1
|
Mezzetti E, Costantino A, Leoni M, Pieretti R, Di Paolo M, Frati P, Maiese A, Fineschi V. Autoimmune Heart Disease: A Comprehensive Summary for Forensic Practice. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1364. [PMID: 37629654 PMCID: PMC10456745 DOI: 10.3390/medicina59081364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023]
Abstract
Autoimmune heart disease is a non-random condition characterised by immune system-mediated aggression against cardiac tissue. Cardiac changes often exhibit nonspecific features and, if unrecognised, can result in fatal outcomes even among seemingly healthy young individuals. In the absence of reliable medical history, the primary challenge lies in differentiating between the various cardiopathies. Numerous immunohistochemical and genetic studies have endeavoured to characterise distinct types of cardiopathies, facilitating their differentiation during autopsy examinations. However, the presence of a standardised protocol that forensic pathologists can employ to guide their investigations would be beneficial. Hence, this summary aims to present the spectrum of autoimmune cardiopathies, including emerging insights such as SARS-CoV-2-induced cardiopathies, and proposes the utilisation of practical tools, such as blood markers, to aid forensic pathologists in their routine practice.
Collapse
Affiliation(s)
- Eleonora Mezzetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Andrea Costantino
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Matteo Leoni
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Rebecca Pieretti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Marco Di Paolo
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopedical Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (P.F.); (V.F.)
| | - Aniello Maiese
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopedical Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (P.F.); (V.F.)
| |
Collapse
|
2
|
Marty N, Saeng-Aroon S, Heger E, Thielen A, Obermeier M, Pfeifer N, Kaiser R, Klimkait T. Adapting the geno2pheno[coreceptor] tool to HIV-1 subtype CRF01_AE by phenotypic validation using clinical isolates from South-East Asia. J Clin Virol 2021; 136:104755. [PMID: 33639408 DOI: 10.1016/j.jcv.2021.104755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/24/2020] [Accepted: 02/01/2021] [Indexed: 01/23/2023]
Abstract
OBJECTIVES Geno2pheno[coreceptor] is a widely used tool for the prediction of coreceptor usage (viral tropism) of HIV-1 samples. For HIV-1 CRF01_AE, a significant overcalling of X4-tropism is observed when using the standard settings of Geno2pheno[coreceptor]. The aim of this study was to provide the experimental backing for adaptations to the geno2pheno[coreceptor] algorithm in order to improve coreceptor usage predictions of clinical HIV-1 CRF01_AE isolates STUDY DESIGN: V3-sequences of 20 clinical HIV-1 subtype CRF01_AE samples were sequenced and analyzed by geno2pheno[coreceptor]. In parallel, coreceptor usage was determined for these samples by replicative phenotyping in human cells in the presence of specific X4- or R5-inhibitors. RESULTS The sole introduction of the CRF01_AE V3 region into a full-length otherwise subtype B provirus failed to produce replication-competent viral progeny. A successive genome-replacement strategy revealed that also CRF01_AE derived gag and pol sequences are necessary to generate HIV genomes with sufficient replication competence. Subsequent phenotypic analysis confirmed overcalling of X4-tropism for CRF01_AE viruses using the current version and the standard cut-off at 10% false positive rate (FPR) of geno2pheno[coreceptor]. Lowering the FPR cut-off to 2.5% reduced the X4-overcalling in our sample collection, while still allowing a safe administration of Maraviroc (MCV). CONCLUSION This study demonstrates the successful adjustment of geno2pheno[coreceptor] rules for subtype CRF01_AE. It also supports the unique strength of combining complementing methods, namely phenotyping and genotyping, for validating new bioinformatics tools prior to application in diagnostics.
Collapse
Affiliation(s)
- Nina Marty
- Molecular Virology, Department Biomedicine-Petersplatz, University of Basel, Petersplatz 10, 4055 Basel, Switzerland.
| | - Siriphan Saeng-Aroon
- Hazardous Pathogen Laboratory, National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Eva Heger
- Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | | | | | - Nico Pfeifer
- Max Planck Institute for Informatics, Saarland Informatics Campus E1 4, Saarbruecken, Germany
| | - Rolf Kaiser
- Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Thomas Klimkait
- Molecular Virology, Department Biomedicine-Petersplatz, University of Basel, Petersplatz 10, 4055 Basel, Switzerland
| |
Collapse
|
3
|
Dimeglio C, Raymond S, Jeanne N, Reynes C, Carcenac R, Lefebvre C, Cazabat M, Nicot F, Delobel P, Izopet J. THETA: a new genotypic approach for predicting HIV-1 CRF02-AG coreceptor usage. Bioinformatics 2020; 36:416-421. [PMID: 31350559 DOI: 10.1093/bioinformatics/btz585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/28/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023] Open
Abstract
MOTIVATION The circulating recombinant form of HIV-1 CRF02-AG is the most frequent non-B subtype in Europe. Anti-HIV therapy and pathophysiological studies on the impact of HIV-1 tropism require genotypic determination of HIV-1 tropism for non-B subtypes. But genotypic approaches based on analysis of the V3 envelope region perform poorly when used to determine the tropism of CRF02-AG. We, therefore, designed an algorithm based on information from the gp120 and gp41 ectodomain that better predicts the tropism of HIV-1 subtype CRF02-AG. RESULTS We used a bio-statistical method to identify the genotypic determinants of CRF02-AG coreceptor use. Toulouse HIV Extended Tropism Algorithm (THETA), based on a Least Absolute Shrinkage and Selection Operator method, uses HIV envelope sequence from phenotypically characterized clones. Prediction of R5X4/X4 viruses was 86% sensitive and that of R5 viruses was 89% specific with our model. The overall accuracy of THETA was 88%, making it sufficiently reliable for predicting the tropism of subtype CRF02-AG sequences. AVAILABILITY AND IMPLEMENTATION Binaries are freely available for download at https://github.com/viro-tls/THETA. It was implemented in Matlab and supported on MS Windows platform. The sequence data used in this work are available from GenBank under the accession numbers MK618182-MK618417.
