1
|
Bacchi B, Stefanini A, Mandoli GE, Lorusso F, Toto G, Pastore MC, Cabrucci F, Bonacchi M, Cameli M, Bisleri G. Right Ventricle Function: The Role of the Forgotten Chamber in Mitral Valve Surgery. Curr Cardiol Rep 2025; 27:13. [PMID: 39786499 DOI: 10.1007/s11886-024-02151-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Referred to as the "forgotten chamber," the right ventricle (RV) is now widely acknowledged as a significant factor, particularly in certain cardiovascular pathologies. Despite historically being undervalued in comparison to the left ventricle, the RV function is deemed crucial in determining patient outcomes following mitral valve (MV) surgery. In the context of MV surgery, it is important to note that the RV is highly susceptible to dysfunction before, during, and after the surgical procedure. This vulnerability is also partly compounded by a lack of precise preoperative assessment, appropriate intraoperative management, and sufficient postoperative care for the RV. Moreover, it is notable that the current preoperative risk-score evaluation does not encompass considerations for the RV. OBSERVATIONS Sophisticated assessment methodologies, including echocardiography, cardiac magnetic resonance imaging, and invasive hemodynamic procedures, play a pivotal role in accurately evaluating the RV function in patients undergoing MV surgery. These methodologies offer invaluable insights into the extent of RV dysfunction both pre- and postoperatively. By furnishing precise measurements of RV performance, these techniques contribute to risk stratification, guide perioperative management, and may enhance surgical outcomes. Their integration into routine clinical practice is essential for optimizing patient care in the context of MV surgery. CONCLUSIONS This review highlights the importance of evaluating the RV before surgery, ensuring proper perioperative care, and utilizing advanced imaging to monitor RV function in order to predict the outcomes. The goal is to enhance surgical outcomes by thoroughly assessing and supporting RV function during the surgical process.
Collapse
Affiliation(s)
- Beatrice Bacchi
- Division of Cardiac Surgery, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
- F.U. Clinical and Experimental Medicine, University of Florence, Firenze, Italy
| | - Andrea Stefanini
- Department of Cardiovascular Diseases, University of Siena, Siena, Italy
| | | | - Federica Lorusso
- F.U. Clinical and Experimental Medicine, University of Florence, Firenze, Italy
- Department of Cardiovascular Diseases, University of Siena, Siena, Italy
| | - Gianmarco Toto
- F.U. Clinical and Experimental Medicine, University of Florence, Firenze, Italy
- Department of Cardiovascular Diseases, University of Siena, Siena, Italy
| | | | - Francesco Cabrucci
- F.U. Clinical and Experimental Medicine, University of Florence, Firenze, Italy
- Department of Cardiac Surgery Research, Lankenau Institute for Medical Research, Main Line Health, Wynnewood, PA, USA
| | - Massimo Bonacchi
- F.U. Clinical and Experimental Medicine, University of Florence, Firenze, Italy
| | - Matteo Cameli
- Department of Cardiovascular Diseases, University of Siena, Siena, Italy
| | - Gianluigi Bisleri
- Division of Cardiac Surgery, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Mattei A, Strumia A, Benedetto M, Nenna A, Schiavoni L, Barbato R, Mastroianni C, Giacinto O, Lusini M, Chello M, Carassiti M. Perioperative Right Ventricular Dysfunction and Abnormalities of the Tricuspid Valve Apparatus in Patients Undergoing Cardiac Surgery. J Clin Med 2023; 12:7152. [PMID: 38002763 PMCID: PMC10672350 DOI: 10.3390/jcm12227152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Right ventricular (RV) dysfunction frequently occurs after cardiac surgery and is linked to adverse postoperative outcomes, including mortality, reintubation, stroke, and prolonged ICU stays. While various criteria using echocardiography and hemodynamic parameters have been proposed, a consensus remains elusive. Distinctive RV anatomical features include its thin wall, which presents a triangular shape in a lateral view and a crescent shape in a cross-sectional view. Principal causes of RV dysfunction after cardiac surgery encompass ischemic reperfusion injury, prolonged ischemic time, choice of cardioplegia and its administration, cardiopulmonary bypass weaning characteristics, and preoperative risk factors. Post-left ventricular assist device (LVAD) implantation RV dysfunction is common but often transient, with a favorable prognosis upon resolution. There is an ongoing debate