1
|
Einav T, Ma R. Using interpretable machine learning to extend heterogeneous antibody-virus datasets. CELL REPORTS METHODS 2023; 3:100540. [PMID: 37671020 PMCID: PMC10475791 DOI: 10.1016/j.crmeth.2023.100540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/14/2023] [Accepted: 06/30/2023] [Indexed: 09/07/2023]
Abstract
A central challenge in biology is to use existing measurements to predict the outcomes of future experiments. For the rapidly evolving influenza virus, variants examined in one study will often have little to no overlap with other studies, making it difficult to discern patterns or unify datasets. We develop a computational framework that predicts how an antibody or serum would inhibit any variant from any other study. We validate this method using hemagglutination inhibition data from seven studies and predict 2,000,000 new values ± uncertainties. Our analysis quantifies the transferability between vaccination and infection studies in humans and ferrets, shows that serum potency is negatively correlated with breadth, and provides a tool for pandemic preparedness. In essence, this approach enables a shift in perspective when analyzing data from "what you see is what you get" into "what anyone sees is what everyone gets."
Collapse
Affiliation(s)
- Tal Einav
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Rong Ma
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Guptill JT, Sleasman JW, Steeland S, Sips M, Gelinas D, de Haard H, Azar A, Winthrop KL. Effect of FcRn antagonism on protective antibodies and to vaccines in IgG-mediated autoimmune diseases pemphigus and generalised myasthenia gravis. Autoimmunity 2022; 55:620-631. [PMID: 36036539 DOI: 10.1080/08916934.2022.2104261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Antagonism of the neonatal Fc receptor (FcRn) by efgartigimod has been studied in several autoimmune diseases mediated by immunoglobulin G (IgG) as a therapeutic approach to remove pathogenic IgGs. Whereas reduction of pathogenic titres has demonstrated efficacy in multiple autoimmune diseases, reducing total IgG could potentially increase infection risk in patients receiving FcRn antagonists. The objective of this study was to analyse the effect of FcRn antagonism with efgartigimod on existing protective antibody titres and the ability to mount an immune response after vaccine challenge. Serum levels of total IgG and protective antibodies against tetanus toxoid (TT), varicella zoster virus (VZV), and pneumococcal capsular polysaccharide (PCP) were measured in all patients enrolled in an open-label trial of efgartigimod for the treatment of pemphigus. Vaccine specific-responses were assessed by measuring changes in IgG titres in patients with generalised myasthenia gravis (gMG) who were treated with efgartigimod and who received influenza, pneumococcal, or coronavirus disease 2019 (COVID-19) vaccines during participation in the double-blind trial ADAPT or open-label extension, ADAPT+ (n = 17). FcRn antagonism reduced levels of protective anti-TT, anti-VZV, and anti-PCP antibodies and total IgG to a similar extent; anti-TT and anti-VZV titres remained above minimally protective thresholds for the majority of patients, (10/12) 83% and (14/15) 93% respectively. Protective antibodies returned to baseline values upon treatment cessation. Antigen-specific IgG responses to influenza, pneumococcal, and COVID-19 immunisation were detected in patients with gMG who received these vaccines while undergoing therapy with efgartigimod. In conclusion, FcRn antagonism with efgartigimod did not hamper generation of IgG responses but did transiently reduce IgG titres of all specificities.
Collapse
Affiliation(s)
- Jeffrey T Guptill
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA.,argenx, Ghent, Belgium
| | - John W Sleasman
- Department of Pediatrics, Division of Allergy, Immunology, and Pulmonary Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | | | | | | | | | - Antoine Azar
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kevin L Winthrop
- Division of Infectious Disease, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
3
|
Handabile C, Sekiya T, Nomura N, Ohno M, Kawakita T, Shingai M, Kida H. Inactivated Whole Virus Particle Influenza Vaccine Induces Anti-Neuraminidase Antibodies That May Contribute to Cross-Protection against Heterologous Virus Infection. Vaccines (Basel) 2022; 10:804. [PMID: 35632561 PMCID: PMC9147865 DOI: 10.3390/vaccines10050804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022] Open
Abstract
Despite the use of vaccines, seasonal influenza remains a risk to public health. We previously proposed the inactivated whole virus particle vaccine (WPV) as an alternative to the widely used split vaccine (SV) for the control of seasonal and pandemic influenza based on the superior priming potency of WPV to that of SV. In this study, we further examined and compared the immunological potency of monovalent WPV and SV of A/California/7/2009 (X-179A) (H1N1) pdm09 (CA/09) to generate immune responses against heterologous viruses, A/Singapore/GP1908/2015 (IVR-180) (H1N1) pdm09 (SG/15), and A/duck/Hokkaido/Vac-3/2007 (H5N1) (DH/07) in mice. Following challenge with a lethal dose of heterologous SG/15, lower virus titer in the lungs and milder weight loss were observed in WPV-vaccinated mice than in SV-vaccinated ones. To investigate the factors responsible for the differences in the protective effect against SG/15, the sera of vaccinated mice were analyzed by hemagglutination-inhibition (HI) and neuraminidase-inhibition (NI) assays to evaluate the antibodies induced against viral hemagglutinin (HA) and neuraminidase (NA), respectively. While the two vaccines induced similar levels of HI antibodies against SG/15 after the second vaccination, only WPV-vaccinated mice induced significantly higher titers of NI antibodies against the strain. Furthermore, given the significant elevation of NI antibody titers against DH/07, an H5N1 avian influenza virus, WPV was also demonstrated to induce NA-inhibiting antibodies that recognize NA of divergent strains. This could be explained by the higher conservation of epitopes of NA among strains than for HA. Taking these findings together, NA-specific antibodies induced by WPV may have contributed to better protection from infection with heterologous influenza virus SG/15, compared with SV. The present results indicate that WPV is an effective vaccine for inducing antibodies against both HA and NA of heterologous viruses and may be a useful vaccine to conquer vaccine strain mismatch.
