTION GENETICS AND EVOLUTION 2014; 24:99-104. [PMID: 24650919 DOI: 10.1016/j.meegid.2014.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/28/2014] [Accepted: 03/11/2014] [Indexed: 11/23/2022]
Abstract
Chemokines and chemokine receptors are crucial for immune response in HIV-1 infection. Although many studies have been done to investigate the relationship between chemokines and chemokine receptor gene polymorphisms and host's susceptibility to HIV-1 infection, the conclusions are under debate. In the present study, a cohort of 287 HIV-1 seropositive patients, 388 ethnically age-matched healthy controls and 49 intravenous drug users (IDUs) HIV-1 exposed seronegative individuals (HESN) from Chinese Han population were enrolled in order to determine the influence of host genetic factors on HIV-1 infection. Seven polymorphisms on four known chemokines/chemokine receptor genes (CCR5Δ32, CCR5 m303, CCR5 59029A/G, CCR2 64I, RANTES -403A/G, RANTES -28C/G and SDF1 3'-A) were screened. CCR5Δ32 and CCR5 m303 were absent or infrequent in Chinese Han population, which may not be hosts' genetic protective factors for HIV-1 infection. Our results showed the CCR5 59029A/G, CCR2 64I and SDF1 3'-A were not associated with host's resistance to HIV-1 infection. The frequency of RANTES -403A allele was significantly lower in HIV-1 patients than in healthy blood donors (p=0.0005) and HESN group (p=0.035), which implied the association between A allele and reduced HIV-1 infection risk. Different genetic models were assessed to investigate this association (AA vs. GG+AG, OR=0.38 95% CI, 0.22-0.65 p=0.0004; A vs. G, OR=0.66 95% CI, 0.52-0.84 p=0.0006), which supported this association, either. The genotype and allele distribution of RANTES -28 between HIV-1 patients and healthy controls (genotype profile: p=0.072; allele profile: p=0.027) or HIV-1 seronegative group (genotype profile: p=0.036; allele profile: p=0.383) were both at the marginal level of significance, which were not observed after Bonferroni correction. All these results suggest the RANTES -403A may be associated with reduced susceptibility to HIV-1 infection, while the RANTES -28 locus not. By lack of the patients' clinical information, whether these polymorphisms affect AIDS disease progression and their role in different HIV-1 infection routes could not performed in present study and needs to be assessed in ongoing studies.
Collapse
|
20
|
Tan J, Wang X, Devadas K, Zhao J, Zhang P, Hewlett I. Some mechanisms of FLIP expression in inhibition of HIV-1 replication in Jurkat cells, CD4+ T cells and PBMCs. J Cell Physiol 2014; 228:2305-13. [PMID: 23696271 DOI: 10.1002/jcp.24397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/01/2013] [Indexed: 02/01/2023]
Abstract
HIV-1 infection and replication are affected by host factors. Recent studies demonstrate that molecules from apoptotic pathways regulate HIV-1 replication. Therefore, studies on effects of host factors that maintain host cell survival and influence HIV-1 replication are critical to understanding the mechanisms of HIV-1 replicative cycle. Using the susceptible Jurkat cell line, CD4(+) T cells, and peripheral blood mononuclear cells (PBMCs), we studied the role of FLIP, an inhibitor of caspase-8, in HIV-1 production. Full length cellular FLIP (cFLIP) inhibited HIV-1 replication in these cells. cFLIP upregulated the expression of viral restriction factors, such as TRIM5, Apobec3G, and Bst2/tetherin, decreased nuclear factor 1C expression and inactivated ERK and p38 induced by HIV-1 in Jurkat cells. cFLIP blocked the trafficking of gp120 and Gag p24 capsid protein into lipid rafts with inhibition of Tsg101 and Alix in ESCRT signaling pathway. cFLIP also promoted Bst2/tetherin trafficking into lipid rafts. These results indicate that cFLIP may inhibit the HIV-1 replication cycle at multiple steps, including viral RNA release, transcription, traffic and assembly. We also found that cFLIP expression downregulated Fas expression and inactivated FADD in the Fas-mediated apoptotic pathway. The inactivated FADD also inhibited HIV-1 replication.