regarding the benefits of concomitant surgical repair of the RV in the presence of regurgitation. According to the literature, the gold standard techniques for assessing RV function are cardiac magnetic resonance imaging and hemodynamic assessment using thermodilution. Echocardiography is widely favored for perioperative RV function evaluation due to its accessibility, reproducibility, non-invasiveness, and cost-effectiveness. Although other techniques exist for RV function assessment, they are less common in clinical practice. Clinical management strategies focus on early detection and include intravenous drugs (inotropes and vasodilators), inhalation drugs (pulmonary vasodilators), ventilator strategies, volume management, and mechanical support. Bridging research gaps in this field is crucial to improving clinical outcomes associated with RV dysfunction in the near future.
Collapse
Affiliation(s)
- Alessia Mattei
- Anesthesia and Intensive Care Operative Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy; (A.M.); (A.S.); (L.S.)
| | - Alessandro Strumia
- Anesthesia and Intensive Care Operative Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy; (A.M.); (A.S.); (L.S.)
| | - Maria Benedetto
- Cardio-Thoracic and Vascular Anesthesia and Intesive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40123 Bologna, Italy;
| | - Antonio Nenna
- Cardiac Surgery Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Lorenzo Schiavoni
- Anesthesia and Intensive Care Operative Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy; (A.M.); (A.S.); (L.S.)
| | - Raffaele Barbato
- Cardiac Surgery Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Ciro Mastroianni
- Cardiac Surgery Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Omar Giacinto
- Cardiac Surgery Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Mario Lusini
- Cardiac Surgery Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Massimo Chello
- Cardiac Surgery Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Massimiliano Carassiti
- Anesthesia and Intensive Care Operative Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy; (A.M.); (A.S.); (L.S.)
- Anesthesia and Intensive Care Research Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| |
Collapse
|
3
|
Longitudinal Validation of Right Ventricular Pressure Monitoring for the Assessment of Right Ventricular Systolic Dysfunction in a Large Animal Ischemic Model. Crit Care Explor 2023; 5:e0847. [PMID: 36699251 PMCID: PMC9851694 DOI: 10.1097/cce.0000000000000847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Right ventricular (RV) dysfunction is a major cause of morbidity and mortality in intensive care and cardiac surgery. Early detection of RV dysfunction may be facilitated by continuous monitoring of RV waveform obtained from a pulmonary artery catheter. The objective is to evaluate the extent to which RV pressure monitoring can detect changes in RV systolic performance assess by RV end-systolic elastance (Ees) following the development of an acute RV ischemic in a porcine model. HYPOTHESIS RV pressure monitoring can detect changes in RV systolic performance assess by RV Ees following the development of an acute RV ischemic model. METHODS AND MODELS Acute ischemic RV dysfunction was induced by progressive embolization of microsphere in the right coronary artery to mimic RV dysfunction clinically experienced during cardiopulmonary bypass separation caused by air microemboli. RV hemodynamic performance was assessed using RV pressure waveform-derived parameters and RV Ees obtained using a conductance catheter during inferior vena cava occlusions. RESULTS Acute ischemia resulted in a significant reduction in RV Ees from 0.26 mm Hg/mL (interquartile range, 0.16-0.32 mm Hg/mL) to 0.14 mm Hg/mL (0.11-0.19 mm Hg/mL; p < 0.010), cardiac output from 6.3 L/min (5.7-7 L/min) to 4.5 (3.9-5.2 L/min; p = 0.007), mean systemic arterial pressure from 72 mm Hg (66-74 mm Hg) to 51 mm Hg (46-56 mm Hg; p < 0.001), and mixed venous oxygen saturation from 65% (57-72%) to 41% (35-45%; p < 0.001). Linear mixed-effect model analysis was used to assess the relationship between Ees and RV pressure-derived parameters. The reduction in RV Ees best correlated with a reduction in RV maximum first derivative of pressure during isovolumetric contraction (dP/dtmax) and single-beat RV Ees. Adjusting RV dP/dtmax for heart rate resulted in an improved surrogate of RV Ees. INTERPRETATION AND CONCLUSIONS Stepwise decreases in RV Ees during acute ischemic RV dysfunction were accurately tracked by RV dP/dtmax derived from the RV pressure waveform.
