1
|
Pepper M, Rebouças P, Falcão IR, Sanchez Clemente N, Lowe R, Schneider R, Pescarini JM, Santos GFD, Andrade RF, Cortes TR, Ranzani OT, Brickley EB, Barreto ML, Paixao ES. Prenatal exposure to ambient air pollution and subsequent risk of lower respiratory tract infections in childhood and adolescence: A systematic review. Int J Hyg Environ Health 2025; 263:114473. [PMID: 39368219 DOI: 10.1016/j.ijheh.2024.114473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Pregnancy represents a critical window of vulnerability to the harmful effects of air pollution on health. However, long-term consequences such as risk of having lower respiratory tract infections (LRTIs) are less explored. This systematic review aims to synthesize previous research on prenatal exposure to ambient (outdoor) air pollution and LRTIs in childhood and adolescence. METHODS We systematically searched Embase, MEDLINE, Web of Science Core Collection, CINAHL, and Global Health up to May 17, 2024. We included peer-reviewed publications of studies which investigated the association between prenatal exposure to ambient air pollution and LRTIs up to the age of 19. We excluded conference abstracts, study protocols, review articles, and grey literature. Screening and data extraction was conducted by two reviewers independently. We used the Office of Health Assessment and Translation tool to assess risk of bias and conducted a narrative synthesis. RESULTS The search yielded 6056 records, of which 16 publications describing 12 research studies were eligible for the synthesis. All studies were conducted in high- or upper-middle-income countries in Europe or Asia. Half (6) of the studies focused on LRTIs occurring within the first three years of life, and the others also included LRTIs in older children (up to age 14). Air pollutants investigated included nitrogen dioxide, sulphur dioxide, particulate matter (PM2.5: diameter ≤2.5 μm and PM10: diameter ≤10 μm), carbon monoxide, ozone, and benzene. Findings on a potential association between prenatal ambient air pollution exposure and LRTIs were inconclusive, without a clear and consistent direction. There was some suggestion of a positive association with prenatal PM2.5 exposure. The small number of studies identified, their poor geographical representation, and their methodological limitations including concerns for risk of bias preclude more definitive conclusions. CONCLUSION The available published evidence is insufficient to establish whether prenatal exposure to ambient air pollution increases risk of LRTIs in children and adolescents. With many populations exposed to high levels of air pollution, there is an urgent need for research in more diverse settings, more transparent reporting of methods, and exploring how, when, and for whom prenatal exposure to ambient air pollution leads to the greatest health risks. PROSPERO REGISTRATION NUMBER CRD42023407689.
Collapse
Affiliation(s)
- Maxine Pepper
- Department of Infectious Disease Epidemiology & International Health, London School of Hygiene & Tropical Medicine, London, United Kingdom.
| | - Poliana Rebouças
- Centro de Integração de Dados e Conhecimentos para Saúde (CIDACS), Oswaldo Cruz Foundation, Salvador, Brazil
| | - Ila R Falcão
- Centro de Integração de Dados e Conhecimentos para Saúde (CIDACS), Oswaldo Cruz Foundation, Salvador, Brazil
| | - Nuria Sanchez Clemente
- Department of Infectious Disease Epidemiology & International Health, London School of Hygiene & Tropical Medicine, London, United Kingdom; Centre for Neonatal and Paediatric Infection, St. George's University of London, London, United Kingdom
| | - Rachel Lowe
- Department of Infectious Disease Epidemiology & International Health, London School of Hygiene & Tropical Medicine, London, United Kingdom; Barcelona Supercomputing Center (BSC), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | | | - Julia M Pescarini
