1
|
Akki R, Siracusa R, Cordaro M, Remigante A, Morabito R, Errami M, Marino A. Adaptation to oxidative stress at cellular and tissue level. Arch Physiol Biochem 2022; 128:521-531. [PMID: 31835914 DOI: 10.1080/13813455.2019.1702059] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several in vitro and in vivo investigations have already proved that cells and tissues, when pre-exposed to low oxidative stress by different stimuli such as chemical, physical agents and environmental factors, display more resistance against subsequent stronger ischaemic injuries, resulting in an adaptive response known as ischaemic preconditioning (IPC). The aim of this review is to report the most recent knowledge about the complex adaptive mechanisms, including signalling transduction pathways, antioxidant systems, apoptotic and inflammation pathways, underlying cell protection against oxidative damage. In addition, an update about in vivo adaptation strategies in response to ischaemic/reperfusion episodes and brain trauma is also given.
Collapse
Affiliation(s)
- Rachid Akki
- Department of Biology, Faculty of Science, University of Abdelmalek Essaadi, Tetouan, Morocco
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Mohammed Errami
- Department of Biology, Faculty of Science, University of Abdelmalek Essaadi, Tetouan, Morocco
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
2
|
Hypothermia Prevents Retinal Damage Generated by Optic Nerve Trauma in the Rat. Sci Rep 2017; 7:6966. [PMID: 28761115 PMCID: PMC5537267 DOI: 10.1038/s41598-017-07294-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/26/2017] [Indexed: 11/11/2022] Open
Abstract
Ocular and periocular traumatisms may result in loss of vision. Hypothermia provides a beneficial intervention for brain and heart conditions and, here, we study whether hypothermia can prevent retinal damage caused by traumatic neuropathy. Intraorbital optic nerve crush (IONC) or sham manipulation was applied to male rats. Some animals were subjected to hypothermia (8 °C) for 3 h following surgery. Thirty days later, animals were subjected to electroretinography and behavioral tests. IONC treatment resulted in amplitude reduction of the b-wave and oscillatory potentials of the electroretinogram, whereas the hypothermic treatment significantly (p < 0.05) reversed this process. Using a descending method of limits in a two-choice visual task apparatus, we demonstrated that hypothermia significantly (p < 0.001) preserved visual acuity. Furthermore, IONC-treated rats had a lower (p < 0.0001) number of retinal ganglion cells and a higher (p < 0.0001) number of TUNEL-positive cells than sham-operated controls. These numbers were significantly (p < 0.0001) corrected by hypothermic treatment. There was a significant (p < 0.001) increase of RNA-binding motif protein 3 (RBM3) and of BCL2 (p < 0.01) mRNA expression in the eyes exposed to hypothermia. In conclusion, hypothermia constitutes an efficacious treatment for traumatic vision-impairing conditions, and the cold-shock protein pathway may be involved in mediating the beneficial effects shown in the retina.
Collapse
|
3
|
Abstract
Background Spinal cord injury (SCI) is a neurological condition which paralyses the patient below the level of injury and could occur due to damage, infection and tumors. Presently, there is no cure for SCI. The treatment options used for SCI include corticosteroid (methylprednisolone sodium succinate), surgical interventions, and physiotherapy and lowering of body temperature. The research on treatment options for SCI has been shifted to cell-based therapies. Use of human embryonic stem cells (hESCs) have been explored in animal models in which these cells have been found to hold a potential to repair and regenerate. Purpose We wanted to assess the safety and efficacy of hESCs in the treatment of patients with spinal cord injury. Methods Five patients who were either paraplegic or quadriplegic were treated with hESC therapy. Results Following the treatment, all patients showed significant improvement in their sitting balance, control and sensation of bowel and bladder, power and movement of limbs (lower limbs and upper limbs). No adverse events were reported. Conclusion In conclusion, hESC is safe and effective therapy for SCI.