Collapse
Affiliation(s)
- Chloé Dimeglio
- CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie
| | - Stéphanie Raymond
- CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie.,INSERM U1043-CNRS UMR 5282-Toulouse University Paul Sabatier, CPTP, Toulouse F-31300, France
| | - Nicolas Jeanne
- CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie
| | - Christelle Reynes
- Institut de Génomique Fonctionnelle, 34090 Montpellier, France.,UM-Université de Montpellier, 34090 Montpellier, France.,Faculté de Pharmacie, 34090 Montpellier, France
| | | | | | | | - Florence Nicot
- CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie
| | - Pierre Delobel
- CHU de Toulouse, Service de Maladies Infectieuses et Tropicales, 31059 Toulouse, France
| | - Jacques Izopet
- CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie.,INSERM U1043-CNRS UMR 5282-Toulouse University Paul Sabatier, CPTP, Toulouse F-31300, France
| |
Collapse
|
4
|
Abstract
Human Immunodeficiency Virus 1 (HIV-1) co-receptor usage, called tropism, is associated with disease progression towards AIDS. Furthermore, the recently developed and developing drugs against co-receptors CCR5 or CXCR4 open a new thought for HIV-1 therapy. Thus, knowledge about tropism is critical for illness diagnosis and regimen prescription. To improve tropism prediction accuracy, we developed two novel methods, the extreme gradient boosting based XGBpred and the hidden Markov model based HMMpred. Both XGBpred and HMMpred achieved higher specificities (72.56% and 72.09%) than the state-of-the-art methods Geno2pheno (61.6%) and G2p_str (68.60%) in a 10-fold cross validation test at the same sensitivity of 93.73%. Moreover, XGBpred had more outstanding performances (with AUCs 0.9483, 0.9464) than HMMpred (0.8829, 0.8774) on the Hivcopred and Newdb (created in this work) datasets containing larger proportions of hard-to-predict dual tropic samples in the X4-using tropic samples. Therefore, we recommend the use of our novel method XGBpred to predict tropism. The two methods and datasets are available via http://spg.med.tsinghua.edu.cn:23334/XGBpred/. In addition, our models identified that positions 5, 11, 13, 18, 22, 24, and 25 were correlated with HIV-1 tropism.
Collapse
|
5
|
Wei XM, Xu HF, Cheng XD, Bu N, Zhou HZ. Position 22 of the V3 loop is associated with HIV infectivity. Arch Virol 2016; 162:637-643. [PMID: 27815696 DOI: 10.1007/s00705-016-3138-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/28/2016] [Indexed: 11/29/2022]
Abstract
Human immunodeficiency virus subtype 1B (HIV-1B) binds to the CD4 receptor and co-receptor CCR5 or CXCR4 to enter T lymphocytes. The amino acid sequence of the HIV envelope glycoprotein V3 region determines the co-receptor tropism, thereby influencing the infectivity of the virus. Our research group previously found that the amino acid at position 22 of the V3 region may affect the infectivity of the virus, and in this study, we tested this hypothesis. We constructed pseudoviruses by changing the amino acids at position 22 of the V3 region in CCR5-tropic and CXCR4-tropic viruses and tested their infectivity. When the amino acid at V3 position 22 was altered in the CCR5- and CXCR4-tropic viruses, their ability to infect cells decreased to 20.6% and 17.14%, respectively. Therefore, we propose that residue 22 in the V3 region of subtype HIV-1B significantly influences the infectivity of the virus.
Collapse
Affiliation(s)
- Xue-Mei Wei
- Department of Laboratory Diagnosis, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Hua-Feng Xu
- Department of Laboratory Diagnosis, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Xue-Di Cheng
- Department of Laboratory Diagnosis, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Nan Bu
- Department of Digestive Medicine, Jiamusi Central Hospital, Jiamusi, Heilongjiang, 154002, People's Republic of China
| | - Hai-Zhou Zhou
- Department of Laboratory Diagnosis, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang, 150001, People's Republic of China.
| |
Collapse
|
6
|
Saladini F, Vicenti I. Role of phenotypic investigation in the era of routine genotypic HIV-1 drug resistance testing. Future Virol 2016. [DOI: 10.2217/fvl-2016-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emergence of drug resistance can seriously compromise HIV type-1 therapy and decrease therapeutic options. Resistance testing is highly recommended to guide treatment decisions and drug activity can be accurately predicted in the clinical setting through genotypic assays. While phenotypic systems are not suitable for monitoring drug resistance in routine laboratory practice, genotyping can misclassify unusual or complex mutational patterns, particularly with recently approved antivirals. In addition, phenotypic assays remain fundamental for characterizing candidate antiretroviral compounds. This review aims to discuss how phenotypic assays contributed to and still play a role in understanding the mechanisms of resistance of both licensed and investigational HIV type-1 inhibitors.
Collapse
Affiliation(s)
- Francesco Saladini
- Department of Medical Biotechnologies, University of Siena Italy, Policlinico Le Scotte, Viale Bracci 16 53100 Siena, Italy
| | - Ilaria Vicenti
- Department of Medical Biotechnologies, University of Siena Italy, Policlinico Le Scotte, Viale Bracci 16 53100 Siena, Italy
| |
Collapse
|
7
|
Chen I, Huang W, Connor MB, Frantzell A, Cummings V, Beauchamp GG, Griffith S, Fields SD, Scott HM, Shoptaw S, Del Rio C, Magnus M, Mannheimer S, Tieu HV, Wheeler DP, Mayer KH, Koblin BA, Eshleman SH. CXCR4-using HIV variants in a cohort of Black men who have sex with men: HIV Prevention Trials Network 061. HIV CLINICAL TRIALS 2016; 17:158-64. [PMID: 27300696 DOI: 10.1080/15284336.2016.1180771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To evaluate factors associated with HIV tropism among Black men who have sex with men (MSM) in the United States enrolled in a clinical study (HIV Prevention Trials Network 061). METHODS HIV tropism was analyzed using a phenotypic assay (Trofile assay, Monogram Biosciences). Samples were analyzed from 43 men who were HIV infected at enrollment and reported either exclusive insertive intercourse or exclusive receptive intercourse; samples were also analyzed from 20 men who were HIV uninfected at enrollment and seroconverted during the study. Clonal analysis of individual viral variants was performed for seroconverters who had dual/mixed (DM) viruses. RESULTS DM viruses were detected in samples from 11 (26%) of the 43 HIV-infected men analyzed at the enrollment visit; HIV tropism did not differ between those reporting exclusive insertive vs receptive intercourse. DM viruses were also detected in five (25%) of the 20 seroconverters. DM viruses were associated with lower CD4 cell counts. Seroconverters with DM viruses had dual-tropic viruses only or mixed populations of CCR5- and dual-tropic viruses. CONCLUSIONS DM viruses were frequently detected among Black MSM in this study, including seroconverters. Further studies are needed to understand factors driving transmission and selection of CXCR4- and dual-tropic viruses among Black MSM.