- Department of Infectious Disease Epidemiology & International Health, London School of Hygiene & Tropical Medicine, London, United Kingdom; Centro de Integração de Dados e Conhecimentos para Saúde (CIDACS), Oswaldo Cruz Foundation, Salvador, Brazil
| | - Gervásio F Dos Santos
- Centro de Integração de Dados e Conhecimentos para Saúde (CIDACS), Oswaldo Cruz Foundation, Salvador, Brazil
| | - Roberto Fs Andrade
- Centro de Integração de Dados e Conhecimentos para Saúde (CIDACS), Oswaldo Cruz Foundation, Salvador, Brazil
| | - Taísa R Cortes
- Centro de Integração de Dados e Conhecimentos para Saúde (CIDACS), Oswaldo Cruz Foundation, Salvador, Brazil
| | - Otavio T Ranzani
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Elizabeth B Brickley
- Department of Infectious Disease Epidemiology & International Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Mauricio L Barreto
- Centro de Integração de Dados e Conhecimentos para Saúde (CIDACS), Oswaldo Cruz Foundation, Salvador, Brazil
| | - Enny S Paixao
- Department of Infectious Disease Epidemiology & International Health, London School of Hygiene & Tropical Medicine, London, United Kingdom; Centro de Integração de Dados e Conhecimentos para Saúde (CIDACS), Oswaldo Cruz Foundation, Salvador, Brazil
| |
Collapse
|
2
|
Dearborn LC, Hazlehurst MF, Melough MM, Szpiro AA, Sherris AR, Adgent MA, Ni Y, Wright RJ, Thakur N, Bush NR, Moore PE, Loftus CT, Karr CJ, Carroll KN. Prenatal ozone exposure and child lung function: Exploring effect modification by oxidative balance score. Int J Hyg Environ Health 2024; 264:114491. [PMID: 39671893 DOI: 10.1016/j.ijheh.2024.114491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Prenatal exposures to ozone (O3) may impact child lung function, including through oxidative stress pathways, contributing to lifelong morbidity. Diet, reflected in oxidative balance scores (OBS), may modify these pathways and is a potential target for interventions to mitigate O3 effects. METHODS We examined associations between prenatal exposure to O3 and child lung function at age 8-9 years via spirometry in the CANDLE cohort within the ECHO-PATHWAYS Consortium. O3 was estimated using a point-based spatiotemporal model and averaged over fetal morphological lung development phases: pseudoglandular, canalicular, and saccular. Lung function z-scores were calculated for FEV1, FVC, FEV1/FVC, and FEF25-75. OBS during pregnancy was derived using maternal diet and lifestyle factors. Linear regression models adjusted for child, maternal, and neighborhood characteristics and exposure in other prenatal windows. Using two and three-way multiplicative interaction terms, we explored effect modification by OBS and maternal race. RESULTS Women (N = 661) self-identified as Black (61%), White (33%), or another race (6%); 40.7% attended some college/technical school. Mean O3 concentrations ranged from 26.1 to 29.5 ppb across exposure windows. No associations between prenatal O3 exposure and lung function were observed in primary models, although there was a suggestive adverse association of 10 ppb higher O3 in the saccular window (24-35 weeks) with lower z-scores for FEV1/FVC (-0.23, 95% CI: -0.52, 0.05) and FEF25-75 (-0.17, 95% CI: -0.43, 0.09). No effect modification by OBS or maternal race was found in two-way models. In three-way interaction models, higher O3 was associated with lower child FEV1 among Black women with lower OBS and among White women with higher OBS although data was sparse for those with the highest OBS. CONCLUSIONS In a large, well-characterized pregnancy cohort, we did not find robust evidence of an effect of prenatal O3 on lung function. There was suggestion of enhanced vulnerability for some subgroups in exploratory analyses.
Collapse
Affiliation(s)
- Logan C Dearborn
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA.