Collapse
Affiliation(s)
- Jiying Tan
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland
| | | | | | | | | | | |
Collapse
|
21
|
Sui Y, Gordon S, Franchini G, Berzofsky JA. Nonhuman primate models for HIV/AIDS vaccine development. ACTA ACUST UNITED AC 2013; 102:12.14.1-12.14.30. [PMID: 24510515 DOI: 10.1002/0471142735.im1214s102] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The development of HIV vaccines has been hampered by the lack of an animal model that can accurately predict vaccine efficacy. Chimpanzees can be infected with HIV-1 but are not practical for research. However, several species of macaques are susceptible to the simian immunodeficiency viruses (SIVs) that cause disease in macaques, which also closely mimic HIV in humans. Thus, macaque-SIV models of HIV infection have become a critical foundation for AIDS vaccine development. Here we examine the multiple variables and considerations that must be taken into account in order to use this nonhuman primate (NHP) model effectively. These include the species and subspecies of macaques, virus strain, dose and route of administration, and macaque genetics, including the major histocompatibility complex molecules that affect immune responses, and other virus restriction factors. We illustrate how these NHP models can be used to carry out studies of immune responses in mucosal and other tissues that could not easily be performed on human volunteers. Furthermore, macaques are an ideal model system to optimize adjuvants, test vaccine platforms, and identify correlates of protection that can advance the HIV vaccine field. We also illustrate techniques used to identify different macaque lymphocyte populations and review some poxvirus vaccine candidates that are in various stages of clinical trials. Understanding how to effectively use this valuable model will greatly increase the likelihood of finding a successful vaccine for HIV.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| | - Shari Gordon
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| | - Genoveffa Franchini
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| |
Collapse
|
22
|
Ballana E, Esté JA. Insights from host genomics into HIV infection and disease: Identification of host targets for drug development. Antiviral Res 2013; 100:473-86. [PMID: 24084487 DOI: 10.1016/j.antiviral.2013.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 01/11/2023]
Abstract
HIV susceptibility and disease progression show a substantial degree of individual heterogeneity, ranging from fast progressors to long-term non progressors or elite controllers, that is, subjects that control infection in the absence of therapy. Recent years have seen a significant increase in understanding of the host genetic determinants of susceptibility to HIV infection and disease progression, driven in large part by candidate gene studies, genome-wide association studies, genome-wide transcriptome analyses, and large-scale functional screens. These studies have identified common variants in host loci that clearly influence disease progression, characterized the scale and dynamics of gene and protein expression changes in response to infection, and provided the first comprehensive catalogue of genes and pathways involved in viral replication. This review highlights the potential of host genomic influences in antiviral therapy by pointing to promising novel drug targets but also providing the basis of the identification and validation of host mechanisms that might be susceptible targets for novel antiviral therapies.
Collapse
Affiliation(s)
- Ester Ballana
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.
| | | |
Collapse
|
23
|
Cummins NW, Badley AD. Anti-apoptotic mechanisms of HIV: lessons and novel approaches to curing HIV. Cell Mol Life Sci 2013; 70:3355-63. [PMID: 23275944 PMCID: PMC3753464 DOI: 10.1007/s00018-012-1239-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 11/18/2012] [Accepted: 12/10/2012] [Indexed: 12/17/2022]
Abstract
Past efforts at curing infection with the human immunodeficiency virus (HIV) have been blocked by the resistance of some infected cells to viral cytopathic effects and the associated development of a latent viral reservoir. Furthermore, current efforts to clear the viral reservoir by means of reactivating latent virus are hampered by the lack of cell death in the newly productively infected cells. The purpose of this review is to describe the many anti-apoptotic mechanisms of HIV, as well as the current limitations in the field. Only by understanding how infected cells avoid HIV-induced cell death can an effective strategy to kill infected cells be developed.