Collapse
|
4
|
Richter MJ, Hsu S, Yogeswaran A, Husain-Syed F, Vadász I, Ghofrani HA, Naeije R, Harth S, Grimminger F, Seeger W, Gall H, Tedford RJ, Tello K. Right ventricular pressure-volume loop shape and systolic pressure change in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2021; 320:L715-L725. [PMID: 33655769 DOI: 10.1152/ajplung.00583.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Right ventricular (RV) function determines outcome in pulmonary arterial hypertension (PAH). RV pressure-volume loops, the gold standard for measuring RV function, are difficult to analyze. Our aim was to investigate whether simple assessments of RV pressure-volume loop morphology and RV systolic pressure differential reflect PAH severity and RV function. We analyzed multibeat RV pressure-volume loops (obtained by conductance catheterization with preload reduction) in 77 patients with PAH and 15 patients without pulmonary hypertension in two centers. Patients were categorized according to their pressure-volume loop shape (triangular, quadratic, trapezoid, or notched). RV systolic pressure differential was defined as end-systolic minus beginning-systolic pressure (ESP - BSP), augmentation index as ESP - BSP/pulse pressure, pulmonary arterial capacitance (PAC) as stroke volume/pulse pressure, and RV-arterial coupling as end-systolic/arterial elastance (Ees/Ea). Trapezoid and notched pressure-volume loops were associated with the highest afterload (Ea), augmentation index, pulmonary vascular resistance (PVR), mean pulmonary arterial pressure, stroke work, B-type natriuretic peptide, and the lowest Ees/Ea and PAC. Multivariate linear regression identified Ea, PVR, and stroke work as the main determinants of ESP - BSP. ESP - BSP also significantly correlated with multibeat Ees/Ea (Spearman's ρ: -0.518, P < 0.001). A separate retrospective analysis of 113 patients with PAH showed that ESP - BSP obtained by routine right heart catheterization significantly correlated with a noninvasive surrogate of RV-arterial coupling (tricuspid annular plane systolic excursion/pulmonary arterial systolic pressure ratio; ρ: -0.376, P < 0.001). In conclusion, pressure-volume loop shape and RV systolic pressure differential predominately depend on afterload and PAH severity and reflect RV-arterial coupling in PAH.