| | - Marnie F Hazlehurst
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Melissa M Melough
- Department of Health Behavior and Nutrition Sciences, University of Delaware, Newark, DE, USA
| | - Adam A Szpiro
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Allison R Sherris
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Margaret A Adgent
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yu Ni
- Division of Epidemiology and Biostatistics, School of Public Health, College of Health and Human Services, San Diego State University, San Diego, CA, USA
| | - Rosalind J Wright
- Department of Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Neeta Thakur
- Division of Pulmonary and Critical Care Medicine, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nicole R Bush
- Department of Psychiatry and Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Paul E Moore
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christine T Loftus
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Catherine J Karr
- Department of Pediatrics, School of Medicine, Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Kecia N Carroll
- Department of Pediatrics, Department of Environmental Medicine & Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Zhou X, Fang Z, Lv Y, Li C, Xu S, Cheng K, Ren Y, Lv N, Gao B, Xu H. Combined health effects of air pollutant mixtures on respiratory mortality using BKMR in Hangzhou, China. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024; 74:884-894. [PMID: 39348213 DOI: 10.1080/10962247.2024.2411033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
Previous research on respiratory system mortality primarily focused on understanding their combined effects and have neglected the fact that air pollution mixtures are interrelated. This study used Bayesian kernel machine regression (BKMR) to analyze the relationship between air pollutant mixtures and respiratory mortality in Hangzhou, China from 2014 to 2018. The results showed a significant association between pollutant mixtures and respiratory system mortality primarily driven by PM2.5 and SO2. The joint exposure of air pollutants was positively correlated with respiratory system mortality at lag 01 and lag 02 days. The estimated joint effects of log-transformed mixture air pollution exposure on log-transformed respiratory system mortality increased from -0.02 (95% CI: -0.08-0.02) and -0.01 (95% CI: -0.05-0.04) at the 25th percentile to 0.06 (95% CI: 0.01-0.12) and 0.04 (95% CI: -0.001, 0.09) at the 75th percentile. Additionally, there was evidence of an interaction between O3 and PM10. This study confirms that exposure to multiple pollutants is a significant public health problem facing the Hangzhou population given the compounded effect proven with regression analysis, while furthermore, the control of PM2.5 and SO2 also represents a serious concern.Implications: Evidence indicates interactions between O3 and PM10. This study demonstrates that exposure to multiple pollutants exerts combined effects on the public health of the Hangzhou population, highlighting the importance of controlling PM2.5 and SO2.
Collapse
Affiliation(s)
- Xiaocong Zhou
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Zisi Fang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Ye Lv
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, People's Republic of China
| | - Chaokang Li
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, People's Republic of China
| | - Shanshan Xu
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, People's Republic of China
| | - Keyi Cheng
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, People's Republic of China
| | - Yanjun Ren
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, People's Republic of China
| | - Na Lv
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, People's Republic of China
| | - Bing Gao
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, People's Republic of China
| | - Hong Xu
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
4
|
Singh S, Goel I, Tripathi S, Ahirwar A, Kumar M, Rana A, Dhar R, Karmakar S. Effect of environmental air pollutants on placental function and pregnancy outcomes: a molecular insight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59819-59851. [PMID: 39388084 DOI: 10.1007/s11356-024-35016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Air pollution has become a major health concern, particularly for vulnerable populations such as the elderly, children, and pregnant women. Studies have reported a strong association between prenatal exposure to air pollutants and adverse pregnancy outcomes, including lower birth weight, reduced fetal growth, and an increased frequency of preterm births. This review summarizes the harmful effects of air pollutants, such as particulate matter, on pregnancy and outlines the mechanistic details associated with these adverse outcomes. Particulate pollutant matter may be able to cross the placenta barrier, and alterations in placental functions are central to the detrimental effects of these pollutants. In addition to associations with preeclampsia and gestational hypertension, air pollutants also induce oxidative stress, inflammation, and epigenetic alteration in the placenta. These pollutants can also affect placental homeostasis and endocrine function, contributing to pregnancy complications and possible transgenerational effects. Prenatal air pollution exposure has been linked to reduced cognitive and motor function in infants and newborns, increasing the predisposition to autism spectrum disorders and other neuropsychiatric disorders. This review also summarizes the use of various animal models to study the harmful effects of air pollution on pregnancy and postnatal outcomes. These findings provide valuable insight into the molecular events associated with the process and can aid in risk mitigation and adopting safety measures. Implementing effective environmental protocols and taking appropriate steps may reduce the global disease burden, particularly for developing nations with poor regulatory compliance and large populations of pregnant women.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Isha Goel
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Smita Tripathi
- Department of Biochemistry, Lady Harding Medical College, New Delhi, India
| | - Ashok Ahirwar
- Department of Lab Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Habsiguda, Hyderabad, India
| | - Anubhuti Rana
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India.
