1
|
Li W, Mou S, Ali T, Li T, Liu Y, Li S, Yu X, Yu ZJ. Bmal1 haploinsufficiency impairs fear memory and modulates neuroinflammation via the 5-HT2C receptor. Front Pharmacol 2024; 15:1422693. [PMID: 39611170 PMCID: PMC11602290 DOI: 10.3389/fphar.2024.1422693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024] Open
Abstract
Background BMAL1, a key regulator of circadian rhythms, plays a multifaceted role in brain function. However, the complex interplay between BMAL1, memory, neuroinflammation, and neurotransmitter regulation remains poorly understood. To investigate these interactions, we conducted a study using BMAL1-haplodeficient mice (BMAL1+/-). Methods We exposed BMAL1+/- mice to behavioral assessments including cued fear conditioning, new objection recognition (NOR) test, and Y-maze test to evaluate BMAL1+/- haplodeficiency impact on memory. Furthermore, biochemical changes were analyzed through western blotting, and ELISA to explore further the mechanism of BMAL1+/- in memory, and neuroinflammation. Results We found that BMAL1 haploinsufficiency led to deficits in cued fear learning and memory, while spatial memory and object recognition remained intact. Further analysis revealed dysregulated neurotransmitter levels and alterations in neurotransmitter-related proteins in the prefrontal cortex of BMAL1+/- mice. Pharmacological interventions targeting dopamine uptake or the 5-HT2C receptor demonstrated that inhibiting the 5-HT2C receptor could rescue fear learning and memory impairments in BMAL1+/- mice. Additionally, we observed downregulation of the inflammasome and neuroinflammation pathways in BMAL1+/- mice, which is validated by inflammation mediator lipopolysaccharide (LPS) administration. Conclusion These findings highlight that BMAL1 haploinsufficiency leads to deficits in fear learning and memory, which are linked to alterations in neurotransmitters and receptors, particularly the 5-HT2C receptor. Targeting the 5-HT2C receptor may offer a potential therapeutic strategy for mitigating cognitive impairments associated with BMAL1 dysfunction.
Collapse
Affiliation(s)
- Weifen Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Shengnan Mou
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Tahir Ali
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Tianxiang Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yan Liu
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Xiaoming Yu
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhi-Jian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
2
|
Pierson SR, Kolling LJ, James TD, Pushpavathi SG, Marcinkiewcz CA. Serotonergic dysfunction may mediate the relationship between alcohol consumption and Alzheimer's disease. Pharmacol Res 2024; 203:107171. [PMID: 38599469 PMCID: PMC11088857 DOI: 10.1016/j.phrs.2024.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
The impact of Alzheimer's disease (AD) and its related dementias is rapidly expanding, and its mitigation remains an urgent social and technical challenge. To date there are no effective treatments or interventions for AD, but recent studies suggest that alcohol consumption is correlated with the risk of developing dementia. In this review, we synthesize data from preclinical, clinical, and epidemiological models to evaluate the combined role of alcohol consumption and serotonergic dysfunction in AD, underscoring the need for further research on this topic. We first discuss the limitations inherent to current data-collection methods, and how neuropsychiatric symptoms common among AD, alcohol use disorder, and serotonergic dysfunction may mask their co-occurrence. We additionally describe how excess alcohol consumption may accelerate the development of AD via direct effects on serotonergic function, and we explore the roles of neuroinflammation and proteostasis in mediating the relationship between serotonin, alcohol consumption, and AD. Lastly, we argue for a shift in current research to disentangle the pathogenic effects of alcohol on early-affected brainstem structures in AD.
Collapse
Affiliation(s)
- Samantha R Pierson
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | - Louis J Kolling
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | - Thomas D James
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | | | | |
Collapse
|
3
|
Eremin DV, Kondaurova EM, Rodnyy AY, Molobekova CA, Kudlay DA, Naumenko VS. Serotonin Receptors as a Potential Target in the Treatment of Alzheimer's Disease. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2023-2042. [PMID: 38462447 DOI: 10.1134/s0006297923120064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 03/12/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide that has an increasing impact on aging societies. Besides its critical role in the control of various physiological functions and behavior, brain serotonin (5-HT) system is involved in the regulation of migration, proliferation, differentiation, maturation, and programmed death of neurons. At the same time, a growing body of evidence indicates the involvement of 5-HT neurotransmission in the formation of insoluble aggregates of β-amyloid and tau protein, the main histopathological signs of AD. The review describes the role of various 5-HT receptors and intracellular signaling cascades induced by them in the pathological processes leading to the development of AD, first of all, in protein aggregation. Changes in the functioning of certain types of 5-HT receptors or associated intracellular signaling mediators prevent accumulation of β-amyloid plaques and tau protein neurofibrillary tangles. Based on the experimental data, it can be suggested that the use of 5-HT receptors as new drug targets will not only improve cognitive performance in AD, but will be also important in treating the causes of AD-related dementia.