Collapse
Affiliation(s)
- Iris Chen
- a Department of Pathology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Wei Huang
- b Monogram Biosciences , South San Francisco , CA , USA
| | - Matthew B Connor
- c Vaccine and Infectious Disease Division , Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | | | - Vanessa Cummings
- a Department of Pathology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Geetha G Beauchamp
- c Vaccine and Infectious Disease Division , Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Sam Griffith
- d Science Facilitation Department , FHI 360 , Durham , NC , USA
| | - Sheldon D Fields
- e Mervyn M. Dymally School of Nursing , Charles R. Drew University of Medicine and Science , Los Angeles , CA , USA
| | - Hyman M Scott
- f Bridge HIV , San Francisco Department of Public Health , San Francisco , CA , USA
| | - Steven Shoptaw
- g Department of Family Medicine , University of California Los Angeles , Los Angeles , CA , USA
| | - Carlos Del Rio
- h Department of Global Health , Emory University Rollins School of Public Health , Atlanta , GA , USA
| | - Manya Magnus
- i Department of Epidemiology and Biostatistics , The George Washington University , Washington , DC , USA
| | - Sharon Mannheimer
- j Department of Medicine, Harlem Hospital , Columbia University Mailman School of Public Health , New York , NY , USA
| | - Hong-Van Tieu
- k Laboratory of Infectious Disease Prevention , Lindsley F. Kimball Research Institute, New York Blood Center , New York , NY , USA
| | - Darrell P Wheeler
- l School of Social Welfare , University at Albany, State University of New York , Albany , NY , USA
| | - Kenneth H Mayer
- m The Fenway Institute , Fenway Health , Boston , MA , USA.,n Infectious Disease Division , Beth Israel Deaconess Medical Center , Boston , MA , USA.,o Department of Medicine , Harvard Medical School , Boston , MA , USA
| | - Beryl A Koblin
- k Laboratory of Infectious Disease Prevention , Lindsley F. Kimball Research Institute, New York Blood Center , New York , NY , USA
| | - Susan H Eshleman
- a Department of Pathology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
8
|
Pett SL, Amin J, Horban A, Andrade-Villanueva J, Losso M, Porteiro N, Sierra Madero J, Belloso W, Tu E, Silk D, Kelleher A, Harrigan R, Clark A, Sugiura W, Wolff M, Gill J, Gatell J, Fisher M, Clarke A, Ruxrungtham K, Prazuck T, Kaiser R, Woolley I, Arnaiz JA, Cooper D, Rockstroh JK, Mallon P, Emery S. Maraviroc, as a Switch Option, in HIV-1-infected Individuals With Stable, Well-controlled HIV Replication and R5-tropic Virus on Their First Nucleoside/Nucleotide Reverse Transcriptase Inhibitor Plus Ritonavir-boosted Protease Inhibitor Regimen: Week 48 Results of the Randomized, Multicenter MARCH Study. Clin Infect Dis 2016; 63:122-32. [PMID: 27048747 DOI: 10.1093/cid/ciw207] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 03/23/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Alternative combination antiretroviral therapies in virologically suppressed human immunodeficiency virus (HIV)-infected patients experiencing side effects and/or at ongoing risk of important comorbidities from current therapy are needed. Maraviroc (MVC), a chemokine receptor 5 antagonist, is a potential alternative component of therapy in those with R5-tropic virus. METHODS The Maraviroc Switch Study is a randomized, multicenter, 96-week, open-label switch study in HIV type 1-infected adults with R5-tropic virus, virologically suppressed on a ritonavir-boosted protease inhibitor (PI/r) plus double nucleoside/nucleotide reverse transcriptase inhibitor (2 N(t)RTI) backbone. Participants were randomized 1:2:2 to current combination antiretroviral therapy (control), or replacing the protease inhibitor (MVC + 2 N(t)RTI arm) or the nucleoside reverse transcriptase inhibitor backbone (MVC + PI/r arm) with twice-daily MVC. The primary endpoint was the difference (switch minus control) in proportion with plasma viral load (VL) <200 copies/mL at 48 weeks. The switch arms were judged noninferior if the lower limit of the 95% confidence interval (CI) for the difference in the primary endpoint was < -12% in the intention-to-treat (ITT) population. RESULTS The ITT population comprised 395 participants (control, n = 82; MVC + 2 N(t)RTI, n = 156; MVC + PI/r, n = 157). Baseline characteristics were well matched. At week 48, noninferior rates of virological suppression were observed in those switching away from a PI/r (93.6% [95% CI, -9.0% to 2.2%] and 91.7% [95% CI, -9.6% to 3.8%] with VL <200 and <50 copies/mL, respectively) compared to the control arm (97.6% and 95.1% with VL <200 and <50 copies/mL, respectively). In contrast, MVC + PI/r did not meet noninferiority bounds and was significantly inferior (84.1% [95% CI, -19.8% to -5.8%] and 77.7% [95% CI, -24.9% to -8.4%] with VL <200 and <50 copies/mL, respectively) to the control arm in the ITT analysis. CONCLUSIONS These data support MVC as a switch option for ritonavir-boosted PIs when partnered with a 2-N(t)RTI backbone, but not as part of N(t)RTI-sparing regimens comprising MVC with PI/r. CLINICAL TRIALS REGISTRATION NCT01384682.
Collapse
Affiliation(s)
- Sarah Lilian Pett
- The Kirby Institute, University of New South Wales, Sydney, Australia Medical Research Council Clinical Trials Unit, Institute of Clinical Trials and Methodology Clinical Research Group, Infection and Population Health, University College London, United Kingdom
| | - Janaki Amin
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Andrejz Horban
- Wojewodzki Szpital Zakazny Centrum Diagnostyki i Terapii AIDS, Warsaw, Poland
| | | | - Marcelo Losso
- Hospital General de Agudos J M Ramos Mejia Fundación IBIS Coordinacion de Investigacion Clinica Academica en Latinoamerica
| | - Norma Porteiro
- Fundación Infectologia de Atencion Ambulatoria, Buenos Aires, Argentina
| | - Juan Sierra Madero
- Instituto Nacional de Ciencias Medicas y Nutriciòn Salvador Zubiran, Tlalpan, Mexico
| | - Waldo Belloso
- Fundación IBIS Coordinacion de Investigacion Clinica Academica en Latinoamerica Hospital Italiano de Buenos Aires, Argentina
| | - Elise Tu
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - David Silk
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Anthony Kelleher
- The Kirby Institute, University of New South Wales, Sydney, Australia St Vincent's Hospital, Sydney, Australia
| | - Richard Harrigan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | | | | | | | - John Gill
- Southern Alberta Clinic, Calgary, Canada
| | | | - Martin Fisher
- Brighton and Sussex University Hospitals National Health Service Trust, Brighton, United Kingdom
| | - Amanda Clarke
- Brighton and Sussex University Hospitals National Health Service Trust, Brighton, United Kingdom
| | - Kiat Ruxrungtham
- HIV Netherlands, Australia, Thailand Research Collaboration, Bangkok
| | - Thierry Prazuck
- Orleans Hospital (Centre Hospitalier Regional D'Orleans Orleans La Source), France
| | | | | | | | - David Cooper
- The Kirby Institute, University of New South Wales, Sydney, Australia St Vincent's Hospital, Sydney, Australia
| | | | - Patrick Mallon
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Sean Emery
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
9
|
Genotypic Tropism Testing in HIV-1 Proviral DNA Can Provide Useful Information at Low-Level Viremia. J Clin Microbiol 2015; 53:2935-41. [PMID: 26135872 DOI: 10.1128/jcm.00893-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/25/2015] [Indexed: 01/24/2023] Open
Abstract
The possibility of performing genotypic tropism testing (GTT) with proviral DNA (pvDNA) even during suppressed viremia would facilitate the use of CCR5 inhibitors as part of switching, simplification, or intensification strategies. Thus, we aimed to evaluate the tropism concordance between plasma RNA and pvDNA samples and to assess which factors could affect possible discrepancies between the two compartments. GTT was performed using both plasma RNA and pvDNA from 55 sample pairs from drug-experienced patients. Potential differences between the two compartments were evaluated by analyzing coreceptor usage and genetic variability. Paired samples were also stratified in three levels of viremia (<50, 51 to 500, and >500 copies/ml). Overall, Geno2Pheno comparisons of false-positive rates in the two compartments showed good correlation (r = 0.72). A high level of concordance in tropism predictions for the two compartments was found (46/55 sample pairs [83.6%]). Among the 9 sample pairs with discordant tropisms, a larger proportion of pvDNA samples harboring CXCR4/dual-mixed-tropic viruses was found, in comparison with plasma RNA samples (88.9% versus 11.1%; P = 0.0034). Discordant samples were characterized by greater genetic variability than were concordant samples. With stratification of the paired samples according to viremia levels, the prevalence of discordant samples decreased with increasing viremia (<50 copies/ml, 21.4%; 51 to 500 copies/ml, 15.4%; >500 copies/ml, 6.7%; P = 0.2). Our findings confirm that prediction of viral tropism using pvDNA is feasible even in low-level viremia and provides useful information for therapy optimization for patients with low or suppressed viremia.