Collapse
Affiliation(s)
- Manuel J Richter
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | - Steven Hsu
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Athiththan Yogeswaran
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | - Faeq Husain-Syed
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | - István Vadász
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | - Hossein A Ghofrani
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany.,Department of Pneumology, Kerckhoff Heart, Rheuma and Thoracic Center, Bad Nauheim, Germany.,Department of Medicine, Imperial College London, London, United Kingdom
| | | | - Sebastian Harth
- Department of Radiology, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany.,Institute for Lung Health, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | - Werner Seeger
- Institute for Lung Health, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | - Henning Gall
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | - Ryan J Tedford
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Khodr Tello
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
5
|
Gufler H, Wagner S, Niefeldt S, Klopsch C, Brill R, Wohlgemuth WA, Yerebakan C. Levels of agreement between cardiac magnetic resonance and conductance catheter measurements of right ventricular volumes after pulmonary artery banding. Acta Radiol 2020; 61:894-902. [PMID: 31752497 DOI: 10.1177/0284185119886318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pressure-volume analysis is the gold standard for quantifying pump function of the right ventricle (RV); however, volume measurements based on a conductive catheter may be imprecise. The reference method for volume assessment is cardiac magnetic resonance (CMR). PURPOSE To determine the levels of agreement between RV volume measurements obtained by cine CMR, phase-contrast CMR (PC CMR), and a conductance catheter in an animal model. MATERIAL AND METHODS CMR was performed in 20 sheep three months after pulmonary artery banding. Ejection fraction (EF), end-diastolic (EDV), end-systolic (ESV), and stroke volumes (SV) were obtained by cine CMR and conductance catheter. RESULTS Statistically significant differences between cine CMR and conductance catheter derived volume measurements were found for EDV (P < 0.001), ESV (P < 0.05), and SV (P < 0.05). Bland-Altman analysis showed very poor agreement between the two methods: EDV, bias 36.27 mL, agreement of limits 1.96-70.57 mL; ESV, bias 15.33 mL, agreement of limits -6.89-37.55 mL; and SV, bias 20.69 mL, agreement of limits 8.01-49.10 mL. Good agreement was found for SV between cine CMR and PC CMR (bias -7.0 mL, agreement of limits -24.01-9.98 mL), while SV derived from PC CMR measurements showed poor agreement with conductance catheter (bias 27.76 mL, agreement of limits -3.84-59.26 mL). CONCLUSION Poor agreement between the conductance catheter and CMR RV volume measurements was found. PC CMR and cine CMR measurements of SV agreed well.
Collapse
Affiliation(s)
- Hubert Gufler
- Department of Diagnostic and Interventional Radiology, University Clinic, Rostock, Germany
- Clinic and Policlinic of Diagnostic Radiology, Martin-Luther University Halle-Wittenberg, 01620, Germany
| | - Sabine Wagner
- Department of Diagnostic and Interventional Radiology, University Clinic, Rostock, Germany
| | - Sabine Niefeldt
- Department of Cardiac Surgery, University Clinic, Rostock, Germany*Equal contributors
| | - Christian Klopsch
- Department of Cardiac Surgery, University Clinic, Rostock, Germany*Equal contributors
| | - Richard Brill
- Clinic and Policlinic of Diagnostic Radiology, Martin-Luther University Halle-Wittenberg, 01620, Germany
| | | | - Can Yerebakan
- Department of Cardiac Surgery, University Clinic, Rostock, Germany*Equal contributors
| |
Collapse
|
6
|
Vandenheuvel M, Bouchez S, Wouters P, Mauermann E. Assessing Right Ventricular Function in the Perioperative Setting, Part II: What About Catheters? Anesthesiol Clin 2019; 37:697-712. [PMID: 31677686 DOI: 10.1016/j.anclin.2019.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An-depth assessment of right ventricular function is important in a many perioperative settings. After exploring 2-dimensional echo-based evaluation, other proposed monitoring modalities are discussed. Pressure-based methods of right ventricular appraisal is discussed. Flow-based assessment is reviewed. An overview of the state of current right ventricular 3-dimensional echocardiography and its potential to construct clinical pressure-volume loops in conjunction with pressure measurements is provided. An overview of right ventricular assessment modalities that do not rely on 2-dimensional echocardiography is discussed. Tailored selection of monitoring modalities can be of great benefit for the perioperative physician. Integrating modalities offers optimal estimations of right ventricular function.