| |
Collapse
|
5
|
Guo X, Ren H, Sun P, Ding E, Fang J, Fang K, Ma X, Li C, Li C, Xu Y, Cao K, Lin EZ, Guo P, Pollitt KJG, Tong S, Tang S, Shi X. Personal exposure to airborne organic pollutants and lung function changes among healthy older adults. ENVIRONMENTAL RESEARCH 2024; 258:119411. [PMID: 38876423 DOI: 10.1016/j.envres.2024.119411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Epidemiological evidence on the impact of airborne organic pollutants on lung function among the elderly is limited, and their underlying biological mechanisms remain largely unexplored. Herein, a longitudinal panel study was conducted in Jinan, Shandong Province, China, involving 76 healthy older adults monitored over a span of five months repetitively. We systematically evaluated personal exposure to a diverse range of airborne organic pollutants using a wearable passive sampler and their effects on lung function. Participants' pulmonary function indicators were assessed, complemented by comprehensive multi-omics analyses of blood and urine samples. Leveraging the power of interaction analysis, causal inference test (CIT), and integrative pathway analysis (IPA), we explored intricate relationships between specific organic pollutants, biomolecules, and lung function deterioration, elucidating the biological mechanisms underpinning the adverse impacts of these pollutants. We observed that bis (2-chloro-1-methylethyl) ether (BCIE) was significantly associated with negative changes in the forced vital capacity (FVC), with glycerolipids mitigating this adverse effect. Additionally, 31 canonical pathways [e.g., high mobility group box 1 (HMGB1) signaling, phosphatidylinositol 3-kinase (PI3K)/AKT pathway, epithelial mesenchymal transition, and heme and nicotinamide adenine dinucleotide (NAD) biosynthesis] were identified as potential mechanisms. These findings may hold significant implications for developing effective strategies to prevent and mitigate respiratory health risks arising from exposure to such airborne pollutants. However, due to certain limitations of the study, our results should be interpreted with caution.
Collapse
Affiliation(s)
- Xiaojie Guo
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Huimin Ren
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, China Medical University, Shenyang, Liaoning 110001, China
| | - Peijie Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, China Medical University, Shenyang, Liaoning 110001, China
| | - Enmin Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ke Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiao Ma
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, Shandong University, Jinan, Shandong 250100, China
| | - Chenfeng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chenlong Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, Shandong University, Jinan, Shandong 250100, China
| | - Yibo Xu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, China Medical University, Shenyang, Liaoning 110001, China
| | - Kangning Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510, USA
| | - Pengfei Guo
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510, USA
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510, USA
| | - Shilu Tong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health and Social Work, Queensland University of Technology, Brisbane 4001, Australia
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
6
|
Baranyi G, Williamson L, Feng Z, Carnell E, Vieno M, Dibben C. Higher air pollution exposure in early life is associated with worse health among older adults: A 72-year follow-up study from Scotland. Health Place 2024; 86:103208. [PMID: 38367322 DOI: 10.1016/j.healthplace.2024.103208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
Air pollution increases the risk of mortality and morbidity. However, limited evidence exists on the very long-term associations between early life air pollution exposure and health, as well as on potential pathways. This study explored the relationship between fine particle (PM2.5) exposure at age 3 and limiting long-term illness (LLTI) at ages 55, 65 and 75 using data from the Scottish Longitudinal Study Birth Cohort 1936, a representative administrative cohort study. We found that early life PM2.5 exposure was associated with higher odds of LLTI in mid-to-late adulthood (OR = 1.10, 95% CI: 1.06, 1.14 per 10 μg m-3 increment) among the 2085 participants, with stronger associations among those growing up in disadvantaged families. Path analyses suggested that 15-21% of the association between early life PM2.5 concentrations and LLTI at age 65 (n = 1406) was mediated through childhood cognitive ability, educational qualifications, and adult social position. Future research should capitalise on linked administrative and health data, and explore causal mechanisms between environment and specific health conditions across the life course.
Collapse
Affiliation(s)
- Gergő Baranyi
- Centre for Research on Environment, Society and Health, School of GeoSciences, The University of Edinburgh, Edinburgh, United Kingdom.