Collapse
|
10
|
Sierra S, Dybowski JN, Pironti A, Heider D, Güney L, Thielen A, Reuter S, Esser S, Fätkenheuer G, Lengauer T, Hoffmann D, Pfister H, Jensen B, Kaiser R. Parameters Influencing Baseline HIV-1 Genotypic Tropism Testing Related to Clinical Outcome in Patients on Maraviroc. PLoS One 2015; 10:e0125502. [PMID: 25970632 PMCID: PMC4430318 DOI: 10.1371/journal.pone.0125502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/18/2015] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES We analysed the impact of different parameters on genotypic tropism testing related to clinical outcome prediction in 108 patients on maraviroc (MVC) treatment. METHODS 87 RNA and 60 DNA samples were used. The viral tropism was predicted using the geno2pheno[coreceptor] and T-CUP tools with FPR cut-offs ranging from 1%-20%. Additionally, 27 RNA and 28 DNA samples were analysed in triplicate, 43 samples with the ESTA assay and 45 with next-generation sequencing. The influence of the genotypic susceptibility score (GSS) and 16 MVC-resistance mutations on clinical outcome was also studied. RESULTS Concordance between single-amplification testing compared to ESTA and to NGS was in the order of 80%. Concordance with NGS was higher at lower FPR cut-offs. Detection of baseline R5 viruses in RNA and DNA samples by all methods significantly correlated with treatment success, even with FPR cut-offs of 3.75%-7.5%. Triple amplification did not improve the prediction value but reduced the number of patients eligible for MVC. No influence of the GSS or MVC-resistance mutations but adherence to treatment, on the clinical outcome was detected. CONCLUSIONS Proviral DNA is valid to select candidates for MVC treatment. FPR cut-offs of 5%-7.5% and single amplification from RNA or DNA would assure a safe administration of MVC without excluding many patients who could benefit from this drug. In addition, the new prediction system T-CUP produced reliable results.
Collapse
Affiliation(s)
- Saleta Sierra
- Institute of Virology, University of Cologne, Cologne, Germany
| | - J Nikolai Dybowski
- Department for Bioinformatics, University of Duisburg-Essen, Essen, Germany
| | - Alejandro Pironti
- Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Dominik Heider
- Department for Bioinformatics, University of Duisburg-Essen, Essen, Germany
| | - Lisa Güney
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Alex Thielen
- Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Stefan Reuter
- Department of Gastroenterology, Hepatology and Infectiology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Stefan Esser
- Department of Dermatology, University of Duisburg-Essen, Essen, Germany
| | - Gerd Fätkenheuer
- First Department of Internal Medicine, University of Cologne, Cologne, Germany
| | - Thomas Lengauer
- Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Daniel Hoffmann
- Department for Bioinformatics, University of Duisburg-Essen, Essen, Germany
| | - Herbert Pfister
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Björn Jensen
- Department of Gastroenterology, Hepatology and Infectiology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Rolf Kaiser
- Institute of Virology, University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
The evolution of HIV-1 interactions with coreceptors and mannose C-type lectin receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 129:109-40. [PMID: 25595802 DOI: 10.1016/bs.pmbts.2014.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The phenotype of human immunodeficiency virus type 1 (HIV-1) commonly evolves between and within infected individuals, at virus transmission, and during disease progression. This evolution includes altered interactions between the virus and its coreceptors, i.e., chemokine receptors, as well as mannose C-type lectin receptors (CLRs). Transmitted/founder viruses are predominantly restricted to CCR5, whereas the subsequent intrapatient evolution of HIV-1 coreceptor use during progressive disease can be subdivided into two distinct pathways. Accordingly, the CCR5-restricted virus population is either gradually replaced by virus variants able to use CXCR4 or evolves toward an altered, more flexible use of CCR5. Despite a strong dependency on these coreceptors for host cell entry, HIV-1 also interacts with other cell surface molecules during target cell attachment, including the CLRs. The virus interaction with the CLRs may result either in the efficient transfer of virus to CD4(+) T cells or in the degradation of the virus in endosomal compartments. The determinants of the diverse outcomes depend on which CLR is engaged and also on the glycan makeup of the envelope glycoproteins, which may evolve with the strength of the immune pressure during the disease course. With the current clinical introduction of CCR5 antagonists and the development of additional entry inhibitors, knowledge on the evolution and baseline characteristics of HIV-1 interactions with coreceptor and CLR interactions may play important roles for individualized and optimized treatment strategies. This review summarizes our current understanding of the evolution of HIV-1 interactions with these receptors.