Collapse
Affiliation(s)
- Dmitrii V Eremin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Elena M Kondaurova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Aleksander Ya Rodnyy
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Camilla A Molobekova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Dmitrii A Kudlay
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Vladimir S Naumenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
4
|
Therapeutic Potential and Limitation of Serotonin Type 7 Receptor Modulation. Int J Mol Sci 2023; 24:ijms24032070. [PMID: 36768393 PMCID: PMC9916679 DOI: 10.3390/ijms24032070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Although a number of mood-stabilising atypical antipsychotics and antidepressants modulate serotonin type 7 receptor (5-HT7), the detailed contributions of 5-HT7 function to clinical efficacy and pathophysiology have not been fully understood. The mood-stabilising antipsychotic agent, lurasidone, and the serotonin partial agonist reuptake inhibitor, vortioxetine, exhibit higher binding affinity to 5-HT7 than other conventional antipsychotics and antidepressants. To date, the initially expected rapid onset of antidepressant effects-in comparison with conventional antidepressants or mood-stabilising antipsychotics-due to 5-HT7 inhibition has not been observed with lurasidone and vortioxetine; however, several clinical studies suggest that 5-HT7 inhibition likely contributes to quality of life of patients with schizophrenia and mood disorders via the improvement of cognition. Furthermore, recent preclinical studies reported that 5-HT7 inhibition might mitigate antipsychotic-induced weight gain and metabolic complication by blocking other monoamine receptors. Further preclinical studies for the development of 5-HT7 modulation against neurodevelopmental disorders and neurodegenerative diseases have been ongoing. To date, various findings from various preclinical studies indicate the possibility that 5-HT7 modifications can provide two independent strategies. The first is that 5-HT7 inhibition ameliorates the dysfunction of inter-neuronal transmission in mature networks. The other is that activation of 5-HT7 can improve transmission dysfunction due to microstructure abnormality in the neurotransmission network-which could be unaffected by conventional therapeutic agents-via modulating intracellular signalling during the neurodevelopmental stage or via loss of neural networks with aging. This review attempts to describe the current and novel clinical applications of 5-HT7 modulation based on preclinical findings.
Collapse
|
5
|
Zhang T, Sun L, Wang T, Liu C, Zhang H, Zhang C, Yu L. Gestational exposure to PM 2.5 leads to cognitive dysfunction in mice offspring via promoting HMGB1-NLRP3 axis mediated hippocampal inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112617. [PMID: 34385058 DOI: 10.1016/j.ecoenv.2021.112617] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
PM2.5 is recently identified as a kind of material possessing severe biohazard. It can enter human body and exerts pathological effects on lung, eyes, and the central nervous system (CNS). Maternal exposure to PM2.5 can affect neural development and cause cognitive decline in offspring, with the underlying mechanisms unclear, however. The inflammasome monitors and responds to biological stressors, with HMGB1-NLRP3 inflammatory axis as an essential pathophysiological player outside the brain. The present work is to investigate its role in cognitive impairment induced by gestational exposure to PM2.5 in mice offspring. We found that HMGB1-NLRP3 pathway was activated in the hippocampus of mice offspring by gestational exposure to PM2.5 in a dose-dependent manner, with protein levels of HMGB1, NLRP3, and cleaved caspase-1 as approximately three times as high as those of control. And down-regulating HMGB1 during pregnancy could alleviate the resultant impairment on learning and working memory as well as hippocampal neurons, up-regulate the synapse related proteins of SYP and PSD-95 and correct the increased expression of 5-HT2A to comparable levels to control, as well as inhibiting the activation of microglia and decreasing the expression of HMGB1 and Iba1/HMGB1 double positive cells in the hippocampus of mice offspring. Meanwhile, protein levels of NLRP3, cleaved caspase-1, IL-1β and IL-18, as well as TLR4, phosphorylated NF-κB, and MAPKs, were almost down-regulated to those of control. Therefore, HMGB1 intervention inhibits the NLRP3 inflammasome mediated hippocampal inflammatory response through TLR4/MAPKs/NF-κB signaling pathway, alleviating PM2.5-induced cognitive dysfunction. Further in vitro results suggest that PM2.5 can activate microglia and HMGB1-NLRP3 inflammatory axis. Pretreatment with HMGB1 inhibitor significantly reduced the phosphorylation of MAPKs and NF-κB, and inhibited the inflammatory response mediated by NLRP3 inflammasome similarly to those in vivo. These results suggest that PM2.5 exposure promotes the inflammatory response in hippocampus mediated by HMGB1-NLRP3 inflammatory axis in microglia, resulting in cognitive dysfunction in offspring, which could be alleviated by simultaneous HMGB1 suppression. These findings provide a theoretical basis for preventing cognitive impairment in offspring caused by environmental pollution during pregnancy.
