1
|
Zhang NR, Zheng ZN, Wang K, Li H. Incidence, characteristics and risk factors for alveolar recruitment maneuver-related hypotension in patients undergoing laparoscopic colorectal cancer resection. World J Gastrointest Surg 2023; 15:1454-1464. [PMID: 37555120 PMCID: PMC10405128 DOI: 10.4240/wjgs.v15.i7.1454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Alveolar recruitment maneuvers (ARMs) may lead to transient hypotension, but the clinical characteristics of this induced hypotension are poorly understood. We investigated the characteristics of ARM-related hypotension in patients who underwent laparoscopic colorectal cancer resection. AIM To investigate the characteristics of ARM-related hypotension in patients who underwent laparoscopic colorectal cancer resection. METHODS This was a secondary analysis of the PROtective Ventilation using Open Lung approach Or Not trial and included 140 subjects. An ARM was repeated every 30 min during intraoperative mechanical ventilation. The primary endpoint was ARM-related hypotension, defined as a mean arterial pressure (MAP) < 60 mmHg during an ARM or within 5 min after an ARM. The risk factors for hypotension were identified. The peri-ARM changes in blood pressure were analyzed for the first three ARMs (ARM1,2,3) and the last ARM (ARMlast). RESULTS Thirty-four subjects (24.3%) developed ARM-related hypotension. Of all 1027 ARMs, 37 (3.61%) induced hypotension. More ARMs under nonpneumoperitoneum (33/349, 9.46%) than under pneumoperitoneum conditions (4/678, 0.59%) induced hypotension (P < 0.01). The incidence of hypotension was higher at ARM1 points than at non-ARM1 points (18/135, 13.3% vs 19/892, 2.1%; P < 0.01). The median percentage decrease in the MAP at ARM1 was 14%. Age ≥ 74 years, blood loss ≥ 150 mL and peak inspiratory pressure under pneumoperitoneum < 24 cm H2O were risk factors for ARM-related hypotension. CONCLUSION When the ARM was repeated intraoperatively, a quarter of subjects developed ARM-related hypotension, but only 3.61% of ARMs induced hypotension. ARM-related hypotension most occurred in a hemodynamically unstable state or a hypovolemic state, and in elderly subjects. Fortunately, ARMs that were performed under pneumoperitoneum conditions had less impact on blood pressure.
Collapse
Affiliation(s)
- Nan-Rong Zhang
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong Province, China
| | - Zhi-Nan Zheng
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong Province, China
| | - Kai Wang
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong Province, China
| | - Hong Li
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong Province, China
| |
Collapse
|
2
|
Vivona L, Huhle R, Braune A, Scharffenberg M, Wittenstein J, Kiss T, Kircher M, Herzog P, Herzog M, Millone M, Gama de Abreu M, Bluth T. Variable ventilation versus stepwise lung recruitment manoeuvres for lung recruitment: A comparative study in an experimental model of atelectasis. Eur J Anaesthesiol 2023; 40:501-510. [PMID: 36809307 DOI: 10.1097/eja.0000000000001808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
BACKGROUND Variable ventilation recruits alveoli in atelectatic lungs, but it is unknown how it compares with conventional recruitment manoeuvres. OBJECTIVES To test whether mechanical ventilation with variable tidal volumes and conventional recruitment manoeuvres have comparable effects on lung function. DESIGN Randomised crossover study. SETTING University hospital research facility. ANIMALS Eleven juvenile mechanically ventilated pigs with atelectasis created by saline lung lavage. INTERVENTIONS Lung recruitment was performed using two strategies, both with an individualised optimal positive-end expiratory pressure (PEEP) associated with the best respiratory system elastance during a decremental PEEP trial: conventional recruitment manoeuvres (stepwise increase of PEEP) in pressure-controlled mode) followed by 50 min of volume-controlled ventilation (VCV) with constant tidal volume, and variable ventilation, consisting of 50 min of VCV with random variation in tidal volume. MAIN OUTCOME MEASURES Before and 50 min after each recruitment manoeuvre strategy, lung