1
|
Di Gioia G, Vespasiano F, Maestrini V, Monosilio S, Segreti A, Lemme E, Squeo MR, Serdoz A, Pelliccia A. Determinants of supraventricular extra beats in elite athletes practicing different sporting disciplines. J Cardiovasc Med (Hagerstown) 2024; 25:731-739. [PMID: 39225077 DOI: 10.2459/jcm.0000000000001657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND Supraventricular extra beats (SVEB) are frequently observed in athletes but data on significance, prognostic role and correlation with cardiac remodeling are contrasting. It is uncertain whether SVEB may indicate the development of more complex arrhythmias and the need for closer monitoring is undetermined. The aim was to assess the prevalence and clinical significance of BESV in Olympic athletes of different sporting disciplines, evaluating potential correlations with cardiac remodeling and clinical features. METHODS We enrolled athletes who participated at 2012-2022 Olympic Games, submitted to physical examination, blood tests, echocardiography and exercise tests, categorized into power, skills, endurance and mixed disciplines. RESULTS We studied 1492 elite athletes: 56% male individuals, mean age 25.8 ± 5.1 years; 29.5% practiced power, 12.3% skills, 21% endurance and 37.2% mixed disciplines. At exercise-stress tests, 6.2% had SVEB, mostly single beats. SVEB were not influenced by anthropometrics or blood test results. They were more common in male individuals (77.4 vs. 54.6%, P < 0.0001) and older athletes (27.1 ± 5.7 vs. 25.7 ± 5.1, P = 0.01). In male athletes with SVEB, higher left atrial volumes were observed (24.2 ± 7.3 vs. 22.2 ± 7.1 ml/m2, P = 0.03). No differences were found in terms of sporting discipline: despite larger left atrial dimensions in aerobic disciplines, SVEB rates were similar in different sporting disciplines (6.1% endurance, 6.3% mixed, 5.2% power and 8.7% skills; P = 0.435). CONCLUSION SVEB were more common in older, male athletes and associated with higher left atrial volume (especially in male individuals) regardless of sport practiced. Athletes with greater left atrial volume and SVEB are supposed to have higher risk, in middle age, of developing more complex arrhythmias.
Collapse
Affiliation(s)
- Giuseppe Di Gioia
- Institute of Sports Medicine and Science, National Italian Olympic Committee, Largo Piero Gabrielli
- Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Piazza Lauro De Bosis
| | - Francesca Vespasiano
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo
| | - Viviana Maestrini
- Institute of Sports Medicine and Science, National Italian Olympic Committee, Largo Piero Gabrielli
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Piazzale Aldo Moro, Rome, Italy
| | - Sara Monosilio
- Institute of Sports Medicine and Science, National Italian Olympic Committee, Largo Piero Gabrielli
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Piazzale Aldo Moro, Rome, Italy
| | - Andrea Segreti
- Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Piazza Lauro De Bosis
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo
| | - Erika Lemme
- Institute of Sports Medicine and Science, National Italian Olympic Committee, Largo Piero Gabrielli
| | - Maria Rosaria Squeo
- Institute of Sports Medicine and Science, National Italian Olympic Committee, Largo Piero Gabrielli
| | - Andrea Serdoz
- Institute of Sports Medicine and Science, National Italian Olympic Committee, Largo Piero Gabrielli
| | - Antonio Pelliccia
- Institute of Sports Medicine and Science, National Italian Olympic Committee, Largo Piero Gabrielli
| |
Collapse
|
2
|
Zeppilli P, Biffi A, Cammarano M, Castelletti S, Cavarretta E, Cecchi F, Colivicchi F, Contursi M, Corrado D, D'Andrea A, Deferrari F, Delise P, Dello Russo A, Gabrielli D, Giada F, Indolfi C, Maestrini V, Mascia G, Mos L, Oliva F, Palamà Z, Palermi S, Palmieri V, Patrizi G, Pelliccia A, Perrone Filardi P, Porto I, Schwartz PJ, Scorcu M, Sollazzo F, Spampinato A, Verzeletti A, Zorzi A, D'Ascenzi F, Casasco M, Sciarra L. Italian Cardiological Guidelines (COCIS) for Competitive Sport Eligibility in athletes with heart disease: update 2024. Minerva Med 2024; 115:533-564. [PMID: 39435618 DOI: 10.23736/s0026-4806.24.09519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Nearly 35 years after its initial publication in 1989, the Italian Society of Sports Cardiology and the Italian Federation of Sports Medicine (FMSI), in collaboration with other leading Italian Cardiological Scientific Associations (ANCE - National Association of Outpatient Cardiology, ANMCO - National Association of Inpatient Cardiology, SIC - Italian Society of Cardiology), proudly present the 2023 version of the Cardiological Guidelines for Competitive Sports Eligibility. This publication is an update of the previous guidelines, offering a comprehensive and detailed guide for the participation of athletes with heart disease in sports. This edition incorporates the latest advances in cardiology and sports medicine, providing current information and recommendations. It addresses various topics, including the details of the pre-participation screening in Italy and recommendations for sports eligibility and disqualification in competitive athletes with various heart conditions. This revised version of the Cardiological Guidelines for Competitive Sports Eligibility, recorded in the Italian Guidelines Registry of the Italian Minister of Health, stands as a crucial resource for sports medicine professionals, cardiologists, and healthcare providers, marked by its completeness, reliability, and scientific thoroughness. It is an indispensable tool for those involved in the care, management and eligibility process of competitive athletes with heart conditions.