Collapse
Affiliation(s)
- Tianliang Zhang
- Experimental Center for Medical Research, Weifang Medical University, Weifang, China
| | - Lijuan Sun
- Department of Histology and Embryology, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Tingting Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Chong Liu
- Department of Histology and Embryology, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Haoyun Zhang
- Department of Histology and Embryology, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Li Yu
- Department of Histology and Embryology, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China.
| |
Collapse
|
6
|
Vaseghi S, Nasehi M, Zarrindast MR. How do stupendous cannabinoids modulate memory processing via affecting neurotransmitter systems? Neurosci Biobehav Rev 2020; 120:173-221. [PMID: 33171142 DOI: 10.1016/j.neubiorev.2020.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022]
Abstract
In the present study, we wanted to review the role of cannabinoids in learning and memory in animal models, with respect to their interaction effects with six principal neurotransmitters involved in learning and memory including dopamine, glutamate, GABA (γ-aminobutyric acid), serotonin, acetylcholine, and noradrenaline. Cannabinoids induce a wide-range of unpredictable effects on cognitive functions, while their mechanisms are not fully understood. Cannabinoids in different brain regions and in interaction with different neurotransmitters, show diverse responses. Previous findings have shown that cannabinoids agonists and antagonists induce various unpredictable effects such as similar effect, paradoxical effect, or dualistic effect. It should not be forgotten that brain neurotransmitter systems can also play unpredictable roles in mediating cognitive functions. Thus, we aimed to review and discuss the effect of cannabinoids in interaction with neurotransmitters on learning and memory. In addition, we mentioned to the type of interactions between cannabinoids and neurotransmitter systems. We suggested that investigating the type of interactions is a critical neuropharmacological issue that should be considered in future studies.
Collapse
Affiliation(s)
- Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Dabrowski W, Siwicka-Gieroba D, Gasinska-Blotniak M, Zaid S, Jezierska M, Pakulski C, Williams Roberson S, Wesley Ely E, Kotfis K. Pathomechanisms of Non-Traumatic Acute Brain Injury in Critically Ill Patients. ACTA ACUST UNITED AC 2020; 56:medicina56090469. [PMID: 32933176 PMCID: PMC7560040 DOI: 10.3390/medicina56090469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/27/2022]
Abstract
Delirium, an acute alteration in mental status characterized by confusion, inattention and a fluctuating level of arousal, is a common problem in critically ill patients. Delirium prolongs hospital stay and is associated with higher mortality. The pathophysiology of delirium has not been fully elucidated. Neuroinflammation and neurotransmitter imbalance seem to be the most important factors for delirium development. In this review, we present the most important pathomechanisms of delirium in critically ill patients, such as neuroinflammation, neurotransmitter imbalance, hypoxia and hyperoxia, tryptophan pathway disorders, and gut microbiota imbalance. A thorough understanding of delirium pathomechanisms is essential for effective prevention and treatment of this underestimated pathology in critically ill patients.
Collapse
Affiliation(s)
- Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, 20-954 Lublin, Poland; (D.S.-G.); (M.G.-B.); (M.J.)