Collapse
Affiliation(s)
- Chimuka Handabile
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (C.H.); (T.S.); (N.N.); (M.O.); (T.K.); (M.S.)
| | - Toshiki Sekiya
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (C.H.); (T.S.); (N.N.); (M.O.); (T.K.); (M.S.)
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0020, Japan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Naoki Nomura
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (C.H.); (T.S.); (N.N.); (M.O.); (T.K.); (M.S.)
| | - Marumi Ohno
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (C.H.); (T.S.); (N.N.); (M.O.); (T.K.); (M.S.)
| | - Tomomi Kawakita
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (C.H.); (T.S.); (N.N.); (M.O.); (T.K.); (M.S.)
| | - Masashi Shingai
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (C.H.); (T.S.); (N.N.); (M.O.); (T.K.); (M.S.)
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0020, Japan
| | - Hiroshi Kida
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (C.H.); (T.S.); (N.N.); (M.O.); (T.K.); (M.S.)
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0020, Japan
- Collaborating Research Center for the Control of Infectious Diseases, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
4
|
Mutation E48K in PB1 Polymerase Subunit Improves Stability of a Candidate Live Attenuated Influenza B Virus Vaccine. Vaccines (Basel) 2021; 9:vaccines9070800. [PMID: 34358217 PMCID: PMC8310045 DOI: 10.3390/vaccines9070800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022] Open
Abstract
Influenza B virus (IBV) is a major respiratory pathogen of humans, particularly in the elderly and children, and vaccines are the most effective way to control it. In previous work, incorporation of two mutations (E580G, S660A) along with the addition of an HA epitope tag in the PB1 segment of B/Brisbane/60/2008 (B/Bris) resulted in an attenuated strain that was safe and effective as a live attenuated vaccine. A third attempted mutation (K391E) in PB1 was not always stable. Interestingly, viruses that maintained the K391E mutation were associated with the mutation E48K. To explore the contribution of the E48K mutation to stability of the K391E mutation, a vaccine candidate was generated by inserting both mutations, along with attenuating mutations E580G and S660A, in PB1 of B/Bris (B/Bris PB1att 4M). Serial passages of the B/Bris PB1att 4M vaccine candidate in eggs and MDCK indicated high stability. In silico structural analysis revealed a potential interaction between amino acids at positions 48 and 391. In mice, B/Bris PB1att 4M was safe and provided complete protection against homologous challenge. These results confirm the compensatory effect of mutation E48K to stabilize the K391E mutation, resulting in a safer, yet still protective, IBV LAIV vaccine.
Collapse
|
5
|
A method for estimating the transmissibility of influenza using serial cross-sectional seroepidemiological data. J Theor Biol 2020; 511:110566. [PMID: 33347894 DOI: 10.1016/j.jtbi.2020.110566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Seroepidemiological surveillance data has been demonstrated to be useful for estimating the cumulative incidence of influenza, and measures the difference between pre- and post-epidemic seropositive fractions. Despite this, such studies relied on a chosen cut-off value for seropositivity. The aim of the present study is to develop a method to analyze distributions of serial cross-sectional seroepidemiological surveillance datasets using an epidemiological model so that the transmission potential can be estimated without imposing a cut-off value. METHODS A mathematical model of influenza transmission with a discrete antibody titer level was constructed. The final size equation for pre- and post-epidemic titer levels was derived. Subsequently, using the estimated distribution of the dilution increase caused by infection and the measurement error distribution, the model parameters were optimized using the maximum likelihood method. A bootstrap-based confidence interval calculation and sensitivity analysis were also performed. RESULTS Without imposing a cut-off value, the cumulative incidence was quantified, thereby yielding an estimate of the basic reproduction number. For the purpose of exposition, the proposed method was applied to influenza A/Victoria/3/75(H3N2) data, and serological data between 1975 and 1976 were compared. The estimated reproduction number was greater than that using the cut-off value of the hemagglutination inhibition level with titer level 20 (dilution 1:20) or above to define positives. CONCLUSION The proposed method without a cut-off value offers an unbiased approach to estimating the cumulative incidence along with the reproduction number. If a cut-off value is required, the results imply that titer level 20 or above may better represent a reasonable cut-off value for calculating the incidence, but it could underestimate the basic reproduction number.