Collapse
|
4
|
Hessel EA. Therapeutic hypothermia after in-hospital cardiac arrest: a critique. J Cardiothorac Vasc Anesth 2014; 28:789-99. [PMID: 24751488 DOI: 10.1053/j.jvca.2014.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Indexed: 02/08/2023]
Abstract
More than 210,000 in-hospital cardiac arrests occur annually in the United States. Use of moderate therapeutic hypothermia (TH) in comatose survivors after return of spontaneous circulation following out-of-hospital cardiac arrest (OOH-CA) caused by ventricular fibrillation or pulseless ventricular tachycardia is recommended strongly by many professional organizations and societies. The use of TH after cardiac arrest associated with nonshockable rhythms and after in-hospital cardiac arrest (IH-CA) is recommended to be considered by these same organizations and is being applied widely. The use in these latter circumstances is based on an extrapolation of the data supporting its use after out-of-hospital cardiac arrest associated with shockable rhythms. The purpose of this article is to review the limitations of existing data supporting these extended application of TH after cardiac arrest and to suggest approaches to this dilemma. The data supporting its use for OOH-CA appear to this author, and to some others, to be rather weak, and the data supporting the use of TH for IH-CA appear to be even weaker and to include no randomized controlled trials (RCTs) or supportive observational studies. The many reasons why TH might be expected to be less effective following IH-CA are reviewed. The degree of neurologic injury may be more severe in many of these cases and, thus, may not be responsive to TH as currently practiced following OOH-CA. The potential adverse consequences of the routine use of TH for IH-CA are listed and include complications associated with TH, interference with diagnostic and interventional therapy, and use of scarce personnel and financial resources. Most importantly, it inhibits the ability of researchers to conduct needed RCTs. The author believes that the proper method of providing TH in these cases needs to be better defined. Based on this analysis the author concludes that TH should not be used indiscriminantly following most cases of IH-CA, and instead clinicians should concentrate their efforts in conducting high-quality large RCTs or large-scale, well-designed prospective observation studies to determine its benefits and identify appropriate candidates.
Collapse
Affiliation(s)
- Eugene A Hessel
- Department of Anesthesiology, Surgery (Cardiothoracic), Neurosurgery, and Pediatrics, University of Kentucky College of Medicine, Lexington, KY.
| |
Collapse
|
5
|
Stetler RA, Leak RK, Gan Y, Li P, Zhang F, Hu X, Jing Z, Chen J, Zigmond MJ, Gao Y. Preconditioning provides neuroprotection in models of CNS disease: paradigms and clinical significance. Prog Neurobiol 2014; 114:58-83. [PMID: 24389580 PMCID: PMC3937258 DOI: 10.1016/j.pneurobio.2013.11.005] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 12/14/2022]
Abstract
Preconditioning is a phenomenon in which brief episodes of a sublethal insult induce robust protection against subsequent lethal injuries. Preconditioning has been observed in multiple organisms and can occur in the brain as well as other tissues. Extensive animal studies suggest that the brain can be preconditioned to resist acute injuries, such as ischemic stroke, neonatal hypoxia/ischemia, surgical brain injury, trauma, and agents that are used in models of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. Effective preconditioning stimuli are numerous and diverse, ranging from transient ischemia, hypoxia, hyperbaric oxygen, hypothermia and hyperthermia, to exposure to neurotoxins and pharmacological agents. The phenomenon of "cross-tolerance," in which a sublethal stress protects against a different type of injury, suggests that different preconditioning stimuli may confer protection against a wide range of injuries. Research conducted over the past few decades indicates that brain preconditioning is complex, involving multiple effectors such as metabolic inhibition, activation of extra- and intracellular defense mechanisms, a shift in the neuronal excitatory/inhibitory balance, and reduction in inflammatory sequelae. An improved understanding of brain preconditioning should help us identify innovative therapeutic strategies that prevent or at least reduce neuronal damage in susceptible patients. In this review, we focus on the experimental evidence of preconditioning in the brain and systematically survey the models used to develop paradigms for neuroprotection, and then discuss the clinical potential of brain preconditioning.
Collapse
Affiliation(s)
- R Anne Stetler
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Yu Gan
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Peiying Li
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Feng Zhang
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Xiaoming Hu
- Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Zheng Jing
- Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Jun Chen
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Michael J Zigmond
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China.
| |
Collapse
|
6
|
Li N, Tian L, Wu W, Lu H, Zhou Y, Xu X, Zhang X, Cheng H, Zhang L. Regional hypothermia inhibits spinal cord somatosensory-evoked potentials without neural damage in uninjured rats. J Neurotrauma 2013; 30:1325-33. [PMID: 22916828 DOI: 10.1089/neu.2012.2516] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Both the therapeutic effects of regional hypothermia (RH) and somatosensory-evoked potentials (SSEP) have been intensively studied; however, the in vivo relationship between the two remains unknown. The primary focus of the current study was to investigate the impact of RH on SSEP in uninjured rats, as well as the neural safety of RH on neuronal health. An epidural perfusion model was used to keep local temperature steady by adjusting perfusion speed at 30°C, 26°C, 22°C, and 18°C for 30 min, respectively. Total hypothermic duration lasted up to 3 h. Neural signals were recorded at the end of each hypothermic period, as well as before cooling and after spontaneous rewarming. In addition, the Basso, Beattie, and Bresnahan (BBB) Locomotor Rating Scale was used to evaluate the effects of RH pre- and post-operative, combined with hematoxylin and eosin (H&E) and Fluoro-Jade C (FJC) staining. The results showed a marked declining trend in SSEP amplitude, as well as a significant prolongation in latency only during profound hypothermia (18°C). The BBB scale remained consistent at 21 throughout the entire process, signifying that no motor function injury was caused by RH. In addition, H&E and FJC staining did not show obvious histological injury. These findings firmly support the conclusion that RH, specifically profound RH, inhibits spinal cord SSEP in both amplitude and latency without neural damage in uninjured rats.