- Correspondence: or (W.D.); (K.K.)
| | - Dorota Siwicka-Gieroba
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, 20-954 Lublin, Poland; (D.S.-G.); (M.G.-B.); (M.J.)
| | - Malgorzata Gasinska-Blotniak
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, 20-954 Lublin, Poland; (D.S.-G.); (M.G.-B.); (M.J.)
| | - Sami Zaid
- Department of Anaesthesia, Al-Emadi-Hospital Doha, P.O. Box 5804 Doha, Qatar;
| | - Maja Jezierska
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, 20-954 Lublin, Poland; (D.S.-G.); (M.G.-B.); (M.J.)
| | - Cezary Pakulski
- Department of Anaesthesiology, Intensive Therapy and Emergency Medicine, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland;
| | - Shawniqua Williams Roberson
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center, 1211, Nashville, TN 37232, USA; (S.W.R.); (E.W.E.)
- Department of Neurology, Vanderbilt University Medical Center, 1211, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, 1211, Nashville, TN 37232, USA
| | - Eugene Wesley Ely
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center, 1211, Nashville, TN 37232, USA; (S.W.R.); (E.W.E.)
- Geriatric Research, Education and Clinical Center (GRECC), Tennessee Valley Veterans Affairs Healthcare System, 1310, Nashville, TN 37212, USA
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, 1211, Nashville, TN 37232, USA
| | - Katarzyna Kotfis
- Department of Anaesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University, 70-111 Szczecin, Poland
- Correspondence: or (W.D.); (K.K.)
| |
Collapse
|
8
|
Maitre M, Klein C, Patte-Mensah C, Mensah-Nyagan AG. Tryptophan metabolites modify brain Aβ peptide degradation: A role in Alzheimer's disease? Prog Neurobiol 2020; 190:101800. [PMID: 32360535 DOI: 10.1016/j.pneurobio.2020.101800] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 01/08/2023]
Abstract
Among several processes, a decrease in amyloid-beta (Aβ) peptide elimination is thought to be one of the major pathophysiological factors in Alzheimer's disease (AD). Neprilysin (NEP) is a key metalloproteinase controlling the degradation and clearance of Aβ peptides in the brain. NEP is induced by several pharmacological substances, amyloid deposits and somatostatin, but the physiological regulation of its expression remains unclear. This situation hampers the exploitation of NEP regulatory factors/mechanisms to develop effective strategies against Aβ peptide accumulation-induced brain toxicity. Based on recent data aimed at elucidating this major question, the present paper addresses and critically discusses the role of 5-hydroxyindole-acetic acid (5-HIAA) and kynurenic acid (KYNA) in the regulation of NEP activity/expression in the brain. Both 5-HIAA and KYNA are endogenous metabolites of tryptophan, an essential amino-acid obtained through diet and gut microbiome. By interacting with the aryl hydrocarbon receptor, various tryptophan metabolites modulate several metalloproteinases regulating brain Aβ peptide levels under normal and pathological conditions such as AD. In particular, interesting data reviewed here show that 5-HIAA and KYNA stimulate NEP activity/expression to prevent Aβ peptide-induced neurotoxicity. These data open promising perspectives for the development of tryptophan metabolite-based therapies against AD.
Collapse
Affiliation(s)
- Michel Maitre
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, Strasbourg, France.
| | - Christian Klein
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, Strasbourg, France
| | - Christine Patte-Mensah
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, Strasbourg, France
| | - Ayikoe-Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, Strasbourg, France.
