Batra R, Jain V, Sharma P. Adenosine: a partially discovered medicinal agent.
FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021;
7:214. [PMID:
34697594 PMCID:
PMC8529566 DOI:
10.1186/s43094-021-00353-w]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
Background
A plethora of chemicals exists in human body which can alter physiology in one way or other. Scientists have always been astounded by such abilities of chemicals but as the technology advances, even the chemical which was once expected to be well known changes its status to not really well known. Adenosine is one of the chemicals which is in consonance with the aforementioned statements, although previous articles have covered vast information on role of adenosine in cardiovascular physiology, bacterial pathophysiology and inflammatory diseases. In this review we have discussed adenosine and its congeners as potential promising agents in the treatment of Huntington’s disease, post-traumatic stress disorder, erectile dysfunction, viral infections (SARS-CoV) and anxiety.
Main text
Adenosine is a unique metabolite of ATP; which serves in signalling as well. It is made up of adenine (a nitrogenous base) and ribo-furanose (pentose) sugar linked by β-N9-glycosidic bond. Adenosine on two successive phosphorylation forms ATP (Adenosine Triphosphate) which is involved in several active processes of cell. It is also one of the building blocks (nucleotides) involved in DNA (Deoxy-ribonucleic Acid) and RNA (Ribonucleic Acid) synthesis. It is also a component of an enzyme called S-adenosyl-L-methionine (SAM) and cyano-cobalamin (vitamin B-12). Adenosine acts by binding to G protein-coupled receptor (GPCR: A1, A2A, A2B and A3) carries out various responses some of which are anti-platelet function, hyperaemic response, bone remodelling, involvement in penile erection and suppression of inflammation. On the other hand, certain microorganisms belonging to genus Candida, Staphylococcus and Bacillus utilize adenosine in order to escape host immune response (phagocytic clearance). These microbes evade host immune response by synthesizing and releasing adenosine (with the help of an enzyme: adenosine synthase-A), at the site of infection.
Conclusion
With the recent advancement in attribution of adenosine in physiology and pathological states, adenosine and its congeners are being looked forward to bringing a revolution in treatment of inflammation, viral infections, psychiatric and neurodegenerative disorders.
Collapse