Collapse
Affiliation(s)
- Nathan W Cummins
- Division of Infectious Diseases, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
24
|
Abstract
Untreated HIV-1 infection typically progresses to AIDS within 10 years, but less than 1% of infected individuals remain healthy and have normal CD4(+) T cell counts and undetectable viral loads; some individuals have remained this way for 35 years and counting. Through a combination of large population studies of cohorts of these 'HIV-1 controllers' and detailed studies of individual patients, a heterogeneous picture has emerged regarding the basis for this remarkable resistance to AIDS progression. In this Review, we highlight the host genetic factors, the viral genetic factors and the immunological factors that are associated with the controller phenotype, we discuss emerging methodological approaches that could facilitate a better understanding of spontaneous HIV-1 immune control in the future, and we delineate implications for a 'functional cure' of HIV-1 infection.
Collapse
Affiliation(s)
- Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
25
|
Interferon regulatory factor 1 polymorphisms previously associated with reduced HIV susceptibility have no effect on HIV disease progression. PLoS One 2013; 8:e66253. [PMID: 23799084 PMCID: PMC3683001 DOI: 10.1371/journal.pone.0066253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 05/02/2013] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Interferon regulatory factor 1 (IRF1) is induced by HIV early in the infection process and serves two functions: transactivation of the HIV-1 genome and thus replication, and eliciting antiviral innate immune responses. We previously described three IRF1 polymorphisms that correlate with reduced IRF1 expression and reduced HIV susceptibility. OBJECTIVE To determine whether IRF1 polymorphisms previously associated with reduced HIV susceptibility play a role in HIV pathogenesis and disease progression in HIV-infected ART-naïve individuals. METHODS IRF1 genotyping for polymorphisms (619, MS and 6516) was performed by PCR in 847 HIV positive participants from a sex worker cohort in Nairobi, Kenya. Rates of CD4+ T cell decline and viral loads (VL) were analyzed using linear mixed models. RESULTS Three polymorphisms in the IRF1, located at 619, microsatellite region and 6516 of the gene, previously associated with decreased susceptibility to HIV infection show no effect on disease progression, either measured by HIV-1 RNA levels or the slopes of CD4 decline before treatment initiation. CONCLUSION Whereas these three polymorphisms in the IRF1 gene protect against HIV-1 acquisition, they appear to exert no discernable effects once infection is established.
Collapse
|
26
|
de Groot NG, Bontrop RE. The HIV-1 pandemic: does the selective sweep in chimpanzees mirror humankind's future? Retrovirology 2013; 10:53. [PMID: 23705941 PMCID: PMC3667106 DOI: 10.1186/1742-4690-10-53] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 04/04/2013] [Indexed: 12/31/2022] Open
Abstract
An HIV-1 infection progresses in most human individuals sooner or later into AIDS, a devastating disease that kills more than a million people worldwide on an annual basis. Nonetheless, certain HIV-1-infected persons appear to act as long-term non-progressors, and elite control is associated with the presence of particular MHC class I allotypes such as HLA-B*27 or -B*57. The HIV-1 pandemic in humans arose from the cross-species transmission of SIVcpz originating from chimpanzees. Chimpanzees, however, appear to be relatively resistant to developing AIDS after HIV-1/SIVcpz infection. Mounting evidence illustrates that, in the distant past, chimpanzees experienced a selective sweep resulting in a severe reduction of their MHC class I repertoire. This was most likely caused by an HIV-1/SIV-like retrovirus, suggesting that chimpanzees may have experienced long-lasting host-virus relationships with SIV-like viruses. Hence, if natural selection is allowed to follow its course, prospects for the human population may look grim, thus underscoring the desperate need for an effective vaccine.