| |
Collapse
|
9
|
Emery S, Fieux S, Vidal B, Courault P, Bouvard S, Tourvieille C, Iecker T, Billard T, Zimmer L, Lancelot S. Preclinical validation of [ 18F]2FNQ1P as a specific PET radiotracer of 5-HT 6 receptors in rat, pig, non-human primate and human brain tissue. Nucl Med Biol 2020; 82-83:57-63. [PMID: 32006785 DOI: 10.1016/j.nucmedbio.2020.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The aim of this study was to perform in-vitro and in-vivo radiopharmacological characterizations of [18F]2FNQ1P, a new PET radiotracer of 5-HT6 receptors, in rat, pig, non-human primate and human tissues. The 5-HT6 receptor is one of the more recently identified serotonin receptors in central nervous system and, because of its role in memory and cognitive processes, is considered as a promising therapeutic target. METHODS In-vitro autoradiography and saturation binding assays were performed in postmortem brain tissues from rat, pig, non-human primate and human caudate nucleus, completed by serum stability assessment in all species and cerebral radiometabolite and biodistribution studies in rat. RESULTS In all species, autoradiography data revealed high binding levels of [18F]2FNQ1P in cerebral regions with high 5-HT6 receptor density. Binding was blocked by addition of SB258585 as a specific antagonist. Binding assays provided KD and Bmax values of respectively 1.34 nM and 0.03 pmol·mg-1 in rat, 0.60 nM and 0.04 pmol·mg-1 in pig, 1.38 nM and 0.07 pmol·mg-1 in non-human primate, and 1.39 nM and 0.15 pmol·mg-1 in human caudate nucleus. In rat brain, the proportion of unmetabolized [18F]2FNQ1P was >99% 5 min after iv injection and 89% at 40 min. The biodistribution studies found maximal radioactivity in lungs and kidneys (3.5 ± 1.2% ID/g and 2.0 ± 0.7% ID/g, respectively, 15 min post-injection). CONCLUSION These radiopharmacological data confirm that [18F]2FNQ1P is a specific radiotracer for molecular imaging of 5-HT6 receptors and suggest that it could be used as a radiopharmaceutical in humans.
Collapse
Affiliation(s)
- Stéphane Emery
- Lyon Neuroscience Research Center, Université de Lyon, CNRS, INSERM, Lyon, France; Hospices Civils de Lyon, Bron, France
| | - Sylvain Fieux
- Lyon Neuroscience Research Center, Université de Lyon, CNRS, INSERM, Lyon, France
| | - Benjamin Vidal
- Lyon Neuroscience Research Center, Université de Lyon, CNRS, INSERM, Lyon, France
| | - Pierre Courault
- Lyon Neuroscience Research Center, Université de Lyon, CNRS, INSERM, Lyon, France; Hospices Civils de Lyon, Bron, France
| | - Sandrine Bouvard
- Lyon Neuroscience Research Center, Université de Lyon, CNRS, INSERM, Lyon, France
| | | | | | - Thierry Billard
- CERMEP Imaging Platform, Bron, France; Institute of Chemistry and Biochemistry, Université de Lyon, CNRS, Villeurbanne, France
| | - Luc Zimmer
- Lyon Neuroscience Research Center, Université de Lyon, CNRS, INSERM, Lyon, France; Hospices Civils de Lyon, Bron, France; CERMEP Imaging Platform, Bron, France; National Institute for Nuclear Science and Technology INSTN, CEA, Saclay, France.
| | - Sophie Lancelot
- Lyon Neuroscience Research Center, Université de Lyon, CNRS, INSERM, Lyon, France; Hospices Civils de Lyon, Bron, France; CERMEP Imaging Platform, Bron, France
| |
Collapse
|
10
|
Gorlova A, Pavlov D, Anthony DC, Ponomarev ED, Sambon M, Proshin A, Shafarevich I, Babaevskaya D, Lesсh KP, Bettendorff L, Strekalova T. Thiamine and benfotiamine counteract ultrasound-induced aggression, normalize AMPA receptor expression and plasticity markers, and reduce oxidative stress in mice. Neuropharmacology 2019; 156:107543. [PMID: 30817932 DOI: 10.1016/j.neuropharm.2019.02.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/08/2019] [Accepted: 02/18/2019] [Indexed: 12/11/2022]
Abstract
The negative societal impacts associated with the increasing prevalence of violence and aggression is increasing, and, with this rise, is the need to understand the molecular and cellular changes that underpin ultrasound-induced aggressive behavior. In mice, stress-induced aggression is known to alter AMPA receptor subunit expression, plasticity markers, and oxidative stress within the brain. Here, we induced aggression in BALB/c mice using chronic ultrasound exposure and examined the impact of the psychoactive anti-oxidant compounds thiamine (vitamin B1), and its derivative benfotiamine, on AMPA receptor subunit expression, established plasticity markers, and oxidative stress. The administration of thiamine or benfotiamine (200 mg/kg/day) in drinking water decreased aggressive behavior following 3-weeks of ultrasound exposure and benfotiamine, reduced floating behavior in the swim test. The vehicle-treated ultrasound-exposed mice exhibited increases in protein carbonyl and total glutathione, altered AMPA receptor subunits expression, and decreased expression of plasticity markers. These ultrasound-induced effects were ameliorated by thiamine and benfotiamine treatment; in particular both antioxidants were able to reverse ultrasound-induced changes in GluA1 and GluA2 subunit expression, and, within the prefrontal cortex, significantly reversed the changes in protein carbonyl and polysialylated form of neural cell adhesion molecule (PSA-NCAM) expression levels. Benfotiamine was usually more efficacious than thiamine. Thus, the thiamine compounds were able to counteract ultrasound-induced aggression, which was accompanied by the normalization of markers that have been showed to be associated with ultrasound-induced aggression. These commonly used, orally-active compounds may have considerable potential for use in the control of aggression within the community. This article is part of the Special Issue entitled 'Current status of the neurobiology of aggression and impulsivity'.