Collapse
|
12
|
Montagna C, De Crignis E, Bon I, Re MC, Mezzaroma I, Turriziani O, Graziosi C, Antonelli G. V3 net charge: additional tool in HIV-1 tropism prediction. AIDS Res Hum Retroviruses 2014; 30:1203-12. [PMID: 25322170 DOI: 10.1089/aid.2014.0006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genotype-based algorithms are valuable tools for the identification of patients eligible for CCR5 inhibitors administration in clinical practice. Among the available methods, geno2pheno[coreceptor] (G2P) is the most used online tool for tropism prediction. This study was conceived to assess if the combination of G2P prediction with V3 peptide net charge (NC) value could improve the accuracy of tropism prediction. A total of 172 V3 bulk sequences from 143 patients were analyzed by G2P and NC values. A phenotypic assay was performed by cloning the complete env gene and tropism determination was assessed on U87_CCR5(+)/CXCR4(+) cells. Sequences were stratified according to the agreement between NC values and G2P results. Of sequences predicted as X4 by G2P, 61% showed NC values higher than 5; similarly, 76% of sequences predicted as R5 by G2P had NC values below 4. Sequences with NC values between 4 and 5 were associated with different G2P predictions: 65% of samples were predicted as R5-tropic and 35% of sequences as X4-tropic. Sequences identified as X4 by NC value had at least one positive residue at positions known to be involved in tropism prediction and positive residues in position 32. These data supported the hypothesis that NC values between 4 and 5 could be associated with the presence of dual/mixed-tropic (DM) variants. The phenotypic assay performed on a subset of sequences confirmed the tropism prediction for concordant sequences and showed that NC values between 4 and 5 are associated with DM tropism. These results suggest that the combination of G2P and NC could increase the accuracy of tropism prediction. A more reliable identification of X4 variants would be useful for better selecting candidates for Maraviroc (MVC) administration, but also as a predictive marker in coreceptor switching, strongly associated with the phase of infection.
Collapse
Affiliation(s)
- Claudia Montagna
- Virology Section, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Elisa De Crignis
- Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Isabella Bon
- Microbiology Section, Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Bologna, Italy
| | - Maria Carla Re
- Microbiology Section, Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Bologna, Italy
| | - Ivano Mezzaroma
- Department of Clinical Medicine, Sapienza University, Rome, Italy
| | - Ombretta Turriziani
- Virology Section, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Cecilia Graziosi
- Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Guido Antonelli
- Virology Section, Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
13
|
Bon I, Turriziani O, Musumeci G, Clò A, Montagna C, Morini S, Calza L, Gibellini D, Antonelli G, Re MC. HIV-1 coreceptor usage in paired plasma RNA and proviral DNA from patients with acute and chronic infection never treated with antiretroviral therapy. J Med Virol 2014; 87:315-22. [PMID: 25138591 DOI: 10.1002/jmv.24036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2014] [Indexed: 01/28/2023]
Abstract
Although an independent evolution of viral quasispecies in different body sites might determine a differential compartmentalization of viral variants, the aim of this paper was to establish whether sequences from peripheral blood mononuclear cells (PBMCs) and plasma provide different or complementary information on HIV tropism in patients with acute or chronic infection. Tropism was predicted using genotypic testing combined with geno2pheno (coreceptor) analysis at a 10% false positive rate in paired RNA and DNA samples from 75 antiretroviral-naïve patients (divided on the basis of avidity index into patients with a recent or long-lasting infection). A high prevalence of R5 HIV strains (97%) was observed in both compartments (plasma and PBMCs) in patients infected recently. By contrast, patients with a long-lasting infection showed a quite different situation in the two compartments, revealing more (46%) X4/DM in PBMCs than patients infected recently (3%) (P = 0.008). As- a knowledge of viral strains in different biological compartments might be crucial to establish a therapeutic protocol, it could be extremely useful to detect not only viral strains in plasma, but also viruses hidden or archived in different cell compartments to better understand disease evolution and treatment efficacy in patients infected with HIV.
Collapse
Affiliation(s)
- I Bon
- Microbiology Section of the Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Quiñones-Mateu ME, Avila S, Reyes-Teran G, Martinez MA. Deep sequencing: becoming a critical tool in clinical virology. J Clin Virol 2014; 61:9-19. [PMID: 24998424 DOI: 10.1016/j.jcv.2014.06.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/12/2014] [Accepted: 06/14/2014] [Indexed: 02/07/2023]
Abstract
Population (Sanger) sequencing has been the standard method in basic and clinical DNA sequencing for almost 40 years; however, next-generation (deep) sequencing methodologies are now revolutionizing the field of genomics, and clinical virology is no exception. Deep sequencing is highly efficient, producing an enormous amount of information at low cost in a relatively short period of time. High-throughput sequencing techniques have enabled significant contributions to multiples areas in virology, including virus discovery and metagenomics (viromes), molecular epidemiology, pathogenesis, and studies of how viruses to escape the host immune system and antiviral pressures. In addition, new and more affordable deep sequencing-based assays are now being implemented in clinical laboratories. Here, we review the use of the current deep sequencing platforms in virology, focusing on three of the most studied viruses: human immunodeficiency virus (HIV), hepatitis C virus (HCV), and influenza virus.
Collapse
Affiliation(s)
- Miguel E Quiñones-Mateu
- University Hospital Translational Laboratory, University Hospitals Case Medical Center, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Santiago Avila
- Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico; Centro de Investigaciones en Enfermedades Infecciosas, Mexico City, Mexico
| | - Gustavo Reyes-Teran
- Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico; Centro de Investigaciones en Enfermedades Infecciosas, Mexico City, Mexico
| | - Miguel A Martinez
- Fundació irsicaixa, Universitat Autònoma de Barcelona, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
15
|
Deyati A, Sanam RD, Guggilla SR, Pidugu VR, Novac N. Molecular biomarkers in clinical development: what could we learn from the clinical trial registry? Per Med 2014; 11:381-393. [DOI: 10.2217/pme.14.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aim: Objective of this research is to assess whether the trend of stratified medicine widely discussed in scientific literature is translated into real clinical trials registered in ClinicalTrials.gov . Methods: By semi-automatic screening of over 150,000 trials, we filtered trials with stratified biomarker to analyze their therapeutic focus, major drivers and elucidated the impact of stratified biomarker programs on trial duration and completion. Results: >5% of trials are using molecular biomarker for stratification; duration of such trials is longer. 21% of them are done in late stages and Oncology is the major focus. Conclusion: Trials with stratified biomarker in drug development has quadrupled in last decade but represents a small part of all interventional trials reflecting multiple co-developmental challenges of therapeutic compounds and companion diagnostics.