Collapse
|
6
|
Young B, Sadarangani S, Haur SY, Yung CF, Barr I, Connolly J, Chen M, Wilder-Smith A. Semiannual Versus Annual Influenza Vaccination in Older Adults in the Tropics: An Observer-blind, Active-comparator-controlled, Randomized Superiority Trial. Clin Infect Dis 2020; 69:121-129. [PMID: 30277500 DOI: 10.1093/cid/ciy836] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/28/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Antibody titres and vaccine effectiveness decline within 6 months after influenza vaccination in older adults. Biannual vaccination may be necessary to provide year-round protection in the tropics, where influenza circulates throughout the year. METHODS Tropical Influenza Control Strategies (TROPICS1) was a single-center, 1:1 randomized, observer-blinded, active-comparator-controlled, superiority study in 200 community-resident adults aged ≥65 years. Participants received a standard-dose trivalent inactivated influenza vaccination (IIV3) at enrollment, and either tetanus-diphtheria-pertussis vaccination or IIV3 6 months later. The primary outcome was the proportion of participants with haemagglutination-inhibition (HI) geometric mean titre (GMT) ≥1:40 1 month after the second vaccination (month 7). Secondary outcomes included GMTs to month 12, the incidence of influenza-like illness (ILI), and adverse reactions after vaccination. RESULTS At month 7, the proportion of participants with an HI tire ≥1:40 against A/H1N1 increased by 21.4% (95% confidence interval [CI] 8.6-33.4) in the semiannual vaccination group. This proportion was not significantly higher for A/H3N2 (4.3, 95% CI -1.1-10.8) or B (2.1, 95% CI -2.0-7.3). Semiannual vaccination significantly increased GMTs against A/H1N1 and A/H3N2, but not B, at month 7. Participants receiving a repeat vaccination of IIV3 reported a significantly lower incidence of ILI in the 6 months after the second vaccination (relative vaccine effectiveness 57.1%, 95% CI 0.6-81.5). The frequency of adverse events was similar after the first and second influenza vaccinations. CONCLUSIONS Semiannual influenza vaccination in older residents of tropical countries has the potential to improve serological measures of protection against infection. Alternative vaccination strategies should also be studied. CLINICAL TRIALS REGISTRATION NCT02655874.
Collapse
Affiliation(s)
- Barnaby Young
- National Centre for Infectious Diseases.,Tan Tock Seng Hospital.,Lee Kong Chian School of Medicine, Nanyang Technological University
| | - Sapna Sadarangani
- National Centre for Infectious Diseases.,Tan Tock Seng Hospital.,Lee Kong Chian School of Medicine, Nanyang Technological University
| | - Sen Yew Haur
- National Centre for Infectious Diseases.,Tan Tock Seng Hospital
| | - Chee Fu Yung
- Infectious Disease Service, KK Women's and Children's Hospital, Singapore
| | - Ian Barr
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Melbourne.,Department of Microbiology and Immunology, The University of Melbourne, Parkville.,Faculty of Science and Technology, Federation University Australia, Gippsland Campus, Churchill, Victoria, Australia
| | - John Connolly
- Lee Kong Chian School of Medicine, Nanyang Technological University.,Institute of Molecular and Cellular Biology, Proteos
| | - Mark Chen
- National Centre for Infectious Diseases.,Tan Tock Seng Hospital.,Saw Swee Hock School of Public Health, Tahir Foundation Building, National University of Singapore, Singapore
| | - Annelies Wilder-Smith
- Lee Kong Chian School of Medicine, Nanyang Technological University.,Institute of Public Health, University of Heidelberg, Germany
| |
Collapse
|
7
|
Young BE, Chen M. Influenza in temperate and tropical Asia: a review of epidemiology and vaccinology. Hum Vaccin Immunother 2020; 16:1659-1667. [PMID: 32017650 PMCID: PMC7482764 DOI: 10.1080/21645515.2019.1703455] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/05/2019] [Indexed: 11/29/2022] Open
Abstract
The impact of seasonal influenza has been under-appreciated in Asia and surveillance data lags in most other regions. The variety of influenza circulation patterns in Asia - largely due to the range of climates - has also only recently been recognized and its effect on the burden of disease is not fully understood. Recent reports that clinical protection wanes in the weeks after influenza vaccination emphasize the importance of optimally timing vaccination to local epidemiology. It also raises questions as to whether influenza vaccines should be administered more frequently than annually and what may be the benefits in Asia of access to new vaccines with enhanced immunogenicity and effectiveness. This review will summarize influenza surveillance data from Asian countries over 2011-2018, and consider the implications for vaccination strategies in different parts of Asia.
Collapse
Affiliation(s)
- Barnaby Edward Young
- Department of Infectious Diseases, National Centre for Infectious Diseases, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - M. Chen
- Department of Infectious Diseases, National Centre for Infectious Diseases, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore
| |
Collapse
|
8
|
Abstract
Antigenic cartography is a powerful method that allows for the calculation of antigenic distances between influenza viruses or sera and their positioning on a map, by quantifying raw data from hemagglutination inhibition assays. As a consequence, the antigenic drift of influenza viruses over time can be visualized in a straightforward manner. Antigenic cartography is not only useful in the research of influenza virus evolution but also in the surveillance of influenza viruses. Most importantly, antigenic cartography plays a very important role in vaccine updating decisions, since by calculating the antigenic distances between a vaccine strain and circulating strains, an informed decision can be made on whether the distances are large enough to warrant a vaccine update or not. Recent improvements in antigenic cartography calculations have significantly improved its accuracy.
