Zhang X, Shen F, Xu D, Zhao X. A lasting effect of postnatal sevoflurane anesthesia on the composition of NMDA receptor subunits in rat prefrontal cortex.
Int J Dev Neurosci 2016;
54:62-69. [PMID:
27025552 DOI:
10.1016/j.ijdevneu.2016.01.008]
[Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 01/21/2016] [Accepted: 01/21/2016] [Indexed: 01/28/2023] Open
Abstract
Sevoflurane is widely used in pediatric anesthesia and studies have shown that it is capable of inducing neurodegeneration and subsequent cognitive disorders in the developing brain. However, the evidence that anesthetics are toxic to the human brain is insufficient. N-Methyl-d-aspartate (NMDA) receptors, critical for learning and memory, display expression changes with age and can be modulated by inhalation anesthetics. Generally, NMDA receptor (NR) type 1 is expressed at birth, peaks around the third postnatal week, and then declines slightly to adult levels. NR2Bs slowly decrease and NR2As gradually increase during postnatal development. These developmental switches of NMDA receptor subunits composition mark the transition from immature to adult neural processing and allow for the final maturation of associative learning abilities. In this study, we aimed to evaluate the effect of repeated sevoflurane anesthesia on NMDA receptor subunits composition in the developing rat brain and related behavioral disorders. Six-day-old male Sprague Dawley rats were randomly allocated into either a control group (group con) or a sevoflurane group (group sevo). Group sevo inhaled 2.1% sevoflurane carried by 70% oxygen for 2h each day from postnatal day (PND) 6 to PND 8. The same procedure, without applying the sevoflurane, was executed in group con. The membrane protein expression of NR1, NR2A and NR2B in the prefrontal cortex (PFC) and hippocampus was assessed at the end of the three days of anesthesia and at PND 21. An open field test was carried out to assess spontaneous locomotion on PNDs 21, 28 and 35. Y maze performance was used to assess attention and working memory on PND 28. Sevoflurane induced upregulation of NR1 and NR2B in the PFC at the end of anesthesia. On PND 21, NR1 and NR2B receptors were significantly increased whereas NR2A receptors were significantly decreased in the PFC in group sevo. Sevoflurane-treated rats showed hyper-locomotion and impairment of working memory in the behavior tests. These results indicate that repeated sevoflurane anesthesia at early stage of life can induce a long lasting effect of interfering with NMDA receptor subunits composition in rat PFC. These changes may contribute to the effects of sevoflurane on neuronal development and subsequent neurobehavioral disorders.
Collapse