Collapse
Affiliation(s)
- Natasja G de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands.
| | | |
Collapse
|
27
|
Gong Z, Tang J, Xiang T, Zhang L, Liao Q, Liu W, Wang Y. Association between regulated upon activation, normal T cells expressed and secreted (RANTES) -28C/G polymorphism and susceptibility to HIV-1 infection: a meta-analysis. PLoS One 2013; 8:e60683. [PMID: 23577146 PMCID: PMC3618220 DOI: 10.1371/journal.pone.0060683] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 03/01/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Many studies have investigated the distributions of RANTES genotypes between HIV-1 infected patients and uninfected individuals. However, no definite results have been put forward about whether the RANTES -28C/G polymorphism can affect HIV-1 susceptibility. METHODS We performed a meta-analysis of 12 studies including 7473 subjects for whom the RANTES -28C/G polymorphism was genotyped. Odds ratios (ORs) with 95% confidence intervals (CIs) were employed to assess the association of the polymorphism with HIV-1 susceptibility. By dividing the controls into healthy controls and HIV-1 exposed but seronegative (HESN) controls, we explored the both allelic and dominant genetic models. RESULTS By using the healthy controls, we found a marginally significant association between the -28C/G polymorphism and susceptibility to HIV-1 infection in the allelic model (OR = 0.82, 95%CI = 0.70-0.97). But sensitivity analysis suggested that the association was driven by one study. We further performed stratified analysis according to ethnicity. The -28G allele decreased susceptibility to HIV-1 infection in the allelic model among Asians (OR = 0.79, 95%CI = 0.66-0.94). By using the HESN controls, no association between the polymorphism -28C/G and the susceptibility to HIV-1 infection was revealed in either the allelic model (OR = 0.84, 95%CI = 0.60-1.17) or the dominant model (OR = 0.77, 95%CI = 0.54-1.10). CONCLUSIONS Our findings suggested that the RANTES -28G allele might play a role in resistance to HIV-1 infection among Asians. Additional well-designed studies were required for the validation of this association.
Collapse
Affiliation(s)
- Zhenghua Gong
- Department of Public Health, Center for Disease Control and Prevention in Jiangxi Province, Nanchang, China
| | - Jialin Tang
- Department of Public Health, Center for Disease Control and Prevention in Jiangxi Province, Nanchang, China
| | - Tianxin Xiang
- Departments of Infectious Diseases, the First Hospital Affiliated of Nanchang University, Nanchang, China
| | - Lunli Zhang
- Departments of Infectious Diseases, the First Hospital Affiliated of Nanchang University, Nanchang, China
| | - Qinghua Liao
- Department of Public Health, Center for Disease Control and Prevention in Jiangxi Province, Nanchang, China
| | - Wei Liu
- Department of Public Health, Center for Disease Control and Prevention in Jiangxi Province, Nanchang, China
| | - Yalin Wang
- Department of Public Health, Center for Disease Control and Prevention in Jiangxi Province, Nanchang, China
- * E-mail:
| |
Collapse
|
28
|
da Silva RC, Bedin E, Mangano A, Aulicino P, Pontillo A, Brandão L, Guimarães R, Arraes LC, Sen L, Crovella S. HIV mother-to-child transmission: a complex genetic puzzle tackled by Brazil and Argentina research teams. INFECTION GENETICS AND EVOLUTION 2013; 19:312-22. [PMID: 23524206 DOI: 10.1016/j.meegid.2013.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 03/05/2013] [Accepted: 03/07/2013] [Indexed: 11/24/2022]
Abstract
Human immunodeficiency virus (HIV) mother-to-child transmission is a complex event, depending upon environmental factors and is affected by host genetic factors from mother and child, as well as viral genetic elements. The integration of multiple parameters (CD4 cell count, virus load, HIV subtype, and host genetic markers) could account for the susceptibility to HIV infection, a multifactorial trait. The goal of this manuscript is to analyze the immunogenetic factors associated to HIV mother-to-child transmission, trying to unravel the genetic puzzle of HIV mother-to-child transmission and considering the experience in this topic of two research groups from Brazil and Argentina.