Collapse
Affiliation(s)
- Paolo Zeppilli
- Unit of Sports Medicine, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Alessandro Biffi
- Med-Ex, Medicine and Exercise srl, Medical Partner Scuderia Ferrari, Rome, Italy
| | - Michela Cammarano
- Unit of Sports Medicine, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Silvia Castelletti
- Department of Cardiology, IRCSS Istituto Auxologico Italiano, Milan, Italy
| | - Elena Cavarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Advanced Cardiovascular Therapies Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Franco Cecchi
- Cardiomyopathy Unit and Genetic Unit, Careggi University Hospital, Florence, Italy
| | - Furio Colivicchi
- Department of Clinical and Rehabilitation Cardiology, Ospedale San Filippo Neri, Rome, Italy
| | - Maurizio Contursi
- Centro Polispecialistico Check-up, Cardiologia dello Sport, Salerno, Italy
| | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Antonello D'Andrea
- Department of Cardiology, Umberto I Hospital, Nocera Inferiore, Salerno, Italy
| | | | - Pietro Delise
- Unit of Cardiology, P. Pederzoli Hospital, Peschiera del Garda, Verona, Italy
- Medical Center, Poliambulatorio di Mestre, Venice, Italy
- Medical Center, Poliambulatorio di Conegliano, Treviso, Italy
| | - Antonio Dello Russo
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Domenico Gabrielli
- Division of Cardiology, Azienda Ospedaliera San Camillo-Forlanini, Rome, Italy
| | - Franco Giada
- Unit of Sports Medicine and Cardiovascular Rehabilitation, Cardiovascular Department, PF Calvi Hospital, Venice, Italy
| | - Ciro Indolfi
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Viviana Maestrini
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University, Rome, Italy
- Institute of Sports Medicine and Science, National Italian Olympic Committee, Rome, Italy
| | - Giuseppe Mascia
- Dipartimento CardioToracoVascolare, Clinica delle Malattie Cardiovascolari, Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Lucio Mos
- San Antonio Hospital, San Daniele del Friuli, Udine, Italy
| | - Fabrizio Oliva
- De Gasperis Cardio Center, Niguarda Hospital, Milan, Italy
| | - Zefferino Palamà
- De Gasperis Cardio Center, Niguarda Hospital, Milan, Italy
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Unit of Cardiology, Casa di Cura Villa Verde, Taranto, Italy
| | - Stefano Palermi
- Public Health Department, University of Naples Federico II, Naples, Italy
| | - Vincenzo Palmieri
- Unit of Sports Medicine, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | | | - Antonio Pelliccia
- Institute of Sports Medicine and Science, National Italian Olympic Committee, Rome, Italy
| | | | - Italo Porto
- Dipartimento CardioToracoVascolare, Clinica delle Malattie Cardiovascolari, Ospedale Policlinico San Martino IRCCS, Genoa, Italy
- Unità di Cardiologia, Dipartimento di Medicina Interna e Specialità Mediche - DiMi, Università di Genova, Genoa, Italy
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Marco Scorcu
- Federazione Medico Sportiva Italiana (FMSI), Rome, Italy
| | - Fabrizio Sollazzo
- Unit of Sports Medicine, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | | | - Andrea Verzeletti
- Department of Medical and Surgical Specialities, University of Brescia, Brescia, Italy
| | - Alessandro Zorzi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Flavio D'Ascenzi
- Department of Medical Biotechnologies, Sports Cardiology and Rehab Unit, University of Siena, Siena, Italy -
| | - Maurizio Casasco
- Federazione Medico Sportiva Italiana (FMSI), Rome, Italy
- European Federation of Sport Medicine Association (EFSMA), Lausanne, Switzerland
| | - Luigi Sciarra
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
3
|