Collapse
Affiliation(s)
- Michael Vandenheuvel
- Department of Anesthesiology and Perioperative Medicine, Ghent University Hospital, C. Heymanslaan 10, Ghent 9000, Belgium
| | - Stefaan Bouchez
- Department of Anesthesiology and Perioperative Medicine, Ghent University Hospital, C. Heymanslaan 10, Ghent 9000, Belgium
| | - Patrick Wouters
- Department of Anesthesiology and Perioperative Medicine, Ghent University Hospital, C. Heymanslaan 10, Ghent 9000, Belgium
| | - Eckhard Mauermann
- Department of Anesthesiology and Perioperative Medicine, Ghent University Hospital, C. Heymanslaan 10, Ghent 9000, Belgium; Department for Anesthesia, Surgical Intensive Care, Prehospital Emergency Medicine and Pain Therapy, Basel University Hospital, Spitalstrasse 21, Basel 4031, Switzerland.
| |
Collapse
|
7
|
Tello K, Gall H, Richter M, Ghofrani A, Schermuly R. Right ventricular function in pulmonary (arterial) hypertension. Herz 2019; 44:509-516. [PMID: 31101945 DOI: 10.1007/s00059-019-4815-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The right ventricle (RV) is the main determinant of prognosis in pulmonary hypertension. Adaptation and maladaptation of the RV are of crucial importance. In the course of disease, RV contractility increases through changes in muscle properties and muscle hypertrophy. At a certain point, the point of "uncoupling," the afterload exceeds contractility, and maladaptation as well as dilation occurs to maintain stroke volume (SV). To understand the adaptational processes and to further develop targeted medication directly affecting load-independent contractility, an accurate and precise assessment of contractility and RV-pulmonary artery (PA) coupling should be performed. In this review, we shed light on existing methods to assess RV function, including the gold standard measurement of contractility and RV-PA coupling, and we evaluate existing surrogates of RV-PA coupling.
Collapse
Affiliation(s)
- K Tello
- Department of Internal Medicine, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Gießen, Klinikstraße 32, 35392, Gießen, Germany.
| | - H Gall
- Department of Internal Medicine, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Gießen, Klinikstraße 32, 35392, Gießen, Germany
| | - M Richter
- Department of Internal Medicine, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Gießen, Klinikstraße 32, 35392, Gießen, Germany
| | - A Ghofrani
- Department of Internal Medicine, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Gießen, Klinikstraße 32, 35392, Gießen, Germany
| | - R Schermuly
- Department of Internal Medicine, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Gießen, Klinikstraße 32, 35392, Gießen, Germany
| |
Collapse
|
8
|
McCall P, Soosay A, Kinsella J, Sonecki P, Shelley B. The utility of transthoracic echocardiographic measures of right ventricular systolic function in a lung resection cohort. Echo Res Pract 2019; 6:7-15. [PMID: 30550376 PMCID: PMC6330688 DOI: 10.1530/erp-18-0067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/12/2018] [Indexed: 11/08/2022] Open
Abstract
Right ventricular (RV) dysfunction occurs following lung resection and is associated with post-operative complications and long-term functional morbidity. Accurate peri-operative assessment of RV function would have utility in this population. The difficulties of transthoracic echocardiographic (TTE) assessment of RV function may be compounded following lung resection surgery, and no parameters have been validated in this patient group. This study compares conventional TTE methods for assessing RV systolic function to a reference method in a lung resection population. Right ventricular index of myocardial performance (RIMP), fractional area change (FAC), tricuspid annular plane systolic excursion (TAPSE) and S′ wave velocity at the tricuspid annulus (S′), along with speckle tracked global and free wall longitudinal strain (RV-GPLS and RV-FWPLS respectively) are compared with RV ejection fraction obtained by cardiovascular magnetic resonance (RVEFCMR). Twenty-seven patients undergoing lung resection underwent contemporaneous CMR and TTE imaging; pre-operatively, on post-operative day two and at 2 months. Ability of each of the parameters to predict RV dysfunction (RVEFCMR <45%) was assessed using the area under the receiver operating characteristic curve (AUROCC). RIMP, FAC and S′ demonstrated no predictive value for poor RV function (AUROCC <0.61, P > 0.05). TAPSE performed marginally better with an AUROCC of 0.65 (P = 0.04). RV-GPLS and RV-FWPLS demonstrated good predictive ability with AUROCC’s of 0.74 and 0.76 respectively (P < 0.01 for both). This study demonstrates that the conventional TTE parameters of RV systolic function are inadequate following lung resection. Longitudinal strain performs better and offers some ability to determine poor RV function in this challenging population.