aeration was assessed by computed tomography, and relative lung perfusion and ventilation (0% = dorsal, 100% = ventral) were determined by electrical impedance tomography. RESULTS After 50 min, variable ventilation and stepwise recruitment manoeuvres decreased the relative mass of poorly and nonaerated lung tissue (percent lung mass: 35.3 ± 6.2 versus 34.2 ± 6.6, P = 0.303); reduced poorly aerated lung mass compared with baseline (-3.5 ± 4.0%, P = 0.016, and -5.2 ± 2.8%, P < 0.001, respectively), and reduced nonaerated lung mass compared with baseline (-7.2 ± 2.5%, P < 0.001; and -4.7 ± 2.8%, P < 0.001 respectively), while the distribution of relative perfusion was barely affected (variable ventilation: -0.8 ± 1.1%, P = 0.044; stepwise recruitment manoeuvres: -0.4 ± 0.9%, P = 0.167). Compared with baseline, variable ventilation and stepwise recruitment manoeuvres increased Pa O 2 (172 ± 85mmHg, P = 0.001; and 213 ± 73 mmHg, P < 0.001, respectively), reduced Pa CO 2 (-9.6 ± 8.1 mmHg, P = 0.003; and -6.7 ± 4.6 mmHg, P < 0.001, respectively), and decreased elastance (-11.4 ± 6.3 cmH 2 O, P < 0.001; and -14.1 ± 3.3 cmH 2 O, P < 0.001, respectively). Mean arterial pressure decreased during stepwise recruitment manoeuvres (-24 ± 8 mmHg, P = 0.006), but not variable ventilation. CONCLUSION In this model of lung atelectasis, variable ventilation and stepwise recruitment manoeuvres effectively recruited lungs, but only variable ventilation did not adversely affect haemodynamics. TRIAL REGISTRATION This study was registered and approved by Landesdirektion Dresden, Germany (DD24-5131/354/64).
Collapse
Affiliation(s)
- Luigi Vivona
- From the Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany (LV, RH, AB, MS, JW, TK, PH, MH, MM, MGA, TB), Department of Pathophysiology and Transplantation, University of Milan, Italy (LV), Institute of Nuclear Medicine, University Hospital Carl Gustav Carus, Dresden (AB), Department of Anesthesiology, Elblandklinikum Radebeul, Radebeul (TK), Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe (MK), Drägerwerk AG & Co KGaA, Lübeck, Germany (MK), IRCCS San Martino IST, Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy (MM), Department of Intensive Care and Resuscitation (MGA) and Department of Outcomes Research, Anesthesiology Institute, Cleveland Clinic, Cleveland, Ohio, USA (MGA)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Battaglini D, Fazzini B, Silva PL, Cruz FF, Ball L, Robba C, Rocco PRM, Pelosi P. Challenges in ARDS Definition, Management, and Identification of Effective Personalized Therapies. J Clin Med 2023; 12:1381. [PMID: 36835919 PMCID: PMC9967510 DOI: 10.3390/jcm12041381] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Over the last decade, the management of acute respiratory distress syndrome (ARDS) has made considerable progress both regarding supportive and pharmacologic therapies. Lung protective mechanical ventilation is the cornerstone of ARDS management. Current recommendations on mechanical ventilation in ARDS include the use of low tidal volume (VT) 4-6 mL/kg of predicted body weight, plateau pressure (PPLAT) < 30 cmH2O, and driving pressure (∆P) < 14 cmH2O. Moreover, positive end-expiratory pressure should be individualized. Recently, variables such as mechanical power and transpulmonary pressure seem promising for limiting ventilator-induced lung injury and optimizing ventilator settings. Rescue therapies such as recruitment maneuvers, vasodilators, prone positioning, extracorporeal membrane oxygenation, and extracorporeal carbon dioxide removal have been considered for patients with severe ARDS. Regarding pharmacotherapies, despite more than 50 years of research, no effective treatment has yet been found. However, the identification of ARDS sub-phenotypes has revealed that some pharmacologic therapies that have failed to provide benefits when considering all patients with ARDS can show beneficial effects when these patients were stratified into specific sub-populations; for example, those with hyperinflammation/hypoinflammation. The aim of this narrative review is to provide an overview on current advances in the management of ARDS from mechanical ventilation to pharmacological treatments, including personalized therapy.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy
| | - Brigitta Fazzini
- Adult Critical Care Unit, Royal London Hospital, Barts Health NHS Trust, Whitechapel, London E1 1BB, UK
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Lorenzo Ball
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 15145 Genoa, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 15145 Genoa, Italy
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 15145 Genoa, Italy
| |
Collapse
|
4
|
Ellenberger C, Pelosi P, de Abreu MG, Wrigge H, Diaper J, Hagerman A, Adam Y, Schultz MJ, Licker M. Distribution of ventilation and oxygenation in surgical obese patients ventilated with high versus low positive end-expiratory pressure: A substudy of a randomised controlled trial. Eur J Anaesthesiol 2022; 39:875-884. [PMID: 36093886 PMCID: PMC9553219 DOI: 10.1097/eja.0000000000001741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND Intra-operative ventilation using low/physiological tidal volume and positive end-expiratory pressure (PEEP) with periodic alveolar recruitment manoeuvres (ARMs) is recommended in obese surgery patients. OBJECTIVES To investigate the effects of PEEP levels and ARMs on ventilation distribution, oxygenation, haemodynamic parameters and cerebral oximetry. DESIGN A substudy of a randomised controlled trial. SETTING Tertiary medical centre in Geneva, Switzerland, between 2015 and 2018. PATIENTS One hundred and sixty-two patients with a BMI at least 35 kg per square metre undergoing elective open or laparoscopic surgery lasting at least 120 min. INTERVENTION Patients were randomised to PEEP of 4 cmH 2 O ( n = 79) or PEEP of 12 cmH 2 O with hourly ARMs ( n = 83). MAIN OUTCOME MEASURES The primary endpoint was the fraction of ventilation in the dependent lung as measured by electrical impedance tomography. Secondary endpoints were the oxygen saturation index (SaO 2 /FIO 2 ratio), respiratory and haemodynamic parameters, and cerebral tissue oximetry. RESULTS Compared with low PEEP, high PEEP was associated with smaller intra-operative decreases in dependent lung ventilation [-11.2%; 95% confidence interval (CI) -8.7 to -13.7 vs. -13.9%; 95% CI -11.7 to -16.5; P = 0.029], oxygen saturation index (-49.6%; 95% CI -48.0 to -51.3 vs. -51.3%; 95% CI -49.6 to -53.1; P < 0.001) and a lower driving pressure (-6.3 cmH 2 O; 95% CI -5.7 to -7.0). Haemodynamic parameters did not differ between the groups, except at the end of ARMs when arterial pressure and cardiac index decreased on average by -13.7 mmHg (95% CI -12.5 to -14.9) and by -0.54 l min -1 m -2 (95% CI -0.49 to -0.59) along with increased cerebral tissue oximetry (3.0 and 3.2% on left and right front brain, respectively). CONCLUSION In obese patients undergoing abdominal surgery, intra-operative PEEP of 12 cmH 2 O with periodic ARMs, compared with intra-operative PEEP of 4 cmH 2 O without ARMs, slightly redistributed ventilation to dependent lung zones with minor improvements in peripheral and cerebral oxygenation. TRIAL REGISTRATION NCT02148692, https://clinicaltrials.gov/ct2.
Collapse
Affiliation(s)
- Christoph Ellenberger
- From the Department of Anaesthesia, Pharmacology, Intensive Care and Emergency Medicine, University Hospital of Geneva, rue Gabriel-Perret-Gentil (CE, JD, AH, YA, ML), Faculty of Medicine, University of Geneva, Geneva, Switzerland (CE, ML), Department of Surgical Sciences and Integrated Diagnostics, University of Genoa (PP), Anaesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (PP), Pulmonary Engineering Group, Department of Anaesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus, Dresden, Germany (MGdA), Department of Outcomes Research (MGdA), Department of Intensive Care and Resuscitation, Anesthesiology Institute, Cleveland Clinic, Cleveland, Ohio, USA (MGdA), Department of Anaesthesiology, Intensive Care and Emergency Medicine, Pain Therapy, Bergmannstrost Hospital (HW), Medical Faculty, Martin-Luther-University Halle-Wittenberg, Halle, Germany (HW), Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands (MJS)
| | | | | | | | | | | | | | | | | |
Collapse
|