Collapse
Affiliation(s)
- Avisek Deyati
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53754 Sankt Augustin, Germany
| | | | | | | | - Natalia Novac
- Merck Serono, 250 Frankfurter Strasse, 64293, Darmstadt, Germany
| |
Collapse
|
16
|
Sollerkvist LP, Gaseitsiwe S, Mine M, Sebetso G, Mphoyakgosi T, Diphoko T, Essex M, Ehrnst A. Increased CXCR4 use of HIV-1 subtype C identified by population sequencing in patients failing antiretroviral treatment compared with treatment-naive patients in Botswana. AIDS Res Hum Retroviruses 2014; 30:436-45. [PMID: 24205895 DOI: 10.1089/aid.2013.0203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
HIV-1 uses the coreceptors CCR5 and/or CXCR4 for cell entry. Monotropic CCR5-using variants are found early in the infection while CXCR4-using variants may appear after progression to AIDS. CXCR4 use may consist of both monotropic and dualtropic viruses. The viral phenotype is important in evaluating the response to CCR5 inhibitors, a new class of antiviral drugs. The coreceptor use of HIV-1 was investigated using population sequencing in 24 patients from Botswana, carrying HIV-1 subtype C and failing antiretroviral treatment, while 26 treatment-naive patients acted as controls. Single genome sequencing was used to discern minor HIV-1 populations in the treatment-experienced group. The Geno2Pheno method was employed to predict the coreceptor use phenotype from HIV-1 env gp120 V3 DNA sequences. The glycan-charge model adjusted for subtype C was also used for phenotype prediction. The viral phenotype of population sequences was predicted using Geno2Pheno in 24/24 treatment-experienced patients, of whom eight (33%) were predicted to harbor CXCR4-using strains as compared to 2/26 in the treatment-naive group (p=0.03). Single genome sequencing generated 4-23 clones/patient in the treatment-experienced group. Altogether, 90/295 (31%) putative CXCR4-using clones were identified. In 10/24 (42%) treated patients at least one clone was predicted to be CXCR4-using, further increasing the amount of identified treatment-experienced patients with CXCR4 use. Although subtype C is usually associated with comparatively little CXCR4 use, the frequency of CXCR4 use in treatment-experienced patients with subtype C can be higher, which may have implications for the administration of CCR5 inhibitors in this patient group.
Collapse
Affiliation(s)
| | - Simani Gaseitsiwe
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
- Botswana-Harvard School of Public Health AIDS Initiative Partnership for HIV Research and Education, Gaborone, Botswana
| | - Madisa Mine
- Ministry of Health, Botswana Harvard HIV Reference Laboratory, Gaborone, Botswana
| | - Gaseene Sebetso
- Ministry of Health, Botswana Harvard HIV Reference Laboratory, Gaborone, Botswana
| | | | - Thabo Diphoko
- Botswana-Harvard School of Public Health AIDS Initiative Partnership for HIV Research and Education, Gaborone, Botswana
| | - Max Essex
- Botswana-Harvard School of Public Health AIDS Initiative Partnership for HIV Research and Education, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, and the Harvard School of Public Health AIDS Initiative, Harvard School of Public Health, Boston, Massachusetts
| | - Anneka Ehrnst
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Hernández-Novoa B, Madrid-Elena N, Dronda F, Pérez-Elias MJ, Casado JL, Pérez-Molina JA, Moreno A, Estébanez M, González J, Zamora J, Moreno S. Virological response to short-course maraviroc monotherapy does not predict viral tropism in HIV-1-infected treatment-naive patients. J Antimicrob Chemother 2014; 69:1916-9. [PMID: 24623833 DOI: 10.1093/jac/dku059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES We aimed to evaluate whether virological response to a short course of maraviroc monotherapy could predict HIV-1 tropism. METHODS A clinical trial was performed in HIV-1 treatment-naive patients infected with R5- or non-R5-tropic virus determined using the Trofile(®) assay, with >1000 HIV-1 RNA copies/mL. Maraviroc was administered for 10 days. Viral load was measured at baseline and days 4, 7, 10 and 28. The main outcome measurement was the decline in HIV-1 RNA at day 10. The trial was registered in the ClinicalTrials.gov database (NCT01060618; TROPISMVC). RESULTS Forty patients [30 R5 and 10 dual/mixed (D/M)] were recruited. There was a significant decrease in HIV-1 RNA after 10 days of maraviroc treatment in patients with R5-tropic virus (median 1.52 log10 RNA copies/mL; 95% CI 1.23-1.63; P < 0.0001), but also in patients with D/M-tropic virus (median 1.62 log(10) RNA copies/mL; 95% CI 0.33-1.88; P = 0.00024). The difference in the HIV-1 RNA decrease (-0.16 log(10) RNA copies/mL; 95% CI -0.53 to 0.22) was not significant (P = 0.410). A decrease >0.5 log(10) RNA copies/mL was found in 96.3% of patients with R5-tropic virus and in 70% of patients with D/M-tropic virus (P = 0.052). The differences were not significant when a decline of 1 log(10) RNA copies/mL was considered (92.6% versus 70%; P = 0.11). CONCLUSIONS Treatment-naive patients infected with R5- or D/M-tropic virus have similar virological responses to a short course of maraviroc monotherapy. This clinical test thus cannot be used as a surrogate marker of viral tropism in this population.
Collapse
Affiliation(s)
| | - Nadia Madrid-Elena
- Infectious Diseases, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain
| | - Fernando Dronda
- Infectious Diseases, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain
| | - María J Pérez-Elias
- Infectious Diseases, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain
| | - José L Casado
- Infectious Diseases, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain
| | - José A Pérez-Molina
- Infectious Diseases, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain
| | - Ana Moreno
- Infectious Diseases, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain
| | | | - Juan González
- HIV Unit, Hospital Universitario La Paz-IdiPaz, Madrid, Spain
| | - Javier Zamora
- Clinical Biostatistics Unit and CIBER ESP, Hospital Ramón y Cajal-IRYCIS, Madrid, Spain
| | - Santiago Moreno
- Infectious Diseases, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain
| |
Collapse
|
18
|
Next-Generation Sequencing to Help Monitor Patients Infected with HIV: Ready for Clinical Use? Curr Infect Dis Rep 2014; 16:401. [DOI: 10.1007/s11908-014-0401-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Sensitive deep-sequencing-based HIV-1 genotyping assay to simultaneously determine susceptibility to protease, reverse transcriptase, integrase, and maturation inhibitors, as well as HIV-1 coreceptor tropism. Antimicrob Agents Chemother 2014; 58:2167-85. [PMID: 24468782 DOI: 10.1128/aac.02710-13] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
With 29 individual antiretroviral drugs available from six classes that are approved for the treatment of HIV-1 infection, a combination of different phenotypic and genotypic tests is currently needed to monitor HIV-infected individuals. In this study, we developed a novel HIV-1 genotypic assay based on deep sequencing (DeepGen HIV) to simultaneously assess HIV-1 susceptibilities to all drugs targeting the three viral enzymes and to predict HIV-1 coreceptor tropism. Patient-derived gag-p2/NCp7/p1/p6/pol-PR/RT/IN- and env-C2V3 PCR products were sequenced using the Ion Torrent Personal Genome Machine. Reads spanning the 3' end of the Gag, protease (PR), reverse transcriptase (RT), integrase (IN), and V3 regions were extracted, truncated, translated, and assembled for genotype and HIV-1 coreceptor tropism determination. DeepGen HIV consistently detected both minority drug-resistant viruses and non-R5 HIV-1 variants from clinical specimens with viral loads of ≥1,000 copies/ml and from B and non-B subtypes. Additional mutations associated with resistance to PR, RT, and IN inhibitors, previously undetected by standard (Sanger) population sequencing, were reliably identified at frequencies as low as 1%. DeepGen HIV results correlated with phenotypic (original Trofile, 92%; enhanced-sensitivity Trofile assay [ESTA], 80%; TROCAI, 81%; and VeriTrop, 80%) and genotypic (population sequencing/Geno2Pheno with a 10% false-positive rate [FPR], 84%) HIV-1 tropism test results. DeepGen HIV (83%) and Trofile (85%) showed similar concordances with the clinical response following an 8-day course of maraviroc monotherapy (MCT). In summary, this novel all-inclusive HIV-1 genotypic and coreceptor tropism assay, based on deep sequencing of the PR, RT, IN, and V3 regions, permits simultaneous multiplex detection of low-level drug-resistant and/or non-R5 viruses in up to 96 clinical samples. This comprehensive test, the first of its class, will be instrumental in the development of new antiretroviral drugs and, more importantly, will aid in the treatment and management of HIV-infected individuals.