Collapse
Affiliation(s)
- Anna Gorlova
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL, 6229ER, Maastricht, Netherlands; Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Av. Hippocrate 15, 4000 Liège, Belgium; Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University Trubetskaya Street 8-2, 119991, Moscow, Russia; Department of Biology, Lomonosov Moscow State University, Leninskie Gory1-12, 119991, Moscow, Russia
| | - Dmitrii Pavlov
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL, 6229ER, Maastricht, Netherlands; Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Av. Hippocrate 15, 4000 Liège, Belgium; Department of Biology, Lomonosov Moscow State University, Leninskie Gory1-12, 119991, Moscow, Russia; Institute of General Pathology and Pathophysiology, Baltiiskaya Str, 8, 125315, Moscow, Russia
| | - Daniel C Anthony
- Department of Pharmacology, Oxford University, Mansfield Road, OX1 3QT, Oxford, United Kingdom
| | - Eugene D Ponomarev
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Margaux Sambon
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Av. Hippocrate 15, 4000 Liège, Belgium
| | - Andrey Proshin
- Research Institute of Normal Physiology, Baltiiskaya Str, 8, 125315, Moscow, Russia
| | - Igor Shafarevich
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL, 6229ER, Maastricht, Netherlands; Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University Trubetskaya Street 8-2, 119991, Moscow, Russia
| | - Diana Babaevskaya
- Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University Trubetskaya Street 8-2, 119991, Moscow, Russia
| | - Klaus-Peter Lesсh
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL, 6229ER, Maastricht, Netherlands; Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University Trubetskaya Street 8-2, 119991, Moscow, Russia; Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Josef-Schneider-Straße 2, 97080, Wuerzburg, Germany
| | - Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Av. Hippocrate 15, 4000 Liège, Belgium.
| | - Tatyana Strekalova
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL, 6229ER, Maastricht, Netherlands; Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University Trubetskaya Street 8-2, 119991, Moscow, Russia; Institute of General Pathology and Pathophysiology, Baltiiskaya Str, 8, 125315, Moscow, Russia.
| |
Collapse
|
11
|
SUVN-502, a novel, potent, pure, and orally active 5-HT6 receptor antagonist: pharmacological, behavioral, and neurochemical characterization. Behav Pharmacol 2019; 30:16-35. [DOI: 10.1097/fbp.0000000000000414] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Modica MN, Lacivita E, Intagliata S, Salerno L, Romeo G, Pittalà V, Leopoldo M. Structure-Activity Relationships and Therapeutic Potentials of 5-HT 7 Receptor Ligands: An Update. J Med Chem 2018; 61:8475-8503. [PMID: 29767995 DOI: 10.1021/acs.jmedchem.7b01898] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Serotonin 5-HT7 receptor (5-HT7R) has been the subject of intense research efforts because of its presence in brain areas such as the hippocampus, hypothalamus, and cortex. Preclinical data link the 5-HT7R to a variety of central nervous system processes including the regulation of circadian rhythms, mood, cognition, pain processing, and mechanisms of addiction. 5-HT7R blockade has antidepressant effects and may ameliorate cognitive deficits associated with schizophrenia. 5-HT7R has been recently shown to modulate neuronal morphology, excitability, and plasticity, thus contributing to shape brain networks during development and to remodel neuronal wiring in the mature brain. Therefore, the activation of 5-HT7R has been proposed as a therapeutic approach for neurodevelopmental and neuropsychiatric disorders associated with abnormal neuronal connectivity. This Perspective celebrates the silver jubilee of the discovery of 5-HT7R by providing a survey of recent studies on the medicinal chemistry of 5-HT7R ligands and on the neuropharmacology of 5-HT7R.