Kell DB, Lip GYH, Pretorius E. Fibrinaloid Microclots and Atrial Fibrillation. Biomedicines 2024; 12:891. [PMID: 38672245 PMCID: PMC11048249 DOI: 10.3390/biomedicines12040891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Atrial fibrillation (AF) is a comorbidity of a variety of other chronic, inflammatory diseases for which fibrinaloid microclots are a known accompaniment (and in some cases, a cause, with a mechanistic basis). Clots are, of course, a well-known consequence of atrial fibrillation. We here ask the question whether the fibrinaloid microclots seen in plasma or serum may in fact also be a cause of (or contributor to) the development of AF. We consider known 'risk factors' for AF, and in particular, exogenous stimuli such as infection and air pollution by particulates, both of which are known to cause AF. The external accompaniments of both bacterial (lipopolysaccharide and lipoteichoic acids) and viral (SARS-CoV-2 spike protein) infections are known to stimulate fibrinaloid microclots when added in vitro, and fibrinaloid microclots, as with other amyloid proteins, can be cytotoxic, both by inducing hypoxia/reperfusion and by other means. Strokes and thromboembolisms are also common consequences of AF. Consequently, taking a systems approach, we review the considerable evidence in detail, which leads us to suggest that it is likely that microclots may well have an aetiological role in the development of AF. This has significant mechanistic and therapeutic implications.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool L7 8TX, UK;
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
4
|
Delise P, Mos L, Sciarra L, Basso C, Biffi A, Cecchi F, Colivicchi F, Corrado D, D'Andrea A, Di Cesare E, Di Lenarda A, Gervasi S, Giada F, Guiducci V, Inama G, Leoni L, Palamà Z, Patrizi G, Pelliccia A, Penco M, Robles AG, Romano S, Romeo F, Sarto P, Sarubbi B, Sinagra G, Zeppilli P. Italian Cardiological Guidelines (COCIS) for Competitive Sport Eligibility in athletes with heart disease: update 2020. J Cardiovasc Med (Hagerstown) 2021; 22:874-891. [PMID: 33882535 DOI: 10.2459/jcm.0000000000001186] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Since 1989, SIC Sport and a FMSI, in partnership with leading Italian Cardiological Scientific Associations (ANCE, ANMCO and SIC) have produced Cardiological Guidelines for Completive Sports Eligibility for athletes with heart disease (COCIS -- 1989, 1995, 2003, 2009 and 2017). The English version of the Italian Cardiological Guidelines for Competitive Sports Eligibility for athletes with heart disease was published in 2013 in this Journal. This publication is an update with respect to the document previously published in English in 2013. It includes the principal innovations that have emerged over recent years, and is divided into five main chapters: arrhythmias, ion channel disorders, congenital heart diseases, acquired valve diseases, cardiomyopathies, myocarditis and pericarditis and ischemic heart disease. Wherever no new data have been introduced with respect to the 2013 publication, please refer to the previous version. This document is intended to complement recent European and American guidelines but an important difference should be noted. The European and American guidelines indicate good practice for people engaging in physical activity at various levels, not only at the competitive level. In contrast, the COCIS guidelines refer specifically to competitive athletes in various sports including those with high cardiovascular stress. This explains why Italian guidelines are more restrictive than European and USA ones. COCIS guidelines address 'sports doctors' who, in Italy, must certify fitness to participate in competitive sports. In Italy, this certificate is essential for participating in any competition.