| | - Lee Williamson
- Centre for Research on Environment, Society and Health, School of GeoSciences, The University of Edinburgh, Edinburgh, United Kingdom; Longitudinal Studies Centre - Scotland, School of GeoSciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Zhiqiang Feng
- Centre for Research on Environment, Society and Health, School of GeoSciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Edward Carnell
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, United Kingdom
| | - Massimo Vieno
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, United Kingdom
| | - Chris Dibben
- Centre for Research on Environment, Society and Health, School of GeoSciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Saxena K. Association Between Maternal Prenatal Exposure to Household Air Pollution and Child Respiratory Health: A Systematic Review and Meta-analysis. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:29-40. [PMID: 38559464 PMCID: PMC10964821 DOI: 10.59249/tavr4964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Maternal prenatal exposure to household air pollution (HAP) is a critical public health concern with potential long-term implications for child respiratory health. The objective of this study is to assess the level of association between prenatal household air pollution and child respiratory health, and to identify which HAP pollutants are associated with specific respiratory illnesses or symptoms and to what degree. Relevant studies were retrieved from PubMed databases up to April 27, 2010, and their reference lists were reviewed. Random effects models were applied to estimate summarized relative risks (RRs) and 95% confidence intervals (CIs). The analysis involved 11 studies comprising 387 767 mother-child pairs in total, assessing various respiratory health outcomes in children exposed to maternal prenatal HAP. Children with prenatal exposure to HAP pollutants exhibited a summary RR of 1.26 (95% CI=1.08-1.33) with moderate between-study heterogeneity (I²=49.22%) for developing respiratory illnesses. Specific associations were found between prenatal exposure to carbon monoxide (CO) (RR=1.11, 95% CI: 1.09-1.13), Nitrogen Oxides (NOx) (RR=1.46, 95% CI: 1.09-1.60), and particulate matter (PM) (RR=1.26, 95% CI: 1.2186-1.3152) and child respiratory illnesses (all had I² close to 0%, indicating no heterogeneity). Positive associations with child respiratory illnesses were also found with ultrafine particles (UFP), polycyclic aromatic hydrocarbons (PAH), and ozone (O3). However, no significant association was observed for prenatal exposure to sulfur dioxide (SO2). In summary, maternal prenatal exposure to HAP may contribute to a higher risk of child respiratory health issues, emphasizing the need for interventions to reduce this exposure during pregnancy. Targeted public health strategies such as improved ventilation, cleaner cooking technologies, and awareness campaigns should be implemented to minimize adverse respiratory effects on children.
Collapse
|
8
|
Johnson M, Mazur L, Fisher M, Fraser WD, Sun L, Hystad P, Gandhi CK. Prenatal Exposure to Air Pollution and Respiratory Distress in Term Newborns: Results from the MIREC Prospective Pregnancy Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:17007. [PMID: 38271058 PMCID: PMC10810300 DOI: 10.1289/ehp12880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 11/03/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Respiratory distress is the leading cause of neonatal morbidity and mortality worldwide, and prenatal exposure to air pollution is associated with adverse long-term respiratory outcomes; however, the impact of prenatal air pollution exposure on neonatal respiratory distress has not been well studied. OBJECTIVES We examined associations between prenatal exposures to fine particular matter (PM 2.5 ) and nitrogen dioxide (NO 2 ) with respiratory distress and related neonatal outcomes. METHODS We used data from the Maternal-Infant Research on Environmental Chemicals (MIREC) Study, a prospective pregnancy cohort (n = 2,001 ) recruited in the first trimester from 10 Canadian cities. Prenatal exposures to PM 2.5 (n = 1,321 ) and NO 2 (n = 1,064 ) were estimated using land-use regression and satellite-derived models coupled with ground-level monitoring and linked to participants based on residential location at birth. We calculated odds ratios (ORs) and 95% confidence intervals (CIs) for associations between air pollution and physician-diagnosed respiratory distress in term neonates in hierarchical logistic regression models adjusting for detailed maternal and infant covariates. RESULTS Approximately 7 % of newborns experienced respiratory distress. Neonates received clinical interventions including oxygen therapy (6%), assisted ventilation (2%), and systemic antibiotics (3%). Two percent received multiple interventions and 4% were admitted to the neonatal intensive care unit (NICU). Median PM 2.5 and NO 2 concentrations during pregnancy were 8.81 μ g / m 3 and 18.02 ppb , respectively. Prenatal exposures to air pollution were not associated with physician-diagnosed respiratory distress, oxygen therapy, or NICU admissions. However, PM 2.5 exposures were strongly associated with assisted ventilation (OR per 1 - μ g / m 3 increase in PM 2.5 = 1.17 ; 95% CI: 1.02, 1.35), multiple clinical interventions (OR per 1 - μ g / m 3 increase in PM 2.5 = 1.16 ; 95% CI: 1.07, 1.26), and systemic antibiotics, (OR per 1 - μ g / m 3 increase in PM 2.5 = 1.12 ; 95% CI: 1.04, 1.21). These associations were consistent across exposure periods-that is, during prepregnancy, individual trimesters, and total pregnancy-and robust to model specification. NO 2 exposure was associated with administration of systemic antibiotics (OR per 1-ppb increase in NO 2 = 1.03 ; 95% CI: 1.00, 1.06). DISCUSSION Prenatal exposures to PM 2.5 increased the risk of severe respiratory distress among term newborns. These findings support the development and prioritization of public health and prenatal care strategies to increase awareness and minimize prenatal exposures to air pollution. https://doi.org/10.1289/EHP12880.