Collapse
Affiliation(s)
- Maria N Modica
- Dipartimento di Scienze del Farmaco , Università di Catania , Viale Andrea Doria 6 , 95125 Catania , Italy
| | - Enza Lacivita
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari Aldo Moro , Via Orabona 4 , 70125 Bari , Italy
| | - Sebastiano Intagliata
- Department of Medicinal Chemistry, College of Pharmacy , University of Florida , Medical Science Building, 1345 Center Drive , Gainesville , Florida 32610 , United States
| | - Loredana Salerno
- Dipartimento di Scienze del Farmaco , Università di Catania , Viale Andrea Doria 6 , 95125 Catania , Italy
| | - Giuseppe Romeo
- Dipartimento di Scienze del Farmaco , Università di Catania , Viale Andrea Doria 6 , 95125 Catania , Italy
| | - Valeria Pittalà
- Dipartimento di Scienze del Farmaco , Università di Catania , Viale Andrea Doria 6 , 95125 Catania , Italy
| | - Marcello Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari Aldo Moro , Via Orabona 4 , 70125 Bari , Italy
| |
Collapse
|
13
|
Tang L, Li J, Luo H, Bao M, Xiang J, Chen Y, Wang Y. The association of 5HT2A and 5HTTLPR polymorphisms with Alzheimer’s disease susceptibility: a meta-analysis with 6945 subjects. Oncotarget 2018; 9:15077-15089. [PMID: 29599928 PMCID: PMC5871099 DOI: 10.18632/oncotarget.23611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/15/2017] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease. Relationships of 5HT2A and 5HTTLPR polymorphisms and AD risk have been widely investigated previously, whereas results derived from these studies were inconclusive and controversial. The aim of this study was to investigate the association of the 5-HT2A and 5HTTLPR polymorphisms and AD using a meta-analysis of existing literatures. Studies were collected using PubMed, Web of Science, the Cochrane Library databases, Chinese National Knowledge Infrastructure (CNKI) and Embase. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess associations. As a result, a total of 7 publications for 5-HT2A T102C and 16 publications for 5HTTLPR (L/S) comprised 3255 cases and 3690 controls fulfilled the inclusion criteria. Significant association was covered between allelic and recessive models of 5-HT2A T102C and AD (allelic model: p = 0.003, OR [95% CI] = 1.23 [1.07, 1.40]; recessive model: p = 0.03, OR [95% CI] = 1.28 [1.02, 1.59]). Subsequently, we conducted subgroup analysis for 5-HT2A T102C polymorphism based on ethnicities and APOE ε4, and identified a significantly increased risk for the allelic and dominant models of 5-HT2A T102C and AD in Asian subgroup (allelic model: p = 0.002, OR [95% CI] = 1.42 [1.14, 1.78]; dominant model: p = 0.02, OR [95% CI] = 1.60 [1.09, 2.35]) and subgroup without APOE ε4 (allelic model: p = 0.02, OR [95% CI] = 1.44 [1.05, 1.99]; dominant model: p = 0.0008, OR [95% CI] = 2.49 [1.46, 4.25]). Nevertheless, the pooled analyses suggested no significant association between allelic, dominant, and recessive models of 5HTTLPR (L/S) and AD (p > 0.05). In conclusion, our meta-analysis demonstrates that 5HT2A C10T, but not 5HTTLPR (L/S), might increase risk for AD.
Collapse
Affiliation(s)
- Liang Tang
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, PR China
- School of Basic Medical Science, Changsha Medical University, Changsha, PR China
| | - Jianming Li
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, PR China
- Department of Neurology, Xiang-Ya Hospital, Central South University, Changsha City, Hunan Province, PR China
| | - Huaiqing Luo
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, PR China
- School of Basic Medical Science, Changsha Medical University, Changsha, PR China
| | - Meihua Bao
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, PR China
- School of Basic Medical Science, Changsha Medical University, Changsha, PR China
| | - Ju Xiang
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, PR China
- School of Basic Medical Science, Changsha Medical University, Changsha, PR China
| | - Yiwei Chen
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, PR China
- School of Basic Medical Science, Changsha Medical University, Changsha, PR China
| | - Yan Wang
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, PR China
- School of Basic Medical Science, Changsha Medical University, Changsha, PR China
- Experiment Center for Function, Changsha Medical University, Changsha, PR China
| |
Collapse
|