Collapse
|
9
|
Comparison of influenza-specific neutralizing antibody titers determined using different assay readouts and hemagglutination inhibition titers: good correlation but poor agreement. Vaccine 2020; 38:2527-2541. [PMID: 32044163 DOI: 10.1016/j.vaccine.2020.01.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 12/23/2022]
Abstract
Determination of influenza-specific antibody titers is commonly done using the hemagglutination inhibition assay (HAI) and the viral microneutralization assay (MN). Both assays are characterized by high intra- and inter-laboratory variability. The HAI assay offers little opportunity for standardization. For the MN assay, variability might be due to the use of different assay protocols employing different readouts. We therefore aimed at investigating which of the MN assay readout methods currently in use would be the most suitable choice for a standardized MN assay that could serve as a substitute for the HAI assay. For this purpose, human serum samples were tested for the presence of influenza specific neutralizing antibodies against A/California/7/09 H1N1 (49 sera) or A/Hong Kong/4801/2014 (50 sera) using four different infection readout methods for the MN assay (cytopathic effect, hemagglutination, ELISA, RT qPCR) and using the HAI assay. The results were compared by correlation analysis and by determining the level of agreement before and after normalization to a standard serum. Titers as measured by the 4 MN assay readouts showed good correlation, with high Person's r for most comparisons. However, agreement between nominal titers varied with readouts compared and virus strain used. In addition, Pearson's correlation of MN titers with HAI titers was high but agreement of nominal titers was moderate and the average difference between the readings of two assays (bias) was virus strain-dependent. Normalization to a standard serum did not result in better agreement of assay results. Our study demonstrates that different MN readouts result in nominally different antibody titers. Accordingly, the use of a common and standardized MN assay protocol will be crucial to minimize inter-laboratory variability. Based on reproducibility, cost effectiveness and unbiased assessment of results we elected the MN assay with ELISA readout as most suitable for a possible replacement of the HAI assay.
Collapse
|
10
|
Yue M, Dickens BL, Yoong JSY, I-Cheng Chen M, Teerawattananon Y, Cook AR. Cost-Effectiveness Analysis for Influenza Vaccination Coverage and Timing in Tropical and Subtropical Climate Settings: A Modeling Study. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2019; 22:1345-1354. [PMID: 31806190 DOI: 10.1016/j.jval.2019.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The lack of seasonality in influenza epidemics in the tropics makes the application of well-established temperate zone national vaccination plans challenging. OBJECTIVES We developed an individual-based simulation model to study optimal vaccination scheduling and assess cost-effectiveness of these vaccination schedules in scenarios of no influenza seasonality and the seasonality regimes of Singapore, Taipei, and Tokyo. METHODS The simulation models heterogeneities in human contact networks, levels of protective antibodies following infection, the effectiveness of the influenza vaccine, and seasonality. Using a no intervention baseline, we consider 3 alternative vaccination strategies: (1) annual vaccination for a percentage of the elderly, (2) biannual vaccination for a percentage of the elderly, and (3) annual vaccination for all elderly and a fraction of the remaining population. We considered 5 vaccination uptake rates for each strategy and modeled the estimated costs, quality-adjusted life years, and incremental cost-effectiveness ratios (ICERs), indicating the cost-effectiveness of each scenario. RESULTS In Singapore, annual vaccination for a proportion of elderly is largely cost-effective. However, with fixed uptake rates, partial biannual vaccination for the elderly yields a higher ICER than partial annual vaccination for the elderly, resulting in a cost-ineffective ICER. The most optimal strategy is the total vaccination of all the elderly and a proportion of individuals from other age groups, which results in a cost-saving ICER. This finding is consistent across different seasonality regimes. CONCLUSIONS Tropical countries like Singapore can have comparably cost-effective vaccination strategies as found in countries with winter epidemics. The vaccination of all the elderly and a proportion of other age groups is the most cost-effective strategy, supporting the need for an extensive national influenza vaccination program.
Collapse
Affiliation(s)
- Mu Yue
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, China; Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Borame L Dickens
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Joanne Su-Yin Yoong
- Center for Economic and Social Research, University of Southern California, Los Angeles, CA, USA; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mark I-Cheng Chen
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Yot Teerawattananon
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Health Intervention and Technology Assessment Program, Ministry of Public Health, Nonthaburi, Thailand
| | - Alex R Cook
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Program in Health Services and Systems Research, Duke-NUS Medical School, Singapore; Department of Statistics and Applied Probability, National University of Singapore, Singapore.
| |
Collapse
|
11
|
Cowling BJ, Lim WW, Perera RAPM, Fang VJ, Leung GM, Peiris JSM, Tchetgen Tchetgen EJ. Influenza Hemagglutination-inhibition Antibody Titer as a Mediator of Vaccine-induced Protection for Influenza B. Clin Infect Dis 2019; 68:1713-1717. [PMID: 30202873 PMCID: PMC6495017 DOI: 10.1093/cid/ciy759] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/30/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The hemagglutination inhibition (HAI) assay is an established correlate of protection for the inactivated influenza vaccine. However, the proportion of vaccine-induced protection that is mediated by the post-vaccination HAI titer has not been assessed. METHODS We used data from a randomized, placebo-controlled trial of a split-virion inactivated influenza vaccine in children aged 6-17 years. Sera were collected before and 30 days after receipt of vaccination or placebo and tested by the HAI assay against B/Brisbane/60/2008-like (B/Victoria lineage). We fitted Cox proportional hazards models to the time to laboratory-confirmed influenza B. We used causal mediation analysis to estimate the proportion of the total effect of vaccination that was mediated by higher HAI titers. RESULTS We estimated that vaccine efficacy against confirmed B/Victoria infection was 68% (95% confidence interval, 33%, 88%), and post-vaccination HAI titers explained 57% of the effect of vaccination on protection. CONCLUSIONS The majority of the effect of inactivated influenza vaccination in children is mediated by the increased HAI titer after vaccination; however, other components of the immune response to vaccination may also play a role in protection and should be further explored. Causal mediation analysis provides a framework to quantify the role of various mediators of protection.