Collapse
Affiliation(s)
- Markey Johnson
- Water and Air Quality Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Lauren Mazur
- Department of Pediatrics, Penn State College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Mandy Fisher
- Environmental Health Sciences and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - William D. Fraser
- Department of Obstetrics and Gynecology, Centre de Recherche du CHUS, University of Sherbrooke, Sherbrooke, Québec, Canada
| | - Liu Sun
- Water and Air Quality Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Perry Hystad
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Chintan K. Gandhi
- Department of Pediatrics, Penn State College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, USA
| |
Collapse
|
9
|
Bravo MA, Zephyr D, Fiffer MR, Miranda ML. Weekly prenatal PM 2.5 and NO 2 exposures in preterm, early term, and full term infants: Decrements in birth weight and critical windows of susceptibility. ENVIRONMENTAL RESEARCH 2024; 240:117509. [PMID: 37890819 PMCID: PMC10842146 DOI: 10.1016/j.envres.2023.117509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Previous studies have observed associations between birth weight and prenatal air pollution exposure, but there is not consensus on timing of critical windows of susceptibility. OBJECTIVE We estimated the difference in birth weight among preterm, early term and full term births associated with weekly exposure to PM2.5 and NO2 throughout gestation. METHODS We included all singleton live births in the Lower Peninsula of Michigan (United States) between 2007 and 2012 occurring at or after 32 weeks gestational age (n = 497,897). Weekly ambient PM2.5 and NO2 concentrations were estimated at maternal residences using 1-km gridded data from ensemble-based models. We utilized a distributed lag nonlinear model to estimate the difference in birth weight associated with weekly exposures from the last menstrual period (week 0) through 31 weeks gestation for preterm births; through 36 weeks gestation for early term births; and through 38 weeks gestation for full term births. RESULTS In single-pollutant models, a 5 μg/m3 increase in PM2.5 exposure was associated with a reduction in birth weight among preterm births (-37.1 g [95% confidence interval [CI]: 60.8 g, -13.5 g]); early term births (-13.5 g [95% CI: 26.2 g, -0.67 g]); and full term births (-8.23 g [95% CI: 15.8 g, -0.68 g])]. In single-pollutant models, a 10 ppb increase in NO2 exposure was associated with a -11.7 g (95% CI: 14.46 g, -8.92 g) decrement in birth weight among full term births only. In models co-adjusted for PM2.5 and NO2, PM2.5 exposure was associated with reduced birth weight among preterm births (-36.9 g [95% CI: 61.9 g, -11.8 g]) and NO2 exposure was associated with reduced birth weight among full term births (-11.8 g [95% CI: 14.7 g, -8.94 g]). The largest decrements in birth weight were associated with PM2.5 exposure between approximately 10 and 26 weeks of pregnancy; for NO2 exposure, the largest decrements in birth weight in full term births were associated with exposure between weeks 6-18. CONCLUSION We observed the largest and most persistent adverse associations between PM2.5 exposure and birth weight in preterm infants, and between NO2 exposure and birth weight in full term infants. Exposure during the first half of pregnancy had a greater impact on birthweight.
Collapse
Affiliation(s)
- Mercedes A Bravo
- Global Health Institute, School of Medicine, Duke University, Durham, NC, USA; Children's Environmental Health Initiative, University of Illinois Chicago, Chicago, IL, USA.
| | - Dominique Zephyr
- Children's Environmental Health Initiative, University of Illinois Chicago, Chicago, IL, USA
| | - Melissa R Fiffer
- Children's Environmental Health Initiative, University of Illinois Chicago, Chicago, IL, USA
| | - Marie Lynn Miranda
- Children's Environmental Health Initiative, University of Illinois Chicago, Chicago, IL, USA; Department of Pediatrics, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|