Collapse
Affiliation(s)
- Philip McCall
- Golden Jubilee National Hospital, Clydebank, UK.,University of Glasgow Academic Unit of Anaesthesia, Pain and Critical Care Medicine, Glasgow, UK
| | - Alvin Soosay
- Golden Jubilee National Hospital, Clydebank, UK.,University of Glasgow Academic Unit of Anaesthesia, Pain and Critical Care Medicine, Glasgow, UK
| | - John Kinsella
- University of Glasgow Academic Unit of Anaesthesia, Pain and Critical Care Medicine, Glasgow, UK
| | | | - Ben Shelley
- Golden Jubilee National Hospital, Clydebank, UK.,University of Glasgow Academic Unit of Anaesthesia, Pain and Critical Care Medicine, Glasgow, UK
| |
Collapse
|
9
|
|
10
|
Three-Dimensional Echocardiography for the Assessment of Right Ventriculo-Arterial Coupling. J Am Soc Echocardiogr 2018; 31:905-915. [PMID: 29958760 DOI: 10.1016/j.echo.2018.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND The analysis of right ventriculo-arterial coupling (RVAC) from pressure-volume loops is not routinely performed. RVAC may be approached by the combination of right heart catheterization (RHC) pressure data and cardiac magnetic resonance (CMR)-derived right ventricular (RV) volumetric data. RV pressure and volume measurements by Doppler and three-dimensional echocardiography (3DE) allows another way to approach RVAC. METHODS Ninety patients suspected of having pulmonary hypertension underwent RHC, 3DE, and CMR (RHC mean pulmonary artery pressure [mPAP] 37.9 ± 11.3 mm Hg; range, 15-66 mm Hg). Three-dimensional (3D) echocardiography was performed in 30 normal patients (echocardiographic mPAP 18.4 ± 3.1 mm Hg). Pulmonary artery (PA) effective elastance (Ea), RV maximal end-systolic elastance (Emax), and RVAC (PA Ea/RV Emax) were calculated from RHC combined with CMR and from 3DE using simplified formulas including mPAP, stroke volume, and end-systolic volume. RESULTS Three-dimensional echocardiographic and RHC-CMR measures for PA Ea (3DE, 1.27 ± 0.94; RHC-CMR, 0.71 ± 0.52; r = 0.806, P < .001), RV Emax (3DE, 0.72 ± 0.37; RHC-CMR, 0.38 ± 0.19; r = 0.798, P < .001), and RVAC (3DE, 2.01 ± 1.28; RHC-CMR, 2.32 ± 1.77; r = 0.826, P < .001) were well correlated despite a systematic overestimation of 3DE elastance parameters. Among the whole population, 3D echocardiographic PA Ea and 3D echocardiographic RVAC but not 3D echocardiographic RV Emax were significantly lower in patients with mPAP < 25 mm Hg (n = 41) than in others (n = 79). Among the 90 patients who underwent RHC, 3D echocardiographic PA Ea and 3D echocardiographic RVAC but not 3D echocardiographic RV Emax increased significantly with increasing levels of pulmonary vascular resistance. CONCLUSIONS Three-dimensional echocardiography-derived PA Ea, RV Emax, and RVAC correlated well with the reference RHC-CMR measurements. Ea and RVAC but not Emax were significantly different between patients with different levels of afterload, suggesting failure of the right ventricle to maintain coupling in severe pulmonary hypertension.
Collapse
|