Collapse
|
20
|
Meini G, Rossetti B, Bianco C, Ceccherini-Silberstein F, Di Giambenedetto S, Sighinolfi L, Monno L, Castagna A, Rozera G, D'Arminio Monforte A, Zazzi M, De Luca A. Longitudinal analysis of HIV-1 coreceptor tropism by single and triplicate HIV-1 RNA and DNA sequencing in patients undergoing successful first-line antiretroviral therapy. J Antimicrob Chemother 2013; 69:735-41. [PMID: 24155059 PMCID: PMC3954119 DOI: 10.1093/jac/dkt426] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Objectives Maraviroc has been shown to be effective in patients harbouring CCR5-tropic HIV-1. While this CCR5 antagonist has initially been used in salvage therapy, its excellent safety profile makes it ideal for antiretroviral treatment simplification strategies in patients with suppressed plasma viraemia. The aim of this study was to compare HIV-1 tropism as detected in baseline plasma RNA and peripheral blood mononuclear cell (PBMC) DNA prior to first-line therapy and to analyse tropism evolution while on successful treatment. Methods HIV-1 tropism was determined using triplicate genotypic testing combined with geno2pheno[coreceptor] analysis at a 10% false positive rate in 42 patients. Paired pre-treatment plasma RNA and PBMC DNA and two subsequent PBMC DNA samples (the first obtained after reaching undetectable plasma HIV-1 RNA and the second after at least 2 years of suppression of plasma viraemia) were evaluated. Results Coreceptor tropism was completely concordant in paired pre-treatment RNA and DNA, with 26.2% of HIV-1 sequences predicted to be non-CCR5-tropic. During follow-up, coreceptor tropism switches were detected in 4 (9.5%) patients without any preferential direction. Although false positive rate discrepancies within triplicates were common, the rate of discordance of coreceptor tropism assignment among triplicate results in this mostly CCR5-tropic dataset was only 2.1%, questioning the added value of triplicate testing compared with single testing. Conclusions HIV-1 coreceptor tropism changes during virologically successful first-line treatment are infrequent. HIV-1 DNA analysis may thus support the choice of a CCR5 antagonist in treatment switch strategies; however, maraviroc treatment outcome data are required to confirm this option.
Collapse
Affiliation(s)
- Genny Meini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Svicher V, Alteri C, Montano M, Nori A, D'Arrigo R, Andreoni M, Angarano G, Antinori A, Antonelli G, Allice T, Bagnarelli P, Baldanti F, Bertoli A, Borderi M, Boeri E, Bon I, Bruzzone B, Barresi R, Calderisi S, Callegaro AP, Capobianchi MR, Gargiulo F, Castelli F, Cauda R, Ceccherini-Silberstein F, Clementi M, Chirianni A, Colafigli M, D'Arminio Monforte A, De Luca A, Di Biagio A, Di Nicuolo G, Di Perri G, Di Santo F, Fadda G, Galli M, Gennari W, Ghisetti V, Costantini A, Gori A, Gulminetti R, Leoncini F, Maffongelli G, Maggiolo F, Maserati R, Mazzotta F, Meini G, Micheli V, Monno L, Mussini C, Nozza S, Paolucci S, Palù G, Parisi S, Parruti G, Pignataro AR, Quirino T, Re MC, Rizzardini G, Sanguinetti M, Santangelo R, Scaggiante R, Sterrantino G, Turriziani O, Vatteroni ML, Viscoli C, Vullo V, Zazzi M, Lazzarin A, Perno CF. Genotypic testing on HIV-1 DNA as a tool to assess HIV-1 co-receptor usage in clinical practice: results from the DIVA study group. Infection 2013; 42:61-71. [PMID: 24146352 PMCID: PMC3906530 DOI: 10.1007/s15010-013-0510-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 07/16/2013] [Indexed: 11/29/2022]
Abstract
PURPOSE We have developed a sequencing assay for determining the usage of the genotypic HIV-1 co-receptor using peripheral blood mononuclear cell (PBMC) DNA in virologically suppressed HIV-1 infected patients. Our specific aims were to (1) evaluate the efficiency of V3 sequences in B versus non-B subtypes, (2) compare the efficiency of V3 sequences and tropism prediction using whole blood and PBMCs for DNA extraction, (3) compare the efficiency of V3 sequences and tropism prediction using a single versus a triplicate round of amplification. RESULTS The overall rate of successful V3 sequences ranged from 100 % in samples with >3,000 copies HIV-1 DNA/10(6) PBMCs to 60 % in samples with <100 copies total HIV-1 DNA /10(6) PBMCs. Analysis of 143 paired PBMCs and whole-blood samples showed successful V3 sequences rates of 77.6 % for PBMCs and 83.9 % for whole blood. These rates are in agreement with the tropism prediction obtained using the geno2pheno co-receptor algorithm, namely, 92.1 % with a false-positive rate (FPR) of 10 or 20 % and of 96.5 % with an FPR of 5.75 %. The agreement between tropism prediction values using single versus triplicate amplification was 98.2 % (56/57) of patients using an FPR of 20 % and 92.9 % (53/57) using an FPR of 10 or 5.75 %. For 63.0 % (36/57) of patients, the FPR obtained via the single amplification procedure was superimposable to all three FPRs obtained by triplicate amplification. CONCLUSIONS Our results show the feasibility and consistency of genotypic testing on HIV-1 DNA tropism, supporting its possible use for selecting patients with suppressed plasma HIV-1 RNA as candidates for CCR5-antagonist treatment. The high agreement between tropism prediction by single and triple amplification does not support the use of triplicate amplification in clinical practice.