Collapse
Affiliation(s)
- R Celerino da Silva
- Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n°, CEP 50.670-420, Cidade Universitária, Recife, Pernambuco, Brazil; Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n°, CEP 50.670-420, Cidade Universitária, Recife, Pernambuco, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Novel biopanning strategy to identify epitopes associated with vaccine protection. J Virol 2013; 87:4403-16. [PMID: 23388727 DOI: 10.1128/jvi.02888-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Identifying immune correlates of protection is important to develop vaccines against infectious diseases. We designed a novel, universally applicable strategy to profile the antibody (Ab) repertoire of protected vaccine recipients, using recombinant phages encoding random peptide libraries. The new approach, termed "protection-linked (PL) biopanning," probes the Ab paratopes of protected vaccinees versus those with vaccine failure. As proof of concept, we screened plasma samples from vaccinated rhesus macaques (RMs) that had completely resisted multiple mucosal challenges with R5-tropic simian-human immunodeficiency viruses (SHIVs). The animals had been immunized with a multicomponent vaccine (multimeric HIV-1 gp160, HIV-1 Tat, and SIV Gag-Pol particles). After PL biopanning, we analyzed the phagotopes selected for amino acid homologies; in addition to the expected Env mimotopes, one recurring motif reflected the neutralizing Ab epitope at the N terminus (NT) of HIV-1 Tat. Subsequent binding and functional assays indicated that anti-Tat NT Abs were present only in completely or partially protected RMs; peak viremia of the latter was inversely correlated with anti-Tat NT Ab titers. In contrast, highly viremic, unvaccinated controls did not develop detectable Abs against the same epitope. Based upon the protective effect observed in vivo, we suggest that Tat should be included in multicomponent HIV-1 vaccines. Our data highlight the power of the new PL-biopanning strategy to identify Ab responses with significant association to vaccine protection, regardless of the mechanism(s) or targets of the protective Abs. PL biopanning is also unbiased with regard to pathogens or disease model, making it a universal tool.
Collapse
|
30
|
Hou W, Sui Y, Wang Z, Wang Y, Wang N, Liu J, Li Y, Goodenow M, Yin L, Wang Z, Wu R. Systems mapping of HIV-1 infection. BMC Genet 2012; 13:91. [PMID: 23092371 PMCID: PMC3502423 DOI: 10.1186/1471-2156-13-91] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 09/27/2012] [Indexed: 01/30/2023] Open
Abstract
Mathematical models of viral dynamics in vivo provide incredible insights into the mechanisms for the nonlinear interaction between virus and host cell populations, the dynamics of viral drug resistance, and the way to eliminate virus infection from individual patients by drug treatment. The integration of these mathematical models with high-throughput genetic and genomic data within a statistical framework will raise a hope for effective treatment of infections with HIV virus through developing potent antiviral drugs based on individual patients’ genetic makeup. In this opinion article, we will show a conceptual model for mapping and dictating a comprehensive picture of genetic control mechanisms for viral dynamics through incorporating a group of differential equations that quantify the emergent properties of a system.
Collapse
Affiliation(s)
- Wei Hou
- Center for Computational Biology, Beijing Forestry University, Beijing 100081, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
From the publication of the first AIDS issue onwards, major advances have been made in the field of innate immunity during HIV infection. Innate immunity can be defined as the first and unspecific lines of defense constitutively present and ready to be mobilized upon infection. Although a large body of literature adamantly highlights that innate immunity is a critical weapon of defense against HIV and its simian parents (simian immunodeficiency virus, SIV), innate immunity is still underexplored. Focusing on innate immunity may open new paths for the development of innovative therapeutics and vaccine strategies against HIV. Understanding innate immunity may shed light on the natural protection occurring in rare HIV-1-infected individuals who control their infection. This review focuses on innate mechanisms sensing HIV-1 entry and controlling HIV-1 infection, as well as promoting inflammation and shaping adaptive immunity.
Collapse
|
32
|
Overview and outlook of Toll-like receptor ligand–antigen conjugate vaccines. Ther Deliv 2012; 3:749-60. [DOI: 10.4155/tde.12.52] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
33
|
Abstract
Acquired immune deficiency syndrome (AIDS) was first described 30 years ago in a report from the US Centers for Disease Control. Two years later the causative virus was identified and afterwards named the human immunodeficiency virus (HIV). This article reviews the progress made in the three decades since the recognition of AIDS and the discovery of HIV, with respect to the virus, the infected cell, and the host, as well as directions for future studies.
Collapse
Affiliation(s)
- M Scott Killian
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143-1270, USA
| | | |
Collapse
|