Collapse
Affiliation(s)
- Ning Li
- Department of Neurosurgery, School of Medicine, Second Military Medical University (Shanghai) , Jinling Hospital, Nanjing, Jiangsu Province, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Meier J, Gombotz H. Pillar III – Optimisation of anaemia tolerance. Best Pract Res Clin Anaesthesiol 2013; 27:111-9. [DOI: 10.1016/j.bpa.2013.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/28/2013] [Accepted: 02/13/2013] [Indexed: 10/27/2022]
|
8
|
Lenkin AI, Zaharov VI, Lenkin PI, Smetkin AA, Bjertnaes LJ, Kirov MY. Normothermic cardiopulmonary bypass increases cerebral tissue oxygenation during combined valve surgery: a single-centre, randomized trial. Interact Cardiovasc Thorac Surg 2013; 16:595-601. [PMID: 23407696 DOI: 10.1093/icvts/ivt016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES In cardiac surgery, the choice of temperature regimen during cardiopulmonary bypass (CPB) remains a subject of debate. Hypothermia reduces tissue metabolic demands, but may impair the autoregulation of cerebral blood flow and contribute to neurological morbidity. The aim of this study was to evaluate the effect of two different temperature regimens during CPB on the systemic oxygen transport and the cerebral oxygenation during surgical correction of acquired heart diseases. METHODS In a prospective study, we randomized 40 adult patients with combined valvular disorders requiring surgical correction of two or more valves into two groups: (i) a normothermic (NMTH) group (n = 20), in which the body core temperature was maintained at 36.6°C during CPB and (ii) a hypothermic (HPTH) group (n = 20), in which the body was cooled to a core temperature of 32°C maintained throughout the period of CPB. The systemic oxygen transport and the cerebral oxygen saturation (SctO2) were assessed by means of a PiCCO2 haemodynamic monitor and a cerebral oximeter, respectively. All the patients received standard perioperative monitoring. We assessed haemodynamic and oxygen transport parameters, the duration of mechanical ventilation and the length of the ICU and the hospital stays. RESULTS During CPB, central venous oxygen saturation was significantly higher in the HPTH group but SctO2 was increased in the NMTH group (P < 0.05). Cardiac index, systemic oxygen delivery and consumption increased postoperatively in both groups. However, oxygen delivery and consumption were significantly higher in the NMTH group (P < 0.05). The duration of respiratory support and the length of ICU and hospital stays did not differ between the groups. CONCLUSIONS During combined valve surgery, normothermic CPB provides lower central venous oxygen saturation, but increases cerebral tissue oxygenation when compared with the hypothermic regimen.
Collapse
Affiliation(s)
- Andrey I Lenkin
- Department of Anesthesiology and Intensive Care Medicine, City Hospital #1 of Arkhangelsk, Arkhangelsk, Russian Federation
| | | | | | | | | | | |
Collapse
|
9
|
Tissier R, Ghaleh B, Cohen MV, Downey JM, Berdeaux A. Myocardial protection with mild hypothermia. Cardiovasc Res 2011; 94:217-25. [PMID: 22131353 DOI: 10.1093/cvr/cvr315] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mild hypothermia, 32-35° C, is very potent at reducing myocardial infarct size in rabbits, dogs, sheep, pigs, and rats. The benefit is directly related to reduction in normothermic ischaemic time, supporting the relevance of early and rapid cooling. The cardioprotective effect of mild hypothermia is not limited to its recognized reduction of infarct size, but also results in conservation of post-ischaemic contractile function, prevention of no-reflow or microvascular obstruction, and ultimately attenuation of left ventricular remodelling. The mechanism of the anti-infarct effect does not appear to be related to diminished energy utilization and metabolic preservation, but rather to survival signalling that involves either the extracellular signal-regulated kinases and/or the Akt/phosphoinositide 3-kinase/mammalian target of rapamycin pathways. Initial clinical trials of hypothermia in patients with ST-segment elevation myocardial infarction were disappointing, probably because cooling was too slow to shorten normothermic ischaemic time appreciably. New approaches to more rapid cooling have recently been described and may soon be available for clinical use. Alternatively, it may be possible to pharmacologically mimic the protection provided by cooling soon after the onset of ischaemia with an activator of mild hypothermia signalling, e.g. extracellular signal-regulated kinase activator, that could be given by emergency medical personnel. Finally, the protection afforded by cooling can be added to that of pre- and post-conditioning because their mechanisms differ. Thus, myocardial salvage might be greatly increased by rapidly cooling patients as soon as possible and then giving a pharmacological post-conditioning agent immediately prior to reperfusion.
Collapse
|