Collapse
Affiliation(s)
- V Svicher
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Genotypic analysis of the V3 region of HIV from virologic nonresponders to maraviroc-containing regimens reveals distinct patterns of failure. Antimicrob Agents Chemother 2013; 57:6122-30. [PMID: 24080655 DOI: 10.1128/aac.01534-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Changes in HIV tropism from R5 to non-R5 or development of drug resistance is often associated with virologic failure in patients treated with maraviroc, a CCR5 antagonist. We sought to examine changes in HIV envelope sequences and inferred tropism in patients who did not respond to maraviroc-based regimens. We selected 181 patients who experienced early virologic failure on maraviroc-containing therapy in the MOTIVATE trials. All patients had R5 HIV by the original Trofile assay before entry. We used population-based sequencing methods and the geno2pheno algorithm to examine changes in tropism and V3 sequences at the time of failure. Using deep sequencing, we assessed whether V3 sequences observed at failure emerged from preexisting subpopulations. From population genotyping data at failure, 90 patients had R5 results, and 91 had non-R5 results. Of the latter group, the geno2pheno false-positive rate (FPR) value fell from a median of 20 at screening to 1.1 at failure. By deep sequencing, the median percentage of non-R5 variants in these patients rose from 1.4% to 99.5% after a median of 4 weeks on maraviroc. In 70% of cases, deep sequencing could detect a pretreatment CXCR4-using subpopulation, which emerged at failure. Overall, there were two distinct patterns of failure of maraviroc. Patients failing with R5 generally had few V3 substitutions and low non-R5 prevalence by deep sequencing. Patients with non-R5 HIV who were failing developed very-high-prevalence non-R5 HIV (median, 99%) and had very low geno2pheno values.
Collapse
|
23
|
Pérez-Álvarez L, Delgado E, Vega Y, Montero V, Cuevas T, Fernández-García A, García-Riart B, Pérez-Castro S, Rodríguez-Real R, López-Álvarez MJ, Fernández-Rodríguez R, Lezaun MJ, Ordóñez P, Ramos C, Bereciartua E, Calleja S, Sánchez-García AM, Thomson MM. Predominance of CXCR4 tropism in HIV-1 CRF14_BG strains from newly diagnosed infections. J Antimicrob Chemother 2013; 69:246-53. [PMID: 23900735 DOI: 10.1093/jac/dkt305] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES R5-tropic viruses are associated with HIV-1 transmission and predominate during the early stages of infection. X4-tropic populations have been detected in ~50% of patients with late-stage disease infected with subtype B viruses. In this study, we compared the frequency of X4 tropism in individuals infected with HIV-1 CRF14_BG viruses, which have a V3 loop of subtype B, with a control group of individuals infected with subtype B viruses. METHODS Sixty-three individuals infected with HIV-1 CRF14_BG (n = 31) or subtype B (n = 32) were studied. Similar proportions of newly diagnosed and chronically infected individuals were included in the subtype B and CRF14_BG groups. V3 sequences were obtained and coreceptor tropism was predicted using the Geno2pheno[coreceptor] algorithm. V3 net charge and 11/25 rules were also used for coreceptor prediction. RESULTS Overall, X4 tropism was more frequent among individuals infected with CRF14_BG viruses (87.1%) than subtype B viruses (34.3%), a difference that was statistically highly significant (P = 0.00001). Importantly, the frequencies among newly diagnosed individuals were 90% and 13.3%, respectively (P = 0.0007). Characteristic amino acids in the V3 loop (T13, M14, V19 and W20) were identified at higher frequencies in CRF14_BG viruses (54%) than subtype B viruses (0%; P < 0.000001). CONCLUSIONS CRF14_BG is the genetic form with the highest proportion of X4-tropic viruses reported to date in newly diagnosed and chronic infections. This suggests high pathogenicity for CRF14_BG viruses, potentially leading to rapid disease progression. CCR5 antagonists will be ineffective in most CRF14_BG-infected patients, even at early stages of infection.
Collapse
Affiliation(s)
- Lucía Pérez-Álvarez
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
We compared the coreceptor tropism-predicting performance of a specific genotypic algorithm for HIV-1 subtype D and that of the geno2pheno algorithm with different cutoffs. The D-specific algorithm and geno2pheno with a false-positivity rate cutoff of 2.5% had the same concordance with the phenotypic determination. The geno2pheno algorithm with a false-positivity rate cutoff of 2.5%, more sensitive but slightly less specific, seems to be an appropriate alternative.
Collapse
|
25
|
Sensitive cell-based assay for determination of human immunodeficiency virus type 1 coreceptor tropism. J Clin Microbiol 2013; 51:1517-27. [PMID: 23486708 DOI: 10.1128/jcm.00092-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CCR5 antagonists are a powerful new class of antiretroviral drugs that require a companion assay to evaluate the presence of CXCR4-tropic (non-R5) viruses prior to use in human immunodeficiency virus (HIV)-infected individuals. In this study, we have developed, characterized, verified, and prevalidated a novel phenotypic test to determine HIV-1 coreceptor tropism (VERITROP) based on a sensitive cell-to-cell fusion assay. A proprietary vector was constructed containing a near-full-length HIV-1 genome with the yeast uracil biosynthesis (URA3) gene replacing the HIV-1 env coding sequence. Patient-derived HIV-1 PCR products were introduced by homologous recombination using an innovative yeast-based cloning strategy. The env-expressing vectors were then used in a cell-to-cell fusion assay to determine the presence of R5 and/or non-R5 HIV-1 variants within the viral population. Results were compared with (i) the original version of Trofile (Monogram Biosciences, San Francisco, CA), (ii) population sequencing, and (iii) 454 pyrosequencing, with the genotypic data analyzed using several bioinformatics tools, i.e., the 11/24/25 rule, Geno2Pheno (2% to 5.75%, 3.5%, or 10% false-positive rate [FPR]), and webPSSM. VERITROP consistently detected minority non-R5 variants from clinical specimens, with an analytical sensitivity of 0.3%, with viral loads of ≥1,000 copies/ml, and from B and non-B subtypes. In a pilot study, a 73.7% (56/76) concordance was observed with the original Trofile assay, with 19 of the 20 discordant results corresponding to non-R5 variants detected using VERITROP and not by the original Trofile assay. The degree of concordance of VERITROP and Trofile with population and deep sequencing results depended on the algorithm used to determine HIV-1 coreceptor tropism. Overall, VERITROP showed better concordance with deep sequencing/Geno2Pheno at a 0.3% detection threshold (67%), whereas Trofile matched better with population sequencing (79%). However, 454 sequencing using Geno2Pheno at a 10% FPR and 0.3% threshold and VERITROP more accurately predicted the success of a maraviroc-based regimen. In conclusion, VERITROP may promote the development of new HIV coreceptor antagonists and aid in the treatment and management of HIV-infected individuals prior to and/or during treatment with this class of drugs.
Collapse
|
26
|
Bonjoch A, Pou C, Pérez-Álvarez N, Bellido R, Casadellà M, Puig J, Noguera-Julian M, Clotet B, Negredo E, Paredes R. Switching the third drug of antiretroviral therapy to maraviroc in aviraemic subjects: a pilot, prospective, randomized clinical trial. J Antimicrob Chemother 2013; 68:1382-7. [PMID: 23354282 DOI: 10.1093/jac/dks539] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Anna Bonjoch
- HIV Unit & Fundació Lluita contra la SIDA, Hospital Universitari Germans Trias i Pujol, Barcelona, Catalonia, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|