1
|
Liang L, Guo X, Ye W, Liu Y. KRAS Gene Mutation Associated with Grade of Tumor Budding and Peripheral Immunoinflammatory Indices in Patients with Colorectal Cancer. Int J Gen Med 2024; 17:4769-4780. [PMID: 39440104 PMCID: PMC11495189 DOI: 10.2147/ijgm.s487525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Background The efficacy of targeted therapy for colorectal cancer (CRC) is affected by hub genes of epidermal growth factor receptor (EGFR) signaling pathways, such as KRAS. Immune cell infiltration may lead to gene mutation, but the relationship between KRAS status and peripheral immune-inflammatory indices has not been clarified in CRC. Methods Clinical records of CRC patients were collected. The relationship between KRAS status and clinicopathological characteristics, peripheral immune-inflammatory indices (pan-immune inflammation value (PIV) (monocyte×neutrophil×platelet/lymphocyte), systemic immune inflammation index (SII) (platelet×neutrophil/lymphocyte), and system inflammation response index (SIRI) (monocyte×neutrophil/lymphocyte)) were analyzed. Results 1033 CRC patients were collected, there were 514 (49.8%) patients with KRAS wild-type and 519 (50.2%) with KRAS mutation. Patients with KRAS mutation had higher proportions of female, III-IV stage, and lymph node metastasis and lower proportion of low grade of tumor budding (the presence of single tumor cells or small clusters of up to 5 cells in mesenchyma at the front of tumor invasion) than those with KRAS wild-type. The PIV, SII, and SIRI levels in KRAS mutation patients were significantly higher than those in KRAS wild-type patients. The proportion of aged ≥65 years old, dMMR, distant metastasis, and KRAS mutation were high in patients with high PIV, SII, and SIRI levels. Logistic regression analysis showed that non-low grade of tumor budding (odds ratio (OR): 1.970, 95% confidence interval (CI): 1.287-3.016, p=0.002), and high SII level (≥807.81 vs <807.81, OR: 1.915, 95% CI: 1.120-3.272, p=0.018) were independently associated with KRAS mutation. Conclusion Non-low grade of tumor budding, and high SII level were independently associated with KRAS mutation in CRC. It provides additional references for diagnosis and treatment options for patients with CRC.
Collapse
Affiliation(s)
- Liu Liang
- Department of Laboratory Medicine, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Xuemin Guo
- Department of Laboratory Medicine, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Wei Ye
- Department of Laboratory Medicine, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Yuxiang Liu
- Department of Medical Oncology, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| |
Collapse
|
2
|
Liu X, Wang Y, Wang W, Dong H, Wang G, Chen W, Chen J, Chen W. The association between systemic immune-inflammation index and cardiotoxicity related to 5-Fluorouracil in colorectal cancer. BMC Cancer 2024; 24:782. [PMID: 38951749 PMCID: PMC11218411 DOI: 10.1186/s12885-024-12568-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND AND AIMS The cardiotoxicity related to 5-Fluorouracil (5-FU) in cancer patients has garnered widespread attention. The systemic immune-inflammation index (SII) has recently been identified as a novel predictive marker for the development of cardiovascular illnesses in individuals without pre-existing health conditions. However, it remains unclear whether the levels of SII are linked to cardiotoxicity related to 5-FU. This retrospective study aims to fill this knowledge gap by examining the correlation between SII and cardiotoxicity related to 5-FU in a colorectal cancer cohort. METHODS The study comprised colorectal cancer patients who received 5-FU-based chemotherapy at the affiliated cancer hospital of Guizhou Medical University between January 1, 2018 and December 31, 2020. After adjustment for confounders and stratification by tertiles of the interactive factor, linear regression analyses, curve fitting and threshold effect analyses were conducted. RESULTS Of the 754 patients included final analysis, approximately 21% (n = 156) of them ultimately experienced cardiotoxicity related to 5-FU. Monocytes (M) was found as an influential element in the interaction between SII and cardiotoxicity related to 5-FU. In the low tertile of M (T1: M ≤ 0.38 × 109/L), increasing log SII was positively correlated with cardiotoxicity related to 5-FU (Odds Ratio [OR], 8.04; 95% confidence interval [95%CI], 1.68 to 38.56). However, a curvilinear relationship between log SII and cardiotoxicity was observed in the middle tertile of M (T2: 0.38 < M ≤ 0.52 × 109/L). An increase in log SII above 1.37 was shown to be associated with a decreased risk of cardiotoxicity (OR, 0.14; 95%CI, 0.02 to 0.88), indicating a threshold effect. In the high tertile of M (T3: M > 0.52 × 109/L), there was a tendency towards a negative linear correlation between the log SII and cardiotoxicity was observed (OR, 0.85; 95%CI, 0.37 to 1.98). CONCLUSION Our findings suggest that SII may serve as a potential biomarker for predicting cardiotoxicity related to 5-FU in colorectal cancer patients. SII is an independent risk factor for cardiotoxicity related to 5-FU with low monocytes levels (T1). Conversely, in the middle monocytes levels (T2), SII is a protective factor for cardiotoxicity related to 5-FU but with a threshold effect.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Abdominal Oncology and Clinical Medicine, Affiliated Cancer Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Yan Wang
- Department of Abdominal Oncology and Clinical Medicine, Affiliated Cancer Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Wenling Wang
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Abdominal Oncology and Clinical Medicine, Affiliated Cancer Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Hongming Dong
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Abdominal Oncology and Clinical Medicine, Affiliated Cancer Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Gang Wang
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Abdominal Oncology and Clinical Medicine, Affiliated Cancer Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Wanghua Chen
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Abdominal Oncology and Clinical Medicine, Affiliated Cancer Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Juan Chen
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Abdominal Oncology and Clinical Medicine, Affiliated Cancer Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Weiwei Chen
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
- Department of Abdominal Oncology and Clinical Medicine, Affiliated Cancer Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
3
|
Yang Y, Zhang H, Huang S, Chu Q. KRAS Mutations in Solid Tumors: Characteristics, Current Therapeutic Strategy, and Potential Treatment Exploration. J Clin Med 2023; 12:jcm12020709. [PMID: 36675641 PMCID: PMC9861148 DOI: 10.3390/jcm12020709] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Kristen rat sarcoma (KRAS) gene is one of the most common mutated oncogenes in solid tumors. Yet, KRAS inhibitors did not follow suit with the development of targeted therapy, for the structure of KRAS has been considered as being implausible to target for decades. Chemotherapy was the initial recommended therapy for KRAS-mutant cancer patients, which was then replaced by or combined with immunotherapy. KRAS G12C inhibitors became the most recent breakthrough in targeted therapy, with Sotorasib being approved by the Food and Drug Administration (FDA) based on its significant efficacy in multiple clinical studies. However, the subtypes of the KRAS mutations are complex, and the development of inhibitors targeting non-G12C subtypes is still at a relatively early stage. In addition, the monotherapy of KRAS inhibitors has accumulated possible resistance, acquiring the exploration of combination therapies or next-generation KRAS inhibitors. Thus, other non-target, conventional therapies have also been considered as being promising. Here in this review, we went through the characteristics of KRAS mutations in cancer patients, and the prognostic effect that it poses on different therapies and advanced therapeutic strategy, as well as cutting-edge research on the mechanisms of drug resistance, tumor development, and the immune microenvironment.
Collapse
|