Collapse
Affiliation(s)
- Pietro Delise
- Division of Cardiology, Hospital 'P. Pederzoli', Peschiera del Garda, VR
| | - Lucio Mos
- San Antonio Hospital, San Daniele del Friuli, UD
| | | | - Cristina Basso
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padua
| | | | - Franco Cecchi
- Referral Center for Cardiomyopathies, Careggi University Hospital, Florence
| | | | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padua
| | - Antonello D'Andrea
- Department of Cardiothoracic Sciences, Monaldi Hospital, Second University of Naples, Naples
| | - Ernesto Di Cesare
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila
| | | | - Salvatore Gervasi
- Sports Medicine Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome
| | - Franco Giada
- Sports Medicine and Cardiovascular Rehabilitation Unit, Cardiovascular Department, PF Calvi Hospital, Noale, Venice
| | - Vincenzo Guiducci
- Interventional Cardiology Unit, S. Maria Nuova Hospital, Reggio Emilia
| | | | - Loira Leoni
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padua
| | | | | | | | - Maria Penco
- Cardiology, Department of Life, Health and Environmental Sciences|, University of L'Aquila, L'Aquila
| | | | - Silvio Romano
- Cardiology, Department of Life, Health and Environmental Sciences|, University of L'Aquila, L'Aquila
| | - Francesco Romeo
- Department of Cardiology, University of Rome 'Tor Vergata', Rome
| | | | - Berardo Sarubbi
- Unit of Grown-up Congenital Heart Disease, Monaldi Hospital, Naples
| | - Gianfranco Sinagra
- Cardiovascular Department, Azienda Sanitaria Universitaria Integrata, University of Trieste (ASUITS), Trieste, Italy
| | - Paolo Zeppilli
- Sports Medicine Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome
| |
Collapse
|
5
|
Androulakis E, Swoboda PP. The Role of Cardiovascular Magnetic Resonance in Sports Cardiology; Current Utility and Future Perspectives. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2018; 20:86. [PMID: 30167977 PMCID: PMC6132733 DOI: 10.1007/s11936-018-0679-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Purpose of review Cardiovascular magnetic resonance (CMR) is frequently used in the investigation of suspected cardiac disease in athletes. In this review, we discuss how CMR can be used in athletes with suspected cardiomyopathy with particular reference to volumetric analysis and tissue characterization. We also discuss the finding of non-ischaemic fibrosis in athletes describing its prevalence, distribution and clinical importance. Recent findings The strengths of CMR include high spatial resolution, unrestricted imaging planes and lack of ionizing radiation. Regular physical exercise leads to cardiac remodeling that in certain situations can be clinically challenging to differentiate from various cardiomyopathies. Thorough morphological assessment by CMR is fundamental to ensuring accurate diagnosis. Developments in tissue characterization by late gadolinium enhancement and T1 mapping have the potential to be powerful additional tools in this challenging clinical situation. Using late gadolinium enhancement, it is also possible to detect non-ischaemic fibrosis in athletes who do not have overt cardiomyopathy. The mechanisms of this fibrosis are unclear; however, it does appear to be clinically important. We also review data on the prevalence of non-ischaemic fibrosis in athletes. Summary CMR is a powerful tool to aid in the diagnosis of cardiomyopathy in athletes. It may also have a future role in assessing fibrosis related to long-term participation in sport.
Collapse
Affiliation(s)
| | - Peter P Swoboda
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK.
| |
Collapse
|
6
|
Abstract
Clinicians should discuss common health issues of the older population and how medical problems affect their sports performance. Patients with chronic conditions, such as hypertension and diabetes mellitus, benefit from participation in sports. However, special care should be taken to keep the patient healthy and minimize effects of these conditions and their treatments in athletic performance. Another important consideration in the older athlete is fluid ingestion and the increased risk of dehydration. There is evidence that physical exercise reduces pain in osteoarthritis and enhances physical function of affected joints. Older athletes often use multiple medications and dietary supplements; Clinicians should educate patients about possible effects of medications in sports performance.
Collapse
Affiliation(s)
- David A Soto-Quijano
- Physical Medicine and Rehabilitation Residency Program, VA Caribbean Healthcare System, 10 Casia Street (117), San Juan, PR 00921, USA.
| |
Collapse
|
7
|
Chen YY, Sun ZW, Jiang JP, Kang XD, Wang LL, Shen YL, Xie XD, Zheng LR. α-adrenoceptor-mediated enhanced inducibility of atrial fibrillation in a canine system inflammation model. Mol Med Rep 2017; 15:3767-3774. [PMID: 28440455 DOI: 10.3892/mmr.2017.6477] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 02/23/2017] [Indexed: 11/06/2022] Open
Abstract
The exact mechanism associated with inflammation and atrial fibrillation (AF) remains unknown. The aim of the present study was to investigate the roles of connexin 43 (Cx43) and a1‑adrenergic receptor (α1‑AR) activation in the pathogenesis of system inflammation‑induced AF. A canine model of chronic low‑grade system inflammation was established by administrating a low dose of lipopolysaccharide (LPS; 0.1 µg/kg) for 2 weeks. Programmed stimulation was applied on the right atrial appendage to determine the effective refractory periods (ERP) and the window of vulnerability (WOV). Tumor necrosis factor α (TNF‑α) and interleukin 6 (IL‑6) levels in plasma and atrial tissue were measured by ELISA. Cx43, Toll‑like receptor 4 (TLR4) and nuclear factor κB (NF‑κB) proteins were analyzed using western blotting or immunohistochemistry. Administration of LPS for 2 weeks increased the concentration of TNF‑α and IL‑6 in the plasma and right atrium. ERP was markedly shortened and cumulative WOV was significantly widened in the LPS group. Following treatment with LPS, the amount of Cx43 protein in the area of intercalated disk increased. In addition, a high‑density of Cx43 in the lateral connection was identified. LPS also induced the activation of NF‑κB in the canine atrium. Administration with the α1‑AR blocker doxazosin prevented the production of LPS‑induced inflammatory cytokine and reversed the enhanced vulnerability to atrial fibrillation. Doxazosin inhibited the LPS‑induced increase in Cx43 protein and heterogeneous distribution, and prevented the activation of NF‑κB. These results indicated that chronic low‑grade system inflammation may increase the inducibility of AF in a canine model. The underlying mechanism may be involved in the LPS‑induced activation of NF‑κB, and the increase in Cx43 expression and lateral distribution via an α1-AR-dependent pathway.
Collapse
Affiliation(s)
- Ying-Ying Chen
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Ze-Wei Sun
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Jian-Ping Jiang
- Department of Clinical Medicine, Zhejiang Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Xiao-Dong Kang
- Experimental Animal Center, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Lin-Lin Wang
- Center for Stem Cell and Tissue Engineering, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Yue-Liang Shen
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Xu-Dong Xie
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Liang-Rong Zheng
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
8
|
The role of the autonomic nervous system in arrhythmias and sudden cardiac death. Auton Neurosci 2017; 205:1-11. [PMID: 28392310 DOI: 10.1016/j.autneu.2017.03.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 03/11/2017] [Accepted: 03/28/2017] [Indexed: 12/16/2022]
Abstract
The autonomic nervous system (ANS) is complex and plays an important role in cardiac arrhythmia pathogenesis. A deeper understanding of the anatomy and development of the ANS has shed light on its involvement in cardiac arrhythmias. Alterations in levels of Sema-3a and NGF, both growth factors involved in innervation patterning during development of the ANS, leads to cardiac arrhythmias. Dysregulation of the ANS, including polymorphisms in genes involved in ANS development, have been implicated in sudden infant death syndrome. Disruptions in the sympathetic and/or parasympathetic systems of the ANS can lead to cardiac arrhythmias and can vary depending on the type of arrhythmia. Simultaneous stimulation of both the sympathetic and parasympathetic systems is thought to lead to atrial fibrillation whereas increased sympathetic stimulation is thought to lead to ventricular fibrillation or ventricular tachycardia. In inherited arrhythmia syndromes, such as Long QT and Catecholaminergic Polymorphic Ventricular Tachycardia, sympathetic system stimulation is thought to lead to ventricular tachycardia, subsequent arrhythmias, and in severe cases, cardiac death. On the other hand, arrhythmic events in Brugada Syndrome have been associated with periods of high parasympathetic tone. Increasing evidence suggests that modulation of the ANS as a therapeutic strategy in the treatment of cardiac arrhythmias is safe and effective. Further studies investigating the involvement of the ANS in arrhythmia pathogenesis and its modulation for the treatment of cardiac arrhythmias is warranted.
Collapse
|
9
|
Affiliation(s)
- Matthew P.M. Graham-Brown
- From the Department of Cardiovascular Sciences, University of Leicester and the NIHR Leicester Cardiovascular BRU, Glenfield Hospital, Leicester, United Kingdom (M.P.M., G.P.M.); and the School of Sport, Exercise, and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, United Kingdom (M.P.M.)
| | - Gerry P. McCann
- From the Department of Cardiovascular Sciences, University of Leicester and the NIHR Leicester Cardiovascular BRU, Glenfield Hospital, Leicester, United Kingdom (M.P.M., G.P.M.); and the School of Sport, Exercise, and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, United Kingdom (M.P.M.)
| |
Collapse
|