Collapse
Affiliation(s)
- Benjamin J Cowling
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wey Wen Lim
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ranawaka A P M Perera
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Vicky J Fang
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Gabriel M Leung
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - J S Malik Peiris
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | | |
Collapse
|
12
|
Boudreau CM, Alter G. Extra-Neutralizing FcR-Mediated Antibody Functions for a Universal Influenza Vaccine. Front Immunol 2019; 10:440. [PMID: 30949165 PMCID: PMC6436086 DOI: 10.3389/fimmu.2019.00440] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/19/2019] [Indexed: 12/22/2022] Open
Abstract
While neutralizing antibody titers measured by hemagglutination inhibition have been proposed as a correlate of protection following influenza vaccination, neutralization alone is a modest predictor of protection against seasonal influenza. Instead, emerging data point to a critical role for additional extra-neutralizing functions of antibodies in protection from infection. Specifically, beyond binding and neutralization, antibodies mediate a variety of additional immune functions via their ability to recruit and deploy innate immune effector function. Along these lines, antibody-dependent cellular cytotoxicity, antibody-mediated macrophage phagocytosis and activation, antibody-driven neutrophil activation, antibody-dependent complement deposition, and non-classical Fc-receptor antibody trafficking have all been implicated in protection from influenza infection. However, the precise mechanism(s) by which the immune system actively tunes antibody functionality to drive protective immunity has been poorly characterized. Here we review the data related to Fc-effector functional protection from influenza and discuss prospects to leverage this humoral immune activity for the development of a universal influenza vaccine.
Collapse
Affiliation(s)
- Carolyn M Boudreau
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States.,Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA, United States
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| |
Collapse
|
13
|
Lee KH, Gordon A, Shedden K, Kuan G, Ng S, Balmaseda A, Foxman B. The respiratory microbiome and susceptibility to influenza virus infection. PLoS One 2019; 14:e0207898. [PMID: 30625134 PMCID: PMC6326417 DOI: 10.1371/journal.pone.0207898] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/06/2018] [Indexed: 12/27/2022] Open
Abstract
Influenza is a major cause of morbidity and mortality worldwide. However, vaccine effectiveness has been low to moderate in recent years and vaccine coverage remains low, especially in low- and middle-income countries. Supplementary methods of prevention should be explored to reduce the high burden of influenza. A potential target is the respiratory tract microbiome, complex microbial communities which envelop the respiratory epithelium and play an important role in shaping host immunity. Using a household transmission study, we examined whether the nose/throat microbiota was associated with influenza susceptibility among participants exposed to influenza virus in the household. Further, we characterized changes in the nose/throat microbiota to explore whether community stability was influenced by influenza virus infection. Using a generalized linear mixed effects model, we found a nasal/oropharyngeal community state type (CST) associated with decreased susceptibility to influenza. The CST was rare and transitory among young children but a prevalent and stable CST among adults. Using boosting and linear mixed effects models, we found associations between the nose/throat microbiota and influenza also existed at the taxa level, specifically with the relative abundance of Alloprevotella, Prevotella, and Bacteroides oligotypes. We found high rates of change between bacterial community states among both secondary cases and household contacts who were not infected during follow up. Further work is needed to separate the effect of influenza virus infection from the considerable short-term changes that occur even in the absence of virus. Lastly, age was strongly associated with susceptibility to influenza and the nose/throat bacterial community structure. Although additional studies are needed to determine causality, our results suggest the nose/throat microbiome may be a potential target for reducing the burden of influenza.
Collapse
Affiliation(s)
- Kyu Han Lee
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kerby Shedden
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Statistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Guillermina Kuan
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Sophia Ng
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua
- National Virology Laboratory, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Betsy Foxman
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
14
|
Wei VWI, Wong JYT, Perera RAPM, Kwok KO, Fang VJ, Barr IG, Peiris JSM, Riley S, Cowling BJ. Incidence of influenza A(H3N2) virus infections in Hong Kong in a longitudinal sero-epidemiological study, 2009-2015. PLoS One 2018; 13:e0197504. [PMID: 29795587 PMCID: PMC5967746 DOI: 10.1371/journal.pone.0197504] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/03/2018] [Indexed: 12/28/2022] Open
Abstract
Background Many serologic studies were done during and after the 2009 influenza pandemic, to estimate the cumulative incidence of influenza A(H1N1)pdm09 virus infections, but there are few comparative estimates of the incidence of influenza A(H3N2) virus infections during epidemics. Methods We conducted a longitudinal serologic study in Hong Kong. We collected sera annually and tested samples from 2009–13 by HAI against the A/Perth/16/2009(H3N2) virus, and samples from 2013–15 against the A/Victoria/361/2011(H3N2) virus using the hemagglutination inhibition (HAI) assay. We estimated the cumulative incidence of infections based on 4-fold or greater rises in HAI titers in consecutive sera. Results There were four major H3N2 epidemics: (1) Aug-Oct 2010; (2) Mar-Jun 2012; (3) Jul-Oct 2013; and (4) Jun-Jul 2014. Between 516 and 619 relevant pairs of sera were available for each epidemic. We estimated that 9%, 19%, 7% and 7% of the population were infected in each epidemic, respectively, with higher incidence in children in epidemics 1 and 4. Conclusions We found that re-infections in each of the four H3N2 epidemics that occurred from 2010 through 2014 were rare. The largest H3N2 epidemic occurred with the lowest level of pre-epidemic immunity.
Collapse
Affiliation(s)
- Vivian W. I. Wei
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, China
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Jessica Y. T. Wong
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, China
| | - Ranawaka A. P. M. Perera
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, China
- Centre of Influenza Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, China
| | - Kin On Kwok
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong Special Administrative Region, China
- Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
| | - Vicky J. Fang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, China
| | - Ian G. Barr
- WHO Collaborating Centre for Reference and Research, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - J. S. Malik Peiris
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, China
- Centre of Influenza Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, China
| | - Steven Riley
- MRC Centre for Outbreak Analysis and Modelling, Department for Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Benjamin J. Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, China
- * E-mail:
| |
Collapse
|
15
|
Chen Y, Chu CW, Chen MIC, Cook AR. The utility of LASSO-based models for real time forecasts of endemic infectious diseases: A cross country comparison. J Biomed Inform 2018; 81:16-30. [PMID: 29496631 PMCID: PMC7185473 DOI: 10.1016/j.jbi.2018.02.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/19/2018] [Accepted: 02/24/2018] [Indexed: 01/09/2023]
Abstract
A LASSO based forecast model for endemic infectious diseases is proposed. Predictions at 4 weeks achieve desirable accuracy. Models predict outbreaks but may struggle to predict outbreak size.
Introduction Accurate and timely prediction for endemic infectious diseases is vital for public health agencies to plan and carry out any control methods at an early stage of disease outbreaks. Climatic variables has been identified as important predictors in models for infectious disease forecasts. Various approaches have been proposed in the literature to produce accurate and timely predictions and potentially improve public health response. Methods We assessed how the machine learning LASSO method may be useful in providing useful forecasts for different pathogens in countries with different climates. Separate LASSO models were constructed for different disease/country/forecast window with different model complexity by including different sets of predictors to assess the importance of different predictors under various conditions. Results There was a more apparent cyclicity for both climatic variables and incidence in regions further away from the equator. For most diseases, predictions made beyond 4 weeks ahead were increasingly discrepant from the actual scenario. Prediction models were more accurate in capturing the outbreak but less sensitive to predict the outbreak size. In different situations, climatic variables have different levels of importance in prediction accuracy. Conclusions For LASSO models used for prediction, including different sets of predictors has varying effect in different situations. Short term predictions generally perform better than longer term predictions, suggesting public health agencies may need the capacity to respond at short-notice to early warnings.
Collapse
Affiliation(s)
- Yirong Chen
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Tahir Foundation Building, 12 Science Drive 2, 117549, Singapore
| | - Collins Wenhan Chu
- Genome Institute of Singapore, 60 Biopolis Street, Genome, 138672, Singapore
| | - Mark I C Chen
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Tahir Foundation Building, 12 Science Drive 2, 117549, Singapore; Department of Clinical Epidemiology, Communicable Disease Centre, Tan Tock Seng Hospital, Singapore, Moulmein Road, 308433, Singapore
| | - Alex R Cook
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Tahir Foundation Building, 12 Science Drive 2, 117549, Singapore.
| |
Collapse
|
16
|
Ward BJ, Pillet S, Charland N, Trepanier S, Couillard J, Landry N. The establishment of surrogates and correlates of protection: Useful tools for the licensure of effective influenza vaccines? Hum Vaccin Immunother 2018; 14:647-656. [PMID: 29252098 PMCID: PMC5861778 DOI: 10.1080/21645515.2017.1413518] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The search for a test that can predict vaccine efficacy is an important part of any vaccine development program. Although regulators hesitate to acknowledge any test as a true ‘correlate of protection’, there are many precedents for defining ‘surrogate’ assays. Surrogates can be powerful tools for vaccine optimization, licensure, comparisons between products and development of improved products. When such tests achieve ‘reference’ status however, they can inadvertently become barriers to new technologies that do not work the same way as existing vaccines. This is particularly true when these tests are based upon circularly-defined ‘reference’ or, even worse, proprietary reagents. The situation with inactivated influenza vaccines is a good example of this phenomenon. The most frequently used tests to define vaccine-induced immunity are all serologic assays: hemagglutination inhibition (HI), single radial hemolysis (SRH) and microneutralization (MN). The first two, and particularly the HI assay, have achieved reference status and criteria have been established in many jurisdictions for their use in licensing new vaccines and to compare the performance of different vaccines. However, all of these assays are based on biological reagents that are notoriously difficult to standardize and can vary substantially by geography, by chance (i.e. developing reagents in eggs that may not antigenitically match wild-type viruses) and by intention (ie: choosing reagents that yield the most favorable results). This review describes attempts to standardize these assays to improve their performance as surrogates, the dangers of over-reliance on ‘reference’ serologic assays, the ways that manufacturers can exploit the existing regulatory framework to make their products ‘look good’ and the implications of this long-established system for the introduction of novel influenza vaccines.
Collapse
Affiliation(s)
- Brian J Ward
- a Research Institute of the McGill University Health Centre, Infectious Diseases Division , Montreal , QC , Canada.,b Medicago Inc , Québec , QC , Canada
| | - Stephane Pillet
- a Research Institute of the McGill University Health Centre, Infectious Diseases Division , Montreal , QC , Canada.,b Medicago Inc , Québec , QC , Canada
| | | | | | | | | |
Collapse
|
17
|
Zhao X, Ning Y, Chen MIC, Cook AR. Individual and Population Trajectories of Influenza Antibody Titers Over Multiple Seasons in a Tropical Country. Am J Epidemiol 2018; 187:135-143. [PMID: 29309522 PMCID: PMC5860523 DOI: 10.1093/aje/kwx201] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 03/06/2017] [Indexed: 01/15/2023] Open
Abstract
Seasonal influenza epidemics occur year-round in the tropics, complicating the planning of vaccination programs. We built an individual-level longitudinal model of baseline antibody levels, time of infection, and the subsequent rise and decay of antibodies postinfection using influenza A(H1N1)pdm09 data from 2 sources in Singapore: 1) a noncommunity cohort with real-time polymerase chain reaction–confirmed infections and at least 1 serological sample collected from each participant between May and October 2009 (n = 118) and 2) a community cohort with up to 6 serological samples collected between May 2009 and October 2010 (n = 760). The model was hierarchical, to account for interval censoring and interindividual variation. Model parameters were estimated via a reversible jump Markov chain Monte Carlo algorithm using custom-designed R (https://www.r-project.org/) and C++ (https://isocpp.org/) code. After infection, antibody levels peaked at 4–7 weeks, with a half-life of 26.5 weeks, followed by a slower decrease up to 1 year to approximately preinfection levels. After the third wave, the seropositivity rate and the population-level antibody titer dropped to the same level as they were at the end of the first pandemic wave. The results of this analysis are consistent with the hypothesis that the population-level effect of individuals’ waxing and waning antibodies influences influenza seasonality in the tropics.
Collapse
Affiliation(s)
- Xiahong Zhao
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Yilin Ning
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Mark I-Cheng Chen
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
- Department of Clinical Epidemiology, Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, Singapore
| | - Alex R Cook
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| |
Collapse
|
18
|
Different Repeat Annual Influenza Vaccinations Improve the Antibody Response to Drifted Influenza Strains. Sci Rep 2017; 7:5258. [PMID: 28701762 PMCID: PMC5507920 DOI: 10.1038/s41598-017-05579-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/31/2017] [Indexed: 11/16/2022] Open
Abstract
Seasonal influenza vaccine formulas change almost every year yet information about how this affects the antibody repertoire of vaccine recipients is inadequate. New vaccine virus strains are selected, replacing older strains to better match the currently circulating strains. But even while the vaccine is being manufactured the circulating strains can evolve. The ideal response to a seasonal vaccine would maintain antibodies toward existing strains that might continue to circulate, and to generate cross-reactive antibodies, particularly towards conserved influenza epitopes, potentially limiting infections caused by newly evolving strains. Here we use the hemagglutination inhibition assay to analyze the antibody repertoire in subjects vaccinated two years in a row with either identical vaccine virus strains or with differing vaccine virus strains. The data indicates that changing the vaccine formulation results in an antibody repertoire that is better able to react with strains emerging after the vaccine virus strains are selected. The effect is observed for both influenza A and B strains in groups of subjects vaccinated in three different seasons. Analyses include stratification by age and sex.
Collapse
|
19
|
Zhao X, Siegel K, Chen MIC, Cook AR. Rethinking thresholds for serological evidence of influenza virus infection. Influenza Other Respir Viruses 2017; 11:202-210. [PMID: 28294578 PMCID: PMC5410725 DOI: 10.1111/irv.12452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2017] [Indexed: 11/29/2022] Open
Abstract
Introduction For pathogens such as influenza that cause many subclinical cases, serologic data can be used to estimate attack rates and the severity of an epidemic in near real time. Current methods for analysing serologic data tend to rely on use of a simple threshold or comparison of titres between pre‐ and post‐epidemic, which may not accurately reflect actual infection rates. Methods We propose a method for quantifying infection rates using paired sera and bivariate probit models to evaluate the accuracy of thresholds currently used for influenza epidemics with low and high existing herd immunity levels, and a subsequent non‐influenza period. Pre‐ and post‐epidemic sera were taken from a cohort of adults in Singapore (n=838). Bivariate probit models with latent titre levels were fit to the joint distribution of haemagglutination‐inhibition assay‐determined antibody titres using Markov chain Monte Carlo simulation. Results Estimated attack rates were 15% (95% credible interval: 12%‐19%) for the first H1N1 pandemic wave. For a large outbreak due to a new strain, a threshold of 1:20 and a twofold rise (if pared sera is available) would result in a more accurate estimate of incidence. Conclusion The approach presented here offers the basis for a reconsideration of methods used to assess diagnostic tests by both reconsidering the thresholds used and by analysing serological data with a novel statistical model.
Collapse
Affiliation(s)
- Xiahong Zhao
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Karen Siegel
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Mark I-Cheng Chen
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore.,Communicable Disease Centre, Tan Tock Seng Hospital, Singapore
| | - Alex R Cook
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| |
Collapse
|
20
|
Young B, Zhao X, Cook AR, Parry CM, Wilder-Smith A, I-Cheng MC. Do antibody responses to the influenza vaccine persist year-round in the elderly? A systematic review and meta-analysis. Vaccine 2016; 35:212-221. [PMID: 27939013 DOI: 10.1016/j.vaccine.2016.11.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/19/2016] [Accepted: 11/04/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The influenza vaccine is less immunogenic in older than younger adults, and the duration of protection is unclear. Determining if protection persists beyond a typical seasonal epidemic is important for climates where influenza virus activity is year-round. METHODS A systematic review protocol was developed and registered with PROSPERO [CRD42015023847]. Electronic databases were searched systematically for studies reporting haemagglutination-inhibition (HI) titres 180-360days following vaccination with inactivated trivalent seasonal influenza vaccine, in adults aged ⩾65years. Geometric mean titre (GMT) and seroprotection (HI titre ⩾1:40) at each time point was extracted. A Bayesian model was developed of titre trajectories from pre-vaccination to Day 360. In the meta-analysis, studies were aggregated using a random-effects model to compare pre-vaccination with post-vaccination HI titres at Day 21-42 ('seroconversion'), Day 180 and Day 360. Potential sources of bias were systematically assessed, and heterogeneity explored. RESULTS 2864 articles were identified in the literature search, of which nineteen met study inclusion/exclusion criteria. Sixteen studies contained analysable data from 2565 subjects. In the Bayesian model, the proportion of subjects seroprotected increased from 41-51% pre-vaccination to 75-78% at seroconversion. Seroprotection subsequently fell below 60% for all serotypes by Day 360: A/H1 42% (95% CI 38-46), A/H3 59% (54-63), B 47% (42-52). The Bayesian model of GMT trajectories revealed a similar pattern. By Day 360, titres were similar to pre-vaccination levels. In the meta-analysis, no significant difference in proportion of subjects seroprotected, 0 (-0.11, 0.11) or in log2GMT 0.30 (-0.02, 0.63) was identified by Day 360 compared with pre-vaccination. The quality of this evidence was limited to moderate on account of significant participant dropout. CONCLUSIONS The review found consistent evidence that HI antibody responses following influenza vaccination do not reliably persist year-round in older adults. Alternative vaccination strategies could provide clinical benefits in regions where year-round protection is important.
Collapse
Affiliation(s)
- Barnaby Young
- Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, 308433 Singapore, Singapore.
| | - Xiahong Zhao
- Saw Swee Hock School of Public Health, Tahir Foundation Building, National University of Singapore, 12 Science Drive 2, #09-01, 117549 Singapore, Singapore
| | - Alex R Cook
- Saw Swee Hock School of Public Health, Tahir Foundation Building, National University of Singapore, 12 Science Drive 2, #09-01, 117549 Singapore, Singapore; Yale-NUS College, National University of Singapore, 16 College Avenue West #01-220, 138527 Singapore, Singapore
| | - Christopher M Parry
- School of Tropical Medicine and Global Health, Nagasaki University Institute of Tropical Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Annelies Wilder-Smith
- Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, 308433 Singapore, Singapore; Lee Kong Chian School of Medicine, 11 Mandalay Road, 308232 Singapore, Singapore
| | - Mark Chen I-Cheng
- Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, 308433 Singapore, Singapore; Saw Swee Hock School of Public Health, Tahir Foundation Building, National University of Singapore, 12 Science Drive 2, #09-01, 117549 Singapore, Singapore
| |
Collapse
|
21
|
Lin YP, Yang ZF, Liang Y, Li ZT, Bond HS, Chua H, Luo YS, Chen Y, Chen TT, Guan WD, Lai JCC, Siu YL, Pan SH, Peiris JSM, Cowling BJ, Mok CKP. Population seroprevalence of antibody to influenza A(H7N9) virus, Guangzhou, China. BMC Infect Dis 2016; 16:632. [PMID: 27814756 PMCID: PMC5097368 DOI: 10.1186/s12879-016-1983-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 10/27/2016] [Indexed: 12/02/2022] Open
Abstract
Background Since the identification in early 2013 of severe disease caused by influenza A(H7N9) virus infection, there have been few attempts to characterize the full severity profile of human infections. Our objective was to estimate the number and severity of H7N9 infections in Guangzhou, using a serological study. Methods We collected residual sera from patients of all ages admitted to a hospital in the city of Guangzhou in southern China in 2013 and 2014. We screened the sera using a haemagglutination inhibition assay against a pseudovirus containing the H7 and N9 of A/Anhui/1/2013(H7N9), and samples with a screening titer ≥10 were further tested by standard hemagglutination-inhibition and virus neutralization assays for influenza A(H7N9). We used a statistical model to interpret the information on antibody titers in the residual sera, assuming that the residual sera provided a representative picture of A(H7N9) infections in the general population, accounting for potential cross-reactions. Results We collected a total of 5360 residual sera from December 2013 to April 2014 and from October 2014 to December 2014, and found two specimens that tested positive for H7N9 antibody at haemagglutination inhibition titer ≥40 and a neutralization titer ≥40. Based on this, we estimated that 64,000 (95 % credibility interval: 7300, 190,000) human infections with influenza A(H7N9) virus occurred in Guangzhou in early 2014, with an infection-fatality risk of 3.6 deaths (95 % credibility interval: 0.47, 15) per 10,000 infections. Conclusions Our study suggested that the number of influenza A(H7N9) virus infections in Guangzhou substantially exceeded the number of laboratory-confirmed cases there, albeit with considerable imprecision. Our study was limited by the small number of positive specimens identified, and larger serologic studies would be valuable. Our analytic framework would be useful if larger serologic studies are done. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-1983-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Ping Lin
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangdong, China.,Research Centre of Translational Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Zi Feng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Ying Liang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Zheng Tu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Helen S Bond
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Huiying Chua
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ya Sha Luo
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
| | - Yuan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Ting Ting Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Wen Da Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Jimmy Chun Cheong Lai
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yu Lam Siu
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Si Hua Pan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - J S Malik Peiris
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.,HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Centre of Influenza Research, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China. .,School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Chris Ka Pun Mok
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China. .,Centre